
Annotation as a Support to User Interaction for Content
Enhancement in Digital Libraries

Maristella Agosti
agosti@dei.unipd.it

Nicola Ferro
ferro@dei.unipd.it

Department of Information Engineering – University of Padua
Via Gradenigo, 6/b – 35131 Padova, Italy

Emanuele Panizzi
panizzi@di.uniroma1.it

Rosa Trinchese
trinchese@di.uniroma1.it

Department of Computer Science – University of Rome “La Sapienza”
Via Salaria, 113 – 00198 Roma, Italy

ABSTRACT
This work describes the interface design and interaction of
a generic annotation service for Digital Library Manage-
ment Systems (DLMSs), called Digital Library Annotation
Service (DiLAS), that has been designed and is currently
undergoing development and user test in the framework of
the DELOS European Network of Excellence. The objec-
tive of DiLAS is to design and develop an architecture and
a framework able to support and evaluate a generic anno-
tation service, i.e. a service that can be easily used into
different DLMSs enhancing their User Interfaces (UIs) in
order to offer to Digital Library (DL) users a set of uni-
form, user-tested (under certain required conditions), and
recognizable functionalities.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries—System issues; H.5.1 [Multimedia Information

Systems]: Evaluation/methodology; H.5.2 [User Inter-

faces]: Graphical user interfaces

General Terms
Design, Human Factors

Keywords
annotation, annotation service, multimedia document, user
interface, digital library, digital library management system

1. INTRODUCTION
In most contemporary DLMSs the contents are conveyed

to the user as a “collection of information items” which can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’06, May 23–26, 2006, Venezia, Italy.
Copyright 2006 ACM 1-59593-353-0/06/0005 ...$5.00.

be searched or browsed. However, this paradigm is often not
sufficient to cope with embedded usages, for which access to
the contents is not seen as an isolated activity, but as part
of a larger work process, where interaction with other users,
editing and annotating documents, needs to be integrated.
Up to now, annotations have been - in most cases - stored
together with the documents they refer to in a central DL
repository. With the advent of decentralized DL architec-
tures in Grid or Peer-To-Peer (P2P) environments, but also
in Service-oriented Architectures (SoA), these design choices
need to be revised by technical solutions which allow us to
manage annotations independently from a particular DLMS.

One of the goals of the Digital Library Annotation Service
(DiLAS) project [1], which is an ongoing project in the
framework of DELOS European Network of Excellence on
Digital Libraries1, is to design and develop a generic anno-
tation service, that is a service that can be easily used into
different DLMSs. The other goal is to define a set of Appli-
cation Program Interfaces (APIs) to allow both the access to
this service from different DLMSs and the creation of differ-
ent annotation clients and User Interfaces (UIs) embedded
in various DLMSs.

The paper is organized as follows: Section 2 provides back-
ground information about our research on annotation sys-
tems; Section 3 introduces the architecture of the DiLAS
service and describes the design and the work conducted
to integrate Flexible Annotation Service Tool (FAST) and
Multimedia Annotation of Digital Content Over the Web
(MADCOW); Section 4 explains how the proposed APIs
drive the design and development of UIs for DLMS; finally,
Section 5 draws some conclusion and outlooks future works.

2. BACKGROUND IN ANNOTATION
RESEARCH

2.1 FAST
Flexible Annotation Service Tool (FAST) is a flexible sys-

tem designed to support different architectural paradigms,
such as P2P or Web Services (WS) architectures, and a wide
range of different DLMSs. The flexibility of FAST and its

1
http://www.delos.info/

151

independence from any particular DLMS is a key feature
to provide users with a uniform way of interaction with an-
notation functionalities, without the need of changing their
annotative practices only because a user works with differ-
ent DLMSs. Furthermore, annotations create an hypertext
that allows users to merge their personal content with the
information resources provided by diverse DLMSs: this hy-
pertext can span and cross the boundaries of a single DLMS,
if users need to interact with diverse DLMSs [2]. The pos-
sibility of having a hypertext that spans the boundaries of
different DLMSs is quite innovative because up to now such
hypertext is usually confined within the boundaries of a sin-
gle DLMS. Moreover, DLMSs do not usually offer hyper-
text management functionalities, since they do not normally
have a hypertext connecting information resources with each
other. Thus, annotations can be a way of associating a hy-
pertext to a DL in order to enable an active and dynamic
usage of information resources [3].

