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Abstract. Kleinberg’s HITS algorithm (Kleinberg 1999), which was originally
developed in a Web context, tries to infer the authoritativeness of a Web page in
relation to a specific query using the structure of a subgraph of the Web graph, which
is obtained considering this specific query. Recent applications of this algorithm in
contexts far removed from that of Web searching (Bacchin et al. 2002, Ng et al. 2001)
inspired us to study the algorithm in the abstract, independently of its particular
applications, trying to mathematically illuminate its behaviour. In the present paper
we detail this theoretical analysis. The original work starts from the definition of a
revised and more general version of the algorithm, which includes the classic one as
a particular case. We perform an analysis of the structure of two particular matrices,
essential to studying the behaviour of the algorithm, and we prove the convergence of
the algorithm in the most general case, finding the analytic expression of the vectors
to which it converges. Then we study the symmetry of the algorithm and prove the
equivalence between the existence of symmetry and the independence from the order
of execution of some basic operations on initial vectors. Finally, we expound some
interesting consequences of our theoretical results.
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algorithm

1. Introduction and related works

Kleinberg’s HITS (Hyperlink-Induced Topic Search) algorithm (Klein-
berg 1999) is a link analysis algorithm which was originally developed
in a Web context; HITS is thought to be useful for inferring Web pages
that would be considered authorities for a particular query made to
a search engine. This deduction uses only the information from the
structure of a directed graph built on the basis of the particular query,
and which is a subgraph of the directed graph representing the Web.
The algorithm selects some nodes of this directed graph through the
exploitation of a mutual reinforcing relationship. Recent applications of
the HITS algorithm in fields far removed from that of Web searching,
such as that of word stemming (Bacchin et al. 2002), and the discov-
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ery of a connection between the technique of HITS and the Latent
Semantic Indexing technique (Ng et al. 2001), have led us towards a
theoretical study of this algorithm. In fact we think that an in-depth
mathematical analysis is necessary to better understand the behaviour
of this algorithm in various contexts. The purpose of this analysis is
that of deriving properties to decide if the algorithm could reasonably
be applied in other fields.
In this paper we perform this mathematical analysis, considering a

general formulation of the algorithm from which the original algorithm
can be deduced as a particular case; we focus on the convergence of the
algorithm and on the study of its symmetry. We have tried to carry
out this analysis examining the algorithm independently of its Web
application, so that we address some aspects of the algorithm that are
crucial to having a wider knowledge of its general behaviour.
The analysis of retrieval algorithms in general is not yet typical in

Information Retrieval. A technical survey on Information Retrieval on
the Web can be found in Agosti and Melucci (2001); (Henzinger 2001)
is a brief survey focused on hyperlink analysis for the Web. Kleinberg’s
original work is described in Kleinberg (1999). The cited article intro-
duces the HITS algorithm in a Web context; HITS is used to rank the
Web pages retrieved by a text-based search engine in response to a
specific query. Since Kleinberg’s algorithm works on a subgraph built
on the basis of the query, it is said to be an algorithm which gives a
query-dependent ranking, as opposed to the algorithms giving a query-
independent ranking, such as PageRank (Page et al. 1998), used by the
Google search engine (Brin and Page 1998). SALSA, another famous
link analysis algorithm for performing query-dependent ranking, is de-
scribed in Lempel and Moran (2001). These and other link analysis
algorithms are studied in depth in Borodin et al. (2001), where some
useful criteria to compare link analysis algorithms are also defined. The
stability of link analysis algorithms, i.e. how much these algorithms are
perturbed by the changing of a portion of the set of Web pages on
which they are working, is studied in Ng et al. (2001). We have been
led towards the mathematical analysis of the HITS algorithm described
here by the results presented in Bacchin et al. (2002). This latter work
uses the core of Kleinberg’s algorithm in a context far removed from
that of Web searching, that is the context of word stemming. In Ng
et al. (2001) there is another interesting application of the algorithm
in a different context, the one of traditional Information Retrieval for
“flat” documents; in the cited paper there is an attempt to see the con-
nections between HITS and the well-known Latent Semantic Indexing
technique. A brief theoretical analysis of the HITS algorithm to study
its limitations in a Web context is performed in Miller et al. (2001);
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this analysis is used to suggest new algorithms that try to overcome
these limitations.
This paper is structured as follows. In Section 2 we give some math-

ematical results that should be remembered in order to understand the
progression of the paper. Section 3 sets out Kleinberg’s algorithm and
the generalization of the algorithm we are considering here. Sections 4
and 5 study the convergence of the algorithm. Section 6 studies the
symmetry of the algorithm and proves the equivalence between sym-
metry and the order of the basic update operations. Since this work has
a theoretical aim, we do not give a list of all its possible applications.
In Section 7, however, we expound some interesting consequences of
our theoretical results.

2. Some preliminary mathematical results

In this section we present the main mathematical results that will be
used throughout this paper. Our aim is to remind the reader of these
results and to fix terminology and notation. The proofs of the theorems
presented here can be found in the cited literature. In the rest of this
paper we will explicitly give proofs of our original results.
We consider a graph as consisting of a vertex set V and an edge set

E, where an edge is an unordered pair of vertices. A directed graph, or
digraph, consists of a node set N and an arc set A, where an arc is an
ordered pair of nodes. In the following, we will consider the vertex set
V of a graph as given by V = {1, 2, . . . , n}. A generic graph G = (V,E)
with |V | = n can be represented by an n × n adjacency matrix A,
whose generic entry (i, j), (A)ij , aij , is given by

aij =

{

1 if an edge between vertices i and j exists,
0 otherwise.