Differently from today’s systems, FAST has to avoid any
constraints concerning both the annotated information re-
source and the available protocols. The only assumption
about information resources that FAST can make is that
each information resource is uniquely identified by a han-
dle, which is a name assigned to an information resource
in order to identify and facilitate the referencing to it, such
as a Uniform Resource Identifier (URI) or a Digital Object
Identifier (DOI).

From an architectural point of view, FAST adopts a three-
layers architecture – the data, application and interface logic
layers – and is designed at a high level of abstraction in
terms of abstract APIs [2]. In this way, we can model the
behaviour and the functioning of FAST without worrying
about the actual implementation of each component. Differ-
ent alternative implementations of each component could be
provided, still keeping a coherent view of the whole architec-
ture of the FAST system. We achieve this abstraction level
by means of a set of interfaces, which define the behaviour
of each component of FAST in abstract terms. Then, a
set of abstract classes partially implement the interfaces in
order to define the actual behaviour common to all of the
implementations of each component. Finally, the actual im-
plementation is left to the concrete classes, inherited from
the abstract ones, that fit FAST into a given architecture.
Java2 is the programming language in use for developing
FAST.

2.2 MADCOW
Multimedia Annotation of Digital Content Over the Web

(MADCOW)3 [5] has a client-server architecture, where the
client is a plug-in for a standard Web browser and the servers
are repositories of annotations to which different clients can
login. The possibility of digitally annotating digital docu-
ments introduces three important novelties: (i) the original
document can be left unaltered and the content of the anno-
tation can be stored in a different document; (ii) the docu-
ment (web-note) resulting from the annotation activity can
still be held privately or with restricted circulation within
an organization; (iii) the content of the annotation is not
restricted to text, but can include any form of multimedia
material.

2http://java.sun.com
3
http://www.web-notes.com

Abstract Service API

Ap
pli

ca
tio

n L
og

ic
Da

ta
Lo

gic
Int

erf
ac
e L

og
ic

MADCOW
database

BRICKS
database

MADCOWBRICKS

Abstract Storage API

DAFFODILBRICKS

Advanced Annotation Functionalities

FA
ST

Figure 1: Architecture of the DiLAS service.

Specific UIs for retrieving and filtering annotations have
been defined, as well as for establishing a default annota-
tion server for a document. A webnote is a digital anno-
tation consisting of two main components: metadata and
content. The first is a set of attributes like, type, author,
title, creation date, modification date, location, Uniform Re-
source Locator (URL), public or private visibility. The sec-
ond component is the multimedia content, which is coded
into an HyperText Markup Language (HTML) document
containing, besides text written by the user, links to other
multimedia documents chosen by the same user to integrate
the annotation; that can contain textual information, video,
image or audio files, as inserted by the user. MADCOW al-
lows different pre-established types of annotations, such as
explanation, comment, question, solution, summary, and so
on. The type of the annotation is one from an enumeration
of values which describe the different functional roles that
the annotation plays with respect to the annotated object
[4]. When a document is loaded in a browser, presenting the
WebNotes toolbar, the placeholders (icons showing the an-
notation type) corresponding to the annotations associated
to the document are automatically shown on the document
itself, thus providing links to HTML pages visualizing the
annotation. Since webnotes are presented as HTML pages
which can be annotated in turn and a discussion track may
be produced, where different positions are reflected.

3. DILAS SYSTEM ARCHITECTURE
The architecture of the DiLAS system, shown in Figure 1,

consists of three layers – the data, application and interface
logic layers.