A weighted graph Gw = (Vw, Ew), where |Vw| = n, is a graph whose
edges have an associated positive weight, so that for example the edge
between vertices i and j has a weight eij . The n× n matrix W whose
generic entry (i, j) is

wij =

{

eij if an edge between vertices i and j with weight eij exists,
0 otherwise,

is referred to as the matrix whose underlying graph is Gw. On the other
hand, we say that Gw is the graph described by the matrixW. Similar
definitions can be given for digraphs.
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Let us denote by R the set of real numbers and by C the set of
complex numbers. Let L be a vector space1 over C. Let A be an n× n
complex matrix: A ∈ C

n×n. If for a scalar λ ∈ C and a vector v ∈ L,
v 6= 0, it is Av = λv we say that λ is an eigenvalue of A belonging to
the eigenvector v, and that v is an eigenvector ofA with the eigenvalue
λ. A matrix A is said to be symmetric if A = AT , where AT denotes
the transpose of matrix A. For real symmetric matrices the following
fundamental facts hold (Godsil and Royle 2001):

THEOREM 2.1. The eigenvalues of a real symmetric matrix A are

real numbers.

THEOREM 2.2. Let A be a real symmetric n × n matrix. Then R
n

has an orthonormal basis consisting of eigenvectors of A.

COROLLARY 2.3. If A is an n×n real symmetric matrix, then there

are real matrices L and D such that LTL = LLT = I and LALT =
D, where I is the identity matrix and D is the diagonal matrix of

eigenvalues of A.

An n×n real symmetric matrix A is positive semidefinite if uTAu ≥ 0
for all vectors u ∈ R

n; it is positive definite if it is positive semidefinite
and uTAu = 0 if and only if u = 0. These terms are used only for
symmetric matrices.

THEOREM 2.4. A real symmetric matrix is positive semidefinite if

and only if its eigenvalues are nonnegative. A real symmetric matrix is

positive definite if and only if its eigenvalues are positive.

THEOREM 2.5. A real symmetric matrix A is positive semidefinite if

and only if there is a real matrix B such that A = BTB.

Let A be a square matrix. The spectral radius ρ(A) is the maximum
of the moduli of the eigenvalues of A. If λ is an eigenvalue of A with
|λ| = ρ(A), we say that λ is a dominant eigenvalue; in this case, if v is
an eigenvector of A with λ as eigenvalue, we say that v is a dominant
eigenvector. An n×m real matrixA is said to be positive if all its entries
are positive numbers: (A)ij , aij > 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
An n×m real matrix A is said to be nonnegative if all its entries are
nonnegative numbers: (A)ij , aij ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

1 Typically, in Linear Algebra literature, the symbol used to denote a vector space
is V . Here we have preferred to use L, as we have used V to denote the vertex set of
a graph. L refers to the less commonly used term “linear space” in place of “vector
space”.
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A nonnegative square matrixA is said to be irreducible if its underlying
digraph is strongly connected. Note that if A is also symmetric, A is
irreducible if and only if its underlying graph is connected. In the rest
of this paper we will use these results (Godsil and Royle 2001, Salce
1993):

THEOREM 2.6 (Frobenius). Let A be a real nonnegative and irre-

ducible square matrix. Then:

1. ρ(A) > 0;

2. ρ(A) is an eigenvalue of A belonging to a real positive eigenvector;

3. ρ(A) has 1 as algebraic multiplicity.

A real nonnegative and irreducible square matrix A is said to be prim-
itive if its spectral radius ρ(A) is a strictly dominant eigenvalue, i.e.
no other eigenvalue of A has the modulus that equals ρ(A).
Using the results presented in Theorems 2.4 and 2.6 we can get what

is stated in the following corollary:

COROLLARY 2.7. Let A be a positive semidefinite real symmetric

matrix. If A is nonnegative and irreducible, then A is primitive.

If λ is a strictly dominant eigenvalue belonging to the eigenvector v,
then v is said to be a strictly dominant eigenvector.

3. Kleinberg’s algorithm revised

In this section we describe Kleinberg’s HITS algorithm (Kleinberg
1999) and we extend the algorithm to make it more general. Even
though we are describing the algorithm using its original Web applica-
tion, we want to stress that the core of the algorithm can be applied in
contexts far removed from that of Web searching.
It is useful to our analysis to underline that the HITS algorithm is

composed of two different parts. The first, related to the construction
of the directed graph, depends on the particular application of the al-
gorithm. The second, bringing hubs and authorities to the surface, is
the core of the algorithm and works on the digraph built in the first
part, trying to deduce which nodes of the digraph can be considered
particularly “important” (authorities) and which nodes give a partic-
ular importance to other nodes (hubs); this work is done considering
only the structure of the directed graph built in the first part.
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Construction of the directed graph

This part is strongly dependent on the particular application of the
algorithm. In fact, the directed graph may represent different entities
and relationships between entities, depending on the application of the
algorithm. For instance, in a Web search application, the nodes may
represent Web pages and the arcs may represent links between Web
pages; in a stemming application, the nodes may represent prefixes
and suffixes of words and the arcs may represent the existence of words
with some prefixes and suffixes and so on. Here we give a brief descrip-
tion of this part of the algorithm with regard to its Web application,
as proposed in the original paper by Kleinberg. In its classical Web
application, the adoption of Kleinberg’s algorithm has the target of
improving the performance of Web search engines. To be more precise,
the main goal of its use is that of arranging for the search engine to
retrieve a list of important, or authoritative, Web pages as an answer
to a query σ.
The beginning of the algorithm is dedicated to the construction of

a root set Rσ of Web pages retrieved by a text-based search engine as
an answer to the query σ. This root set is made of the first m pages
in the list of pages retrieved by the search engine; typically m ∼= 200.
Then a base set Sσ of Web pages is built, considering the pages in the
root set, plus all the Web pages that are pointed to by at least one
page of the root set and the Web pages pointing to at least one of the
pages of the root set. Since the number of Web pages pointing to a
certain Web page can be very large, it is necessary to limit the number
that has to be taken into consideration by the algorithm. Let k be the
maximum number actually considered of Web pages pointing to each
page in Rσ. Typically k ∼= 50. If we consider the base set Sσ and all
the existing links between pages in Sσ, we get a set of interlinked Web
pages which can be represented by a directed graph Gσ. In this directed
graph each node represents a Web page and each arc from node i to
node j represents a link from page i to page j. The second part of the
algorithm works on this directed graph Gσ = (Nσ, Aσ) . With regard
to the query σ, the algorithm tries to infer the importance of each Web
page i from the structure of the directed graph Gσ. Since a link from
page i to page j is considered as conferring authority to page j, before
applying the core of the algorithm to the directed graph, a slight change
is made on it: all the arcs representing a link between two pages with
the same domain name are removed, as they logically have the purpose
of helping navigation inside a Web site, more than that of conferring
authority to the pointed Web page.
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Bringing hubs and authorities to the surface

This part is the core of the algorithm, working on the digraph Gσ =
(Nσ, Aσ). In the following we suppose |Nσ| = n. The basic idea here
is that if a Web page in the base set Sσ has many in-links, it can be
either an authority on the considered subject or simply a popular page;
but if these in-links come from pages that are for the most part linking
to the same other pages, then it is reasonable to take this page to be
an authority (see Fig. 1). So the goal of the algorithm is that of bring-
ing authorities to the surface and separating them from mere popular
pages. This can be done by exploiting a kind of mutual reinforcing
approach. To make this mutual reinforcement appear, a hub weight hi
and an authority weight ai are assigned to each node i of the digraph
Gσ. These two weights are both initially set to 1, and then authority
weights and hub weights are updated according to the formulas:

a
(k)
i =

∑

j:j→i

h
(k−1)
j h

(k)
i =

∑

j:i→j

a
(k)
j (1)

where k is the step of the iterative procedure we are considering and
the symbol “→” means that the page on its left points to the page on
its right. The first sum is extended to all the Web pages j that point
to page i, and the second to all the pages j that are pointed to by page
i. If we consider the adjacency matrix A = [aij ] of the directed graph
Gσ, and the vectors of authorities and hubs:

a(k) =















a
(k)
1

a
(k)
2
...

a
(k)
n















h(k) =















h
(k)
1

h
(k)
2
...

h
(k)
n















we can express the formulas (1) through:

a(k) = ATh(k−1)

h(k) = Aa(k).

These formulas, giving the basic operations of the algorithm, are to be
considered for k = 1, 2, . . .. Moreover, since the value of some author-
ities and hubs could become too large, a normalization is imposed at
each step.
Let us formalize this part of the algorithm. Let

u =











1
1
...
1





























n entries.
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a

b

Figure 1. The difference between a page that is merely popular (page a) and an
authority (page b) according to the idea underlying Kleinberg’s algorithm.

Let M > 1 be an integer number that gives the number of iterations
when applying the algorithm. In a theoretical setting the number of
iterations to be considered should be infinite, but in the Web applica-
tion of the algorithm it has been noted in experiments that a number
of iterations equal to 20 is sufficient. Using a matrix notation, we can
formalize this part of the algorithm as follows:

a(0) := u;

h(0) := u;
for k := 1 to M do

begin

a(k) := ATh(k−1);

h(k) := Aa(k);

normalize a(k) so that ‖a(k)‖ = 1;
normalize h(k) so that ‖h(k)‖ = 1

end

a := a(M);

h := h(M).

At the end of the iterations, a gives the authority vector and h the
hub vector. Since the choice of the norm to normalize vectors does not
influence the behaviour of this algorithm, we have not specified it in
the written version of the algorithm; it can be noted that Kleinberg
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uses ‖ · ‖2. After k steps, k > 0, we have, normalization apart:

a(k) = (ATA)k−1ATu

h(k) = (AAT )ku.

In this paper we are interested in introducing an extension to Klein-
berg’s algorithm. This extended algorithm can be obtained from the one
previously described, by considering the possibility of giving a positive
weight to each arc of the digraph. This weight may have different mean-
ings, depending on the applications of the algorithm: in a Web context
the weight can be applied with the meaning of the probability that a
particular arc indeed gives a measure of authoritativeness. Therefore
we can consider an n × n matrix W = [wij ] whose generic entry (i, j)
is:

wij =

{

eij if the arc from node i to j has the positive weight eij ,
0 if no arc exists from node i to node j.

Obviously, if eij = 1 for every arc from node i to node j, so that

wij =

{

1 if an arc from node i to node j exists
0 otherwise,

we getW = A, and so the classic version of the algorithm is a particular
case of the revised one. Let Gσ = (Nσ, Aσ), with |Nσ| = n, be the
weighted digraph we are considering, described with matrixW. In this
revised formulation of the algorithm we get, normalization apart:

a(k) = (WTW)k−1WTu

h(k) = (WWT )ku,

where k = 1, 2, . . ..
It is clear that matrices WTW and WWT play a fundamental

role in the study of the convergence of this algorithm, so that it is
worthwhile studying their properties.