The data logic layer manages the actual storage of the
annotations and provides a persistence layer for storing the
objects which represent the annotation and which are used
by the upper layers of the architecture. In order to make
it as flexible as possible, the Abstract Storage API for the
functionalities of the storage has been defined. This API,
in turn, allows for accessing different system to perform the
actual storage of the annotations. In the first prototype of
the DiLAS system we use the MADCOW system as actual
storage for the annotations, but for the final prototype we

152

-FastMadcowDatastore()
#doSubStartUp(configFileName : String) : void
#doSubShutDown() : void
+getAnnotation(annotationHandle : AnnotationHandle) : Annotation
+insertAnnotation(annotation : Annotation) : Annotation
+findAnnotations(query : Query) : List
+getAnnotationHandle(annotationHandle : String) : AnnotationHandle
+getUser(userName : String, password : String) : User
+insertUser(user : User) : void
+getGroups(user : User) : User
+getGroup(groupName : String) : Group
+getUsers(group : Group) : Group
+findAnnotatedDocuments() : List
+insertGroup(group : Group) : void
+log(loggingEventBeanList : List) : void

FastMadcowDatastore

#HttpAccessHelper()
+accessHTTP() : void
+close() : void
#performStatement() : void
#executeMethod(method : HttpMethod) : void
#reset() : void
 getInstance(instance : String) : HttpAccessHelper
 startUp() : void
 shutDown() : void
-createInstance(instance : String) : HttpAccessHelper

HttpAccessHelper

<<call>>

 isNotPerformed(response : String) : boolean
 isPerformed(response : String) : boolean
 isFatalError(response : String) : boolean
 isInvalidAnnotation(response : String) : boolean
 isInvalidParameters(response : String) : boolean
 isInvalidUser(response : String) : boolean
 isInvalidEmail(response : String) : boolean
 isNoFile(response : String) : boolean
 isNotAllowed(response : String) : boolean
 isNotFound(response : String) : boolean
-MadcowUtil()
-checkResponse(response : String, cause : String) : boolean

MadcowUtil

<<use>>

#FastDatastore()
+startUp(datastoreInstance : String, configFileName : String) : void
+startUp(datastoreInstance : String) : void
+shutDown() : void
+getAnnotation(annotationHandle : AnnotationHandle) : Annotation
+getAnnotationHandle(annotationHandle : String) : AnnotationHandle
+insertAnnotation(annotation : Annotation) : Annotation
+findAnnotations(query : Query) : List
+findAnnotatedDocuments() : List
+getUser(userName : String, password : String) : User
+getGroups(user : User) : User
+insertUser(user : User) : void
+addToGroup(user : User, group : Group) : User
+getGroup(groupName : String) : Group
+getUsers(group : Group) : Group
+insertGroup(group : Group) : void
+addUser(user : User, group : Group) : Group
+log(loggingEventBeanList : List) : void
#doSubStartUp(configFileName : String) : void
#doSubShutDown() : void
-doStartUp(configFileName : String) : void
-doShutDown() : void
-assertStarted() : void

FastDatastore

-datastore

1

-datastore

1

+DATASTORE_CONTEXT_NAME : String = "datastoreContext"
+DATASTORE_INSTANCE_NAME : String = "datastoreInstance"

<<interface>>
Datastore

 getAnnotation(annotationHandle : AnnotationHandle) : Annotation
 getAnnotationHandle(annotationHandle : String) : AnnotationHandle
 insertAnnotation(annotation : Annotation) : Annotation
 findAnnotations(query : Query) : List
 findAnnotatedDocuments() : List

<<interface>>
AnnotationDAO

 getGroup(groupName : String) : Group
 getUsers(group : Group) : Group
 insertGroup(group : Group) : void
 addUser(user : User, group : Group) : Group

<<interface>>
GroupDAO

 getUser(userName : String, password : String) : User
 getGroups(user : User) : User
 insertUser(user : User) : void
 addToGroup(user : User, group : Group) : User

<<interface>>
UserDAO

+log(loggingEventBeanList : List) : void

<<interface>>
LoggerDAO

Visual Paradigm for UML Standard Edition(University of Padua)

Figure 2: UML class diagram of the designed API and its prototype implementation.

are going to integrate also the Building Resources for In-
tegrated Cultural Knowledge Services (BRICKS) system as
storage provider.