4. Properties of the matrices WTW and WWT

Let us consider some properties of the matrixWTW that will be useful
to see deeper inside the behaviour of Kleinberg’s algorithm and its
revised version.
Let us say (W)ij , wij the entry (i, j) of the matrix W. Moreover,

let B , WTW and (B)ij , bij . From the definition of matrix product
we get: bij =

∑n
k=1 wkiwkj , since the first matrix W is transposed, i.e.
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(WT )ik = wki; from this formula we see that the generic entry bij is a
nonzero entry if and only if there is at least one node k of the digraph
Gσ with outgoing arcs towards nodes i and j at the same time. Matrix
WTW is an n× n real and nonnegative symmetric matrix with a par-
ticular structure, so that all its n eigenvalues are real and nonnegative,
as we can get from Theorems 2.1, 2.5 and 2.4. It is useful to consider
matrix WTW as having an underlying weighted graph Gw, where an
edge between vertex i and vertex j exists if and only if in the original
digraph Gσ there is at least one node with outgoing arcs towards nodes
i and j. So we can consider the graph Gw as to be composed of a certain
number of connected components, with no connections between each
other. With no loss of generality we can group together the vertices of
each of these components, so that all the vertices belonging to the same
connected component are identified by consecutive numbers. In other
words, if we get m connected components, so that they have k1, k2, . . . ,
km vertices, we may suppose that the first component has the vertices
1, 2, . . . , k1, the second has the vertices k1 + 1, k1 + 2, . . . , k1 + k2 and
so on. After this preliminary work, matrix B is a matrix with diagonal
blocks, with this structure:

B =











B1 0 . . . 0

0 B2 . . . 0
...

. . .

0 0 . . . Bm











(2)

where Bi is the matrix having as underlying graph the weighted com-
ponent i. From (2) we get that the eigenvalues of B are given by the
eigenvalues of B1, plus the eigenvalues of B2, plus the eigenvalues
of B3, and so on till the eigenvalues of Bm. Each of these matrices
B1,B2, . . . ,Bm is a real, irreducible and nonnegative symmetric ma-
trix, with real nonnegative eigenvalues, since the eigenvalues of WTW

are real and nonnegative. Note that some of these matrices can be 0,
i.e. a 1×1 matrix with a single zero entry. Since we are not considering
the trivial case, that is the case in which WTW = 0, in the following
we will suppose that at least one of the matrices Bi, i = 1, 2, . . . ,m has
some nonzero entries. From Corollary 2.7 and Theorem 2.6 we get that
each of the matrices Bi, i = 1, 2, . . . ,m which is different from 0 has a
strictly dominant eigenvalue, i.e. an eigenvalue which is strictly greater
than all the other eigenvalues of the matrix; moreover, all the entries
of its associated eigenvector are greater than 0. We can see that the
eigenvectors of matrix B can be obtained from the eigenvectors of the
matricesB1,B2, . . . ,Bm by just considering 0 the entries corresponding
to the other matrices. For example, starting from the eigenvector ukj ,
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i.e. the eigenvector k of matrix Bj , for matrix B we get the eigenvector:

1











2











j
{

m

































































0
...
0
0
...
0
...

ukj
...
0
...
0























































(3)

Starting from each eigenvector of B1,B2, . . . ,Bm we get n eigenvectors
of B with this structure, which form a basis of Rn. Theorem 2.2 assures
that each matrixBi, i = 1, 2, . . . ,m has an orthonormal basis consisting
of its eigenvectors, and this is the basis we will consider in the following,
so that even B will have an orthonormal basis. Finally, since each
matrix Bi is real and symmetric, from Corollary 2.3 we get that Bi

is orthogonally diagonalizable, meaning that an orthogonal matrix Qi

such that

Q−1
i BiQi =











λ1i 0 . . . 0
0 λ2i . . . 0
...

. . .

0 0 . . . λkii











does exist, where λ1i, λ2i, . . . , λkii are the ki real and nonnegative eigen-
values of Bi; note that these eigenvalues are not necessarily all different
from each other. From the considerations developed before, we have:

THEOREM 4.1. Matrix WTW has a strictly dominant eigenvalue if

and only if one of the matrices B1,B2, . . . ,Bm has a strictly dominant

eigenvalue that is greater than the strictly dominant eigenvalue of every

other matrix of this multiset of matrices.

COROLLARY 4.2. If the matrix WTW represents a connected graph

Gw, then it has a strictly dominant eigenvalue.

All the results obtained for the matrix WTW can also be obtained
for the matrix WWT . Besides, these two matrices have the same
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characteristic polynomial and so the same eigenvalues, with the same
algebraic multiplicity (Salce 1993).
Note that if W = A, so that

wij = aij =

{

1 if an arc from node i to node j exists,
0 otherwise,

we get the matrix ATA which has an interesting interpretation in
bibliometrics. In fact, interpreting each arc from node i to node j as
a citation of the document represented by node j from the document
represented by node i, (ATA)ij gives the number of documents that
cite the documents i and j at the same time; this quantity is called
co-citation. On the other hand, matrix AAT has a generic (i, j) entry
which represents the number of documents cited by both nodes i and
j; this quantity is called bibliographic coupling.

5. Convergence of the revised algorithm

Now we are ready to investigate the convergence of Kleinberg’s HITS
algorithm in its revised formulation. In his seminal paper (Kleinberg
1999) Kleinberg asserts that the classic HITS algorithm makes the
authority vector sequence a(k), k = 1, 2, . . ., converge to the strictly
dominant eigenvector of matrix WTW if this strictly dominant eigen-
vector exists, and the hub vector sequence h(k), k = 1, 2, . . ., converge
to the strictly dominant eigenvector of matrix WWT if this strictly
dominant eigenvector exists. If these matrices do not have a strictly
dominant eigenvector, i.e. two or more eigenvalues have the maximum
value, in Kleinberg (1999) it is merely asserted that the algorithm
converges anyway. As we have seen in Section 4, in general these dom-
inant eigenvectors are not unique, so that an in-depth mathematical
treatment of this subject has to deal with this problem. Moreover, we
are dealing with a more general formulation of Kleinberg’s algorithm,
and we want to see if the conclusions drawn for the classic algorithm
are also valid for the general one.
So, let us consider the formula:

a(k) = (WTW)k−1WTu k = 1, 2, . . . (4)

which gives us the value of the authority vector at the step k of the
revised HITS algorithm, before normalization. The linearity of the
system we are considering allows us to work with this formula, and
to consider its normalization only when we need it, since it makes no
difference whether we consider a normalization at each step or only
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the final normalization. Moreover, in the following we will consider the
structure (2) for matrixWTW = B, since, as we have seen before, this
fact does not limit the generality of our treatment. So, let us consider
the formula (4), and suppose that matrix WTW has the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 belonging to the eigenvectors v1,v2, . . . ,vn,
respectively. As we have seen in Section 4 each of these eigenvectors is
related to a particular diagonal block of matrix (2), so that it has entries
0 corresponding to the other matrices, as illustrated in formula (3). If
more than one matrix Bi has a strictly dominant eigenvalue equal to
λ1, i.e. the dominant eigenvalue of B, then we have an example of the
more general case, that is the one we discuss in this present section.
So, let us suppose λ1 = λ2 = · · · = λr > λr+1 ≥ λr+2 ≥ · · · ≥ λn,
i.e. we have r eigenvalues with maximum value. Their eigenvectors
v1,v2, . . . ,vr are related to the r different matrices Bh1

,Bh2
, . . . ,Bhr ,

so that vj , 1 ≤ j ≤ r, has positive entries corresponding to the di-
agonal block Bhj , and 0 otherwise. In the following we will consider

B , {v1,v2, . . . ,vn} as an orthonormal basis for R
n. We can express

vector WTu in terms of v1,v2, . . . ,vn:

WTu = α1v1 + α2v2 + · · ·+ αrvr + αr+1vr+1 + · · ·+ αnvn.

Since B is an orthonormal basis,

αj = 〈WTu,vj〉 j = 1, 2, . . . , n

where 〈WTu,vj〉 denotes the scalar product between WTu and vj .
Moreover we can note that αj > 0, j = 1, 2, . . . , r, since at least one
entry ofWT in each row i corresponding to a row of Bhj in formula (2)
must be greater than 0, because Bhj represents a connected graph, so
in every row it must have at least one entry that is greater than 0. In
this last reasoning we have also implicitly used the fact that WT is a
nonnegative matrix, that u = [1 1 . . . 1]T and that all the entries of vj
in the rows corresponding to Bhj are strictly positive. So we can write,
from (4):

a(k) = (WTW)k−1WTu =

= (WTW)k−1(α1v1 + α2v2 + · · ·+ αnvn) =

= α1λ
k−1
1 v1 + α2λ

k−1
2 v2 + · · ·+ αnλ

k−1
n vn k = 1, 2, . . .

Setting λ , λ1 = λ2 = · · · = λr we have

a(k) = λk−1(α1v1 + α2v2 + · · ·+ αrvr +
n
∑

i=r+1

αiλ
k−1
i vi

λk−1
) =

= λk−1(α1v1 + α2v2 + · · ·+ αrvr + v(k)) k = 1, 2, . . .
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where

v(k) ,

n
∑

i=r+1

αiλ
k−1
i vi

λk−1
k = 1, 2, . . .

is a sequence of vectors so that limk→+∞ v(k) = 0; in fact all the entries
vanish as k → +∞, since λi/λ < 1 if r + 1 ≤ i ≤ n. The algorithm
makes us compute

lim
k→+∞

a(k)

‖a(k)‖
where ‖a(k)‖ = ‖λk−1(α1v1+ · · ·+αrvr + v(k))‖ = λk−1‖α1v1+ · · ·+
αrvr+v(k)‖ and, since every vector norm ‖x‖, with x = [x1 x2 . . . xn]

T ,
is a continuous function of the variables x1, x2, . . . , xn (Comincioli 1995):

lim
k→+∞

‖α1v1+α2v2+ · · ·+αrvr+v(k)‖ = ‖α1v1+α2v2+ · · ·+αrvr‖

so that

lim
k→+∞

a(k)

‖a(k)‖ =
α1v1 + · · ·+ αrvr
‖α1v1 + · · ·+ αrvr‖

. (5)

From (5) we get that under whatever norm, the revised HITS algorithm

—and so, as a particular case, Kleinberg’s HITS algorithm—converges

to a unit authority vector which is a linear combination of all the

dominant eigenvectors of WTW.

Following the same line of reasoning we can obtain for the hub
vector:

lim
k→+∞

h(k)

‖h(k)‖ =
β1w1 + β2w2 + · · ·+ βrwr

‖β1w1 + β2w2 + · · ·+ βrwr‖
(6)

where we have denoted with w1,w2, . . . ,wr the r dominant eigenvec-
tors of WWT and with βi, i = 1, 2, . . . , r, the scalar product:

βi , 〈u,wi〉 i = 1, 2, . . . , r

where, from the structure of u and wi, we get βi > 0, i = 1, 2, . . . , r.
Note that the number of dominant eigenvectors for the two matrices
WTW and WWT is the same, since these two matrices have the
same characteristic polynomial and Theorem 2.2 holds. From (6) we
get that under whatever norm, the revised HITS algorithm—and so, as

a particular case, Kleinberg’s HITS algorithm—converges to a unit hub

vector which is a linear combination of all the dominant eigenvectors

of WWT .
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6. Order of operations and symmetry

In the classic HITS algorithm the order of the basic operations on the
hub and authority vectors is fixed, since the algorithm starts from the
definition of the hub vector

h(0) = u

and it carries out the following steps:

a(1) = ATh(0)

h(1) = Aa(1)

a(2) = ATh(1)

...

as we have seen in Section 3. Since this seems an arbitrary choice, we
might wonder if it is the same to start with the update of hub values,
that is

a(0) = u

h(1) = Aa(0)

a(1) = ATh(1)

...