The application logic layer provides advanced functional-
ities that make use of annotations, such as for example the
search and retrieval of annotations described above.

Note that the application logic and the upper part of the
data logic correspond to the respective layers in the FAST
system. As already said, within FAST these layers are de-
fined by means of interfaces, as well as the business objects
exchanged in these layers. Thus, the integration of FAST
and MADCOW requires a new implementation of these lay-
ers and business objects, in order to fit them to the needs
of both systems.

The interface logic layer is devoted to manage the inter-
action with the end-user. It depends on the system into
which DiLAS is going to be used and relies on the Abstract
Service API in order to provide the functionalities described
above to the end user. For the first prototype of DiLAS we
use the Distributed Agents for User-Friendly Access of Digi-
tal Libraries (DAFFODIL) system in order to carry out the
desired user-level use cases

With respect to the architecture of Figure 1, the integra-
tion of FAST and MADCOW requires on the one hand to
provide an implementation of the “Abstract Storage API”
suitable for communicating with MADCOW and, on the
other hand, to adapt MADCOW to exchange the messages
expected by the storage API.

According to the architectural approach adopted in FAST
and described in Section 2.1, Figure 2 shows the Unified
Modeling Language (UML) class diagram of both the de-
signed API and its first implementation, developed with
the Java programming language. The proposed API corre-

sponds to the Datastore interface, which is a façade for dif-
ferent interfaces: AnnotationDAO, UserDAO, GroupDAO, and
LoggerDAO. These interfaces are designed according to the
Data Access Object (DAO) design pattern4, which imple-
ments the access mechanism required to work with the un-
derlying data source. Each of the interfaces introduced
above takes care of defining the operation needed to en-
sure the persistence of the different objects managed by
the system, that is Annotation, User, Group of users, and
Logger for logging system activities. Figure 2 shows all the
different functionalities offered by the Datastore interface,
which is initially implemented by an abstract class, called
FastDatastore, which provides the basic functionalities and
the input parameters checks common to all the concrete im-
plementations.

The proposed API has been implemented by creating a
subclass of FastDatastore, called FastMadcowDatastore,
which provides an implementation of the Datastore inter-
face, able to communicate with the MADCOW system. As
discussed in Section 2.2, MADCOW is a web-based system
which communicates with its own protocol over HyperText
Transfer Protocol (HTTP). Thus, FastMadcowDatastore

translates the functionalities described by the Datastore in-
terface into the HTTP calls supported by MADCOW and
exchanges with it eXtensible Markup Language (XML) en-
coded messages, according to the XML schemas defined for
MADCOW. To this end, FastMadcowDatastore relies on an
helper class, called HttpAccessHelper, which makes use of
the Jakarta Commons HttpClient5 version 3.0rc4, in order

4
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html
5
http://jakarta.apache.org/commons/httpclient/

153

Figure 3: Annotate dialog window.

to hide the details of the communication with MADCOW
over HTTP, and utilized the MadcowUtil class for interpret-
ing the responses received by MADCOW.

4. INTERFACE AND INTERACTION
The DiLAS specification drives the design of the inter-

face and of the interaction with the provided services in the
DLMS. In fact, from one point of view, the API specifica-
tion defines the functionalities that the interface can offer to
the DL user; on the other hand, the results of user study we
are undergoing will give hints on the possible use of annota-
tions by DL users, on their behaviour and on their typical
errors, and will thus act as a guideline to the design of the
interaction of the new features that will be integrated and
will enhance the existing DLMS interface.

The most important constraints that must be taken into
account in designing the UI are:

• the need to identify univocally each document;

• the modalities of selection of the source document or of
a part of it; this can take advantage from user studies
related to Web pages conducted in MADCOW;

• the metadata to be filled in, with their relative im-
portance and priority, e.g. only the most relevant and
used metadata fields can be showed in dialog windows;

• the need to univocally identify annotations in the
DLMS, so that they can be reannotated in turn;

• the metadata used by the annotation search service;

• the user authentication constraints.