In other words, calling, as usual, a(k), h(k), k = 1, 2, . . . the authority
and hub vectors we have at step k following the classic algorithm, and

a
(k)
[i] , h

(k)
[i] , k = 1, 2, . . . the authority and hub vectors we have at step

k following the algorithm with the basic operations inverted, we would
like to know if

lim
k→+∞

a(k) equals lim
k→+∞

a
(k)
[i]

and if
lim

k→+∞
h(k) equals lim

k→+∞
h

(k)
[i] .

This study concerns not only the problem of the order of the basic
operations but also that of the symmetry of the algorithm. According
to Borodin et al. (2001), a link analysis algorithm is said to be symmet-
ric if inverting all the arcs in the digraph constructed by the algorithm
simply interchanges the hub and authority values. The problem of
symmetry is not a mere curiosity about the behaviour of the algorithm.
For example, if we consider a stemming application of the algorithm,
it can seem more “natural” to consider a link from a prefix to a suffix
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for each word but, at the same time, what is especially interesting is
the appropriateness, or authoritativeness, of the prefix as a stem: this
seems to be given by the authority weight of the prefix provided by
the algorithm which uses inverted links, that is links from suffixes to
prefixes. So, is it the same to consider the hub weight of the prefixes
in the original formulation as to consider their authority weights using
the inverted links?
The first result we have obtained on this point regards the equiva-

lence between the problem of the order of the basic operations and that
of the symmetry of the algorithm. Even if until here we have presented
the question by referring to the classic HITS algorithm, from now on
we can work again on the revised algorithm; studying this more general
form does not affect the complexity of the treatment.

THEOREM 6.1. The revised HITS algorithm—and so, as a particular

case, the HITS algorithm—are symmetric if and only if the changing

of the order of the basic operations does not affect the results provided

by the application of the algorithm.

Proof. If a(k), h(k), a
(k)
[i] , h

(k)
[i] , k = 1, 2, . . . have the meaning previ-

ously defined in this section, it is

a(k) = (WTW)k−1WTu

a
(k)
[i] = (WTW)ku

h(k) = (WWT )ku

h
(k)
[i] = (WWT )k−1Wu

where again k = 1, 2, . . .. On the other hand, the digraph with inverted
arcs is described by the matrix WT , since its generic entry (i, j) is
equal to the entry (j, i) of the matrix describing the original digraph.
Therefore, the authority and hub vectors for the digraph with inverted
arcs are given by:

a
(k)
[s] = (WWT )k−1Wu

h
(k)
[s] = (WTW)ku

where k = 1, 2, . . ., so that

a
(k)
[s] = h

(k)
[i] h

(k)
[s] = a

(k)
[i] k = 1, 2, . . . (7)

From (7) the result immediately follows.

We can now prove that the HITS algorithm, and so its revised
version, are not symmetric, and so, from Theorem 6.1, they are not
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Figure 2. A counter example to prove that the HITS algorithm is not symmetric.

independent of the order of update operations, either. Let us consider
the digraph in Fig. 2 and suppose that each arc has weight 1; the related
adjacency matrix A is given by:

A =



















0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0



















so that

ATA =



















0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1



















The eigenvalues of this matrix are given by: λ , λ1 = λ2 = 2, λ3 =
λ4 = λ5 = λ6 = 0; it has two dominant eigenvectors, with eigenvalue
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2, given by:

v1 =



















0
1
0
0
0
0



















v2 =





















0
0
0
0
1√
2

1√
2





















Now we have

ATu =



















0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0





































1
1
1
1
1
1



















=



















0
2
0
0
1
1



















〈ATu,v1〉 =
[

0 2 0 0 1 1
]



















0
1
0
0
0
0



















= 2

〈ATu,v2〉 =
[

0 2 0 0 1 1
]





















0
0
0
0
1√
2

1√
2





















=
2√
2

Thus, using the theory developed before, we can say that the sequence
of authority vectors converges to the following vector, before normal-
ization:

2



















0
1
0
0
0
0



















+
2√
2





















0
0
0
0
1√
2

1√
2





















=



















0
2
0
0
1
1


















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For example, using ‖ · ‖2, the limit vector is given by

1√
6



















0
2
0
0
1
1



















(8)

Now, if we consider the digraph obtained by inverting the arcs of
the digraph depicted in Fig. 2, we get the digraph depicted in Fig. 3.
Its adjacency matrix is given by:

A[s] =



















0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0



















= AT

so that

A[s]A
T
[s] =



















0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1



















= ATA

and the eigenvalues of A[s]A
T
[s] are the eigenvalues of A

TA: λ , λ1 =

λ2 = 2, λ3 = λ4 = λ5 = λ6 = 0. Its dominant eigenvectors are again:

v1 =



















0
1
0
0
0
0



















v2 =





















0
0
0
0
1√
2

1√
2





















and we have

〈u,v1〉 = 1 〈u,v2〉 =
2√
2

so that the sequence of the hub vectors has a limit of:
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Figure 3. The digraph of Fig. 2 with the arcs inverted.