Thus, the above constraints and the guidelines that will
result from the user study, will limit and drive the interface
design, but will also allow for different choices in the design
and implementation of the UI functionalities, also according
to the existing interaction designed for each specific DLMS.

The first interface prototype, DAFFODIL, is the test bench
for the API, for the usability study and refinement of such
criteria, while the implementation of the BRICKS UI, which
will be prepared later, will let us test the guidelines and the
whole process of interface integration.

When users browse the web and want to create an anno-
tation, they first select an object in the web page and then
fill the dialog window showed up (see figure 3). The user
specifies all the metadata that describe the annotation (ti-
tle of annotation, RST type, public or private visibility) and
annotation content: text and optional attachments. Some
fields (such as creation date, modification date and author

name) are automatically filled in by the system. When the
user saves the annotation, the icon corresponding to the se-
lected type is inserted as a placeholder in the web page.

The system allows users to search any public annotation
created by any other user. In the search annotation dialog
window some parameters from the metadata appear as selec-
tion criteria, e.g. server name, annotation type, annotation
kind, etc. When the user clicks on the search button, the
list of results that satisfy the parameters appeared. Users
can refine the search or open an annotation.

5. CONCLUSIONS AND FUTURE WORK
This paper discussed the architecture of the DiLAS sys-

tem, which can be integrated into different DLMSs in order
to exploit annotations as an active and effective collabora-
tion tool for users.

The first prototype of DiLAS is built on the integration
of two existing systems, FAST and MADCOW, which will
provide the basic functionalities of the annotation service,
so that it can be used by the target systems, BRICKS and
DAFFODIL, and we will perform a user evaluation with
these two system, in order to assess the design and imple-
mentation choices of DiLAS.

Acknowledgments
The work was partially supported by the DELOS Network
of Excellence on Digital Libraries, as part of the Informa-
tion Society Technologies (IST) Program of the European
Commission (Contract G038-507618).

6. REFERENCES
[1] M. Agosti, H. Albrechtsen, N. Ferro, I. Frommholz,

P. Hansen, N. Orio, E. Panizzi, A. M. Pejtersen, and
U. Thiel. DiLAS: a Digital Library Annotation Service.
In International Workshop on Annotation for
Collaboration. Methods, Tools, and Practices, pages
91–101. Paris, November 24-25, 2005.

[2] M. Agosti and N. Ferro. A System Architecture as a
Support to a Flexible Annotation Service. In
Peer-to-Peer, Grid, and Service-Orientation in Digital
Library Architectures: 6th Thematic Workshop of the
EU Network of Excellence DELOS. Revised Selected
Papers, pages 147–166. LNCS 3664, Springer,
Heidelberg, Germany, 2005.

[3] M. Agosti, N. Ferro, I. Frommholz, and U. Thiel.
Annotations in Digital Libraries and Collaboratories –
Facets, Models and Usage. In Proc. 8th European
Conference on Research and Advanced Technology for
Digital Libraries (ECDL 2004), pages 244–255. LNCS
3232, Springer, Heidelberg, Germany, 2004.

[4] P. Bottoni, R. Civica, S. Levialdi, L. Orso, E. Panizzi,
and R. Trinchese. MADCOW: a Multimedia Digital
Annotation System. In Proc. Working Conference on
Advanced Visual Interfaces (AVI 2004), pages 55–62.
ACM Press, New York, USA, 2004.

[5] P. Bottoni, R. Civica, S. Levialdi, L. Orso, E. Panizzi,
and R. Trinchese. Digital Library Content Annotation
with the MADCOW System. In Proc. 7th International
Workshop of the EU Network of Excellence DELOS on
Audio-Visual Content and Information Visualization in
Digital Libraries (AVIVDiLib’05), pages 111–116.
Centromedia, Viareggio, Italy, 2005.

154