1



















0
1
0
0
0
0



















+
2√
2





















0
0
0
0
1√
2

1√
2





















=



















0
1
0
0
1
1



















that is, using ‖ · ‖2:

1√
3



















0
1
0
0
1
1



















which differs from (8). This proves that the algorithm is not symmetric.
From this counter example, and using the equivalence stated in

Theorem 6.1, we can see that in general the application of the HITS
algorithm, and so of its revised version, gives a limit vector that depends
on the starting vector.
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7. Some interesting consequences

In this paper we carried out an analysis of Kleinberg’s HITS algorithm,
considered in general, so independently of its specific Web application.
Our aim was to try to illuminate the behaviour of this algorithm,
since some recent works have convinced us that interesting applications
could be found for it in fields far removed from that of Web searching.
Moreover, we were interested in studying a generalized version of the
algorithm, which we called the revised HITS algorithm, so that the
classic version of the algorithm is a particularization of the revised one.
Following these starting ideas we found that the key to mathematically
understanding the behaviour of this algorithm is in the structure of two
matrices,WTW andWWT . We found that these matrices can always
be transformed into block diagonal matrices, where each block can be
seen as representing a connected component of a weighted graph. This
analysis formed the basis to proving the convergence of the algorithm to
a limit vector, even in the cases in which these matrices have more than
one dominant eigenvector; moreover, we found the analytic expression
of this limit vector. Finally, we proved the equivalence between the
problem of the symmetry of the algorithm and that of the order of the
basic operations performed over the hub and authority vectors, and we
found that the algorithm is not symmetric.
The theoretical analysis performed here has the purpose of throwing

light on the behaviour of the algorithm, and so its range should be
broad. Pursuing this aim, we have generalized the HITS algorithm,
and studied it in the abstract. The utility of this kind of study should
go beyond the mathematical explanation of some experimental results.
Moreover, the possible applications of its results could go beyond the
ideas the authors of the analysis now have. This is a common situation
in theoretical analyses. In this section, however, we would like to qual-
itatively explain the correlation between the dominant eigenvalues of a
nonnegative real symmetric matrix and the structure of the weighted
graph underlying it. Afterwards we would like to indicate a couple of
situations in which our analysis clarifies the actual behaviour of the
algorithm, or its right application.

7.1. Graphs and dominant eigenvalues

In the analysis we have developed in Sections 4 and 5 we have proved
that the revised HITS algorithm converges to a unit authority vec-
tor which is a linear combination of all the dominant eigenvectors of
WTW. Moreover, we have proved a similar result for hubs; neverthe-
less, to make our treatment more specific, in the rest of this subsection
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we will focus on the authority vector and so on the matrix WTW. As
usual, all the facts which will be shown are however also valid for the
hub vector and the matrix WWT .
Using the results of our analysis, now we know that the limit vector

has a block structure, where the generic block j is a nonzero block if
and only if Bj has a dominant eigenvalue which equals the dominant
eigenvalue of B. Since Bj represents a weighted connected graph that is
the j-th connected component of the weighted graph represented by B,
it is a central point to grasp which are the relations between a weighted
graph and the dominant eigenvalues of the matrix representing it. So,
what does it mean if a weighted connected graph is represented by a
matrix whose dominant eigenvalues are large? Which are the qualitative
differences between weighted connected graphs that are represented by
matrices with different dominant eigenvalues?
To try to answer these questions, we need to remind the reader of

the following theorem (Godsil and Royle 2001):

THEOREM 7.1. Suppose A is a real nonnegative n× n matrix whose

underlying directed graph G is strongly connected. Suppose A1 is a

real nonnegative n× n matrix such that A−A1 is nonnegative. Then

ρ(A1) ≤ ρ(A), with equality if and only if A1 = A.

Applying this theorem to our case, it is easy to see that if we have an
initial weighted connected graph G1 and we move to another graph G
obtained from G1 just adding one or more edges with positive weights,
or increasing the weights of one or more pre-existent edges, the new
weighted graph is represented by a matrix with larger dominant eigen-
values. In Fig. 4 three simple weighted graphs, G1, G2, and G3, are
depicted. Starting from the initial graph G1, graph G2 is obtained
from G1 by adding an edge with weight 0.1 between vertices 2 and
4. Graph G3 is obtained from graph G2 by increasing the weight of the
edge between vertices 1 and 2. Calling A1, A2 and A3 the matrices
describing G1, G2 and G3, respectively, it is ρ(A1) < ρ(A2) < ρ(A3).
Applying these remarks to Kleinberg’s algorithm, we can say that each
block Bj has a dominant eigenvalue which gets bigger as each one
of block Bj ’s entries enlarges. So, considering the digraph Gσ and the
generic entry (i, j) of the blockBj , when the number of nodes k pointing
to i and j simultaneously becomes bigger, or the weights of arcs (k, i)
and (k, j) get bigger, the dominant eigenvalue of Bj gets larger.
Moreover, keeping in mind the following theorem (Salce 1993):

THEOREM 7.2. If A is a real nonnegative n×n matrix, whose generic

entry (i, j) is denoted with aij, we have:

min
i

∑

j

aij ≤ ρ(A) ≤ max
i

∑

j

aij
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Figure 4. Three weighted graphs represented by matrices with increasingly larger
dominant eigenvalues.

min
j

∑

i

aij ≤ ρ(A) ≤ max
j

∑

i

aij ,

we can see that there is a kind of relation between the size of the
dominant eigenvalue of a block Bj and the size of the block (number of
rows, and so number of columns). Moreover, a qualitative rule can be:
between two blocks with different sizes but with entries with compara-
ble values, the largest one has probably a larger dominant eigenvalue.
This means, of course, that between two weighted connected graphs
with edges with comparable weights, the one with a larger number of
vertices is probably represented by a matrix with a larger dominant
eigenvalue.

7.2. How the HITS algorithm works on the Web

Now we are ready to try to explain the behaviour of the classic algo-
rithm in its original Web application. To make our explanation con-
crete, let us suppose there are a couple of Web communities in the
digraph Gσ = (Nσ, Aσ) on which the algorithm works; this situation is
depicted in Fig. 5. This figure represents a simple and neat topology;
the actual digraphs on which the algorithm works can, of course, have
a much more complex topology.
At a quick glance at the figure, one could imagine that the algorithm

will give, as authorities, a combination of the pages in the left commu-
nity and in the right one. In other words, we might assume that some
pages with high authority weight could be in one of the two communi-
ties and some other pages with high authority weight in the other. Our
results show that this is generally false: unless the first eigenvalue of
the two blocks of WTW representing the two authorities communities
is the same, a rather improbable event as we can infer from the facts
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Figure 5. A digraph Gσ with two separate communities.

shown in the previous subsection, one community wins, and the weights
of the authorities of the other community vanish. On the other hand,
all the authority weights of the authorities of the winning community
will be positive. For example, in the simple case of Fig. 5, the left
community wins, and the algorithm gives a positive authority weight
only to the authorities in this community, that is only to the nodes 3,
4, and 5, while all the other nodes’ authority weight equals zero. This
means that the algorithm is intrinsically community-oriented, that is
it tends to emphasize one authorities community. So our analysis can,
at least partially, explain the so-called tightly knit community (TKC)
effect (Lempel and Moran 2001): it was experimentally seen that, es-
pecially with some queries, Kleinberg’s algorithm tends to emphasize
only one of the communities of Web pages in the answer, missing the
topics in the other communities.

7.3. An application to stemming

In this subsection we would like to outline an application of the HITS
algorithm to stemming. Here we have the purpose of giving an idea
of an application of the algorithm in a field far removed from that of
Web searching. Moreover, we would like to show how in this context
the problem of symmetry, which was addressed in Section 6, naturally
arises. The reader interested in the first article written on this subject
should read Bacchin et al. (2002), in which the idea of applying the
core of Kleinberg’s algorithm to stemming is enriched by statistical
interpretations; in Bacchin et al. (2002) and in Di Nunzio et al. (2003)
many experimental results can be found.
The stemming process (Baeza-Yates and Ribeiro-Neto 1999) consists

of reducing each word of a document or of a query to its grammatical
root. This process can improve both the effectiveness and efficiency
of information retrieval systems. Among stemming strategies, the most
commonly used is the suffix removal strategy, whose purpose is to divide

paper_agosti-pretto-mfir-klu.tex; 6/02/2004; 19:24; p.24



25

accus

ationeder

compilcomputread

ability

Figure 6. Mutual reinforcement between stems and derivations.

each word into two parts, a stem and a derivation, appropriately remov-
ing the last part of the word, i.e. its suffix. For instance, in the words
connected, connecting, connection and connections, connect is
the stem, and ed, ing, ion and ions are the derivations, respectively.
The first part of the algorithm proposed in Bacchin et al. (2002)

divides each word into different pairs (prefix, suffix), considering all the
possibilities; then a digraph is built, in which each node represents
a prefix or a suffix, and an arc between nodes i and j exists if, and
only if, there is a word with a prefix represented by i and a suffix
represented by j. Now, how can we distinguish, among all the possible
pairs (prefix, suffix), the pair (stem, derivation) for each word? The idea
underlying the algorithm is that even between prefixes and suffixes
there is a kind of mutual reinforcement, that is a good prefix points
to many good suffixes, while a good suffix is pointed to by many good
prefixes. To better understand the idea underlying this application,
let us see Fig. 6, taken from Di Nunzio et al. (2003). In this figure,
the mutual reinforcement between the stems read, comput, compil,
accus and the derivations ability, er, ed, ation is shown. Note that
if we considered generic pairs (prefix, suffix), the digraph would be more
sparse, without the above illustrated mutual reinforcement.
The considerations made above suggest that we apply the core of

Kleinberg’s algorithm to the prefixes-suffixes digraph, to find the stems
of words. In this case we have a typical situation in which the symmetry
problem arises: in fact, what we are looking for are good prefixes, that
is prefixes which are candidates to be stems, but a natural application
of the algorithm would indicate good suffixes, since the algorithm was
born to find good authorities. Now the question is: do the best hubs
for the natural application of the algorithm exactly correspond to the
best authorities for the application of the algorithm to the digraph
with reversed arcs? The theory developed in Section 6 allows us to
reply in the negative to this question. Therefore, the theory developed
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in Section 6 could suggest the application of the core of Kleinberg’s
algorithm to a new digraph, with inverted arcs, to tackle the stemming
problem in an innovative way.

8. Future work

Our future work will focus on two specific topics:

1. First of all, we would like to study the possibility of finding an a
priori defined number of steps, on the basis of the structure of the
starting digraph, so that the iterative calculation of the authority
and hub vectors can stop after this number of steps, since the order
of the values of the authority and hub entries does not change any
more after it. This seems to be an interesting problem, since what
is really important in using the authority, and in some cases the
hub vectors, is the ranking supplied by these vectors, more than
the actual value of their entries. Moreover, the problem is original
since it regards the ranking of the entries, while Numerical Anal-
ysis literature (Golub and Van Loan 1996) considers the distance
between the limit vector and the vector we get after k iterations.

2. An in-depth analysis of eigenvector-based techniques should be
undertaken. In particular, in his experiments (Kleinberg 1999),
Kleinberg found that the second eigenvector, in relation to certain
queries, brought the logical separation between some communities
of Web pages to the surface. This is a facet of the algorithm’s
behaviour that has not yet been analytically understood, and we
think that this present work, and especially what we have shown in
Section 4, could be a useful starting point to deal with this problem.
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