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ABSTRACT
The Precision Medicine (PM) track at the Text REtrieval Conference
(TREC) focuses on providing useful precision medicine-related in-
formation to clinicians treating cancer patients. The PM track gives
the unique opportunity to evaluate medical IR systems using the
same set of topics on two different collections: scientific literature
and clinical trials. In the paper, we take advantage of this opportu-
nity and we propose and evaluate state-of-the-art query expansion
and reduction techniques to identify whether a particular approach
can be helpful in both scientific literature and clinical trials retrieval.
We present those approaches that are consistently effective in both
TREC editions and we compare the obtained results with the best
performing runs submitted to TREC PM 2017 and 2018.
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1 MOTIVATIONS
Medical Information Retrieval (IR) helps a wide variety of users to
access and search medical information archives and data [4]. In [7,
chapter 2], a classification of textual medical information is pro-
posed: 1) Patient-specific information which applies to individual
patients. This type of information can be structured, as in the case of
an Electronic Health Record (EHR), or can be free narrative text. 2)
Knowledge-based information that has been derived and organized
from observational or experimental research. In the case of clinical
research, the information is most commonly provided by books
and journals but can take a wide variety of other forms, including
computerized media. Therefore, the design of effective tools to ac-
cess and search textual medical information requires, among other
things, enhancing the query through expansion and/or rewriting
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techniques that leverage the information contained within knowl-
edge resources. In this context, Sondhi et al. [12] identified some
challenges arising from the differences between general retrieval
and medical case-based retrieval. In particular, state-of-the-art re-
trieval methods, combined with selective query term weighing
based on medical thesauri and physician feedback, improve perfor-
mances significantly [3, 13].

In 2017 and 2018, the Precision Medicine (PM) [10] track1 at
the Text REtrieval Conference (TREC)2 focused on an important
use case in clinical decision support: providing useful precision
medicine-related information to clinicians treating cancer patients.
This track gives a unique opportunity to evaluate medical IR sys-
tems since the experimental collection is composed of a set of topics
(synthetic cases created by precision oncologists) for two different
collections that target two different tasks: 1) retrieving biomedi-
cal articles addressing relevant treatments for a given patient, and
2) retrieving clinical trials for which a patient – described in the
information need – is eligible.

The objective of our study is to take advantage of this oppor-
tunity and evaluate several state-of-the-art query expansion and
reduction techniques to examine whether a particular approach can
be helpful in both scientific literature and clinical trials retrieval.
Given the large number of participating research groups to this
TREC track, we are able to compare the best experiments submitted
to the PM track with the results obtained across the two years by
our approach. The experimental analysis shows that there are some
common patterns in query reformulation that allow the retrieval
system to achieve top performing results in both tasks.

The rest of the paper is organized as follows: Section 2 describes
the approach used to evaluate different query reformulation tech-
niques. Section 3 presents the experimental setup and compares
the results obtained using our approach with the best performing
runs from TREC PM 2017 and 2018. Finally, Section 4 reports some
final remarks and concludes the paper.

2 APPROACH
The approach we propose for query expansion/reduction in a PM
task comprises three steps, plus an additional fourth step required
only for the retrieval of clinical trials. The steps are: (i) indexing,
(ii) query reformulation, (iii) retrieval and (iv) filtering.

Indexing Step. We create the following fields to index clini-
cal trials collections: <docid>, <text>, <max_age>, <min_age> and
<gender>. Fields <max_age>, <min_age> and <gender> contain in-
formation extracted from the eligibility section of clinical trials
and are required for the filtering step. The <text> field contains
1http://www.trec-cds.org/
2https://trec.nist.gov/
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the entire content of each clinical trial — and therefore also the
information stored within the fields described above.

To index scientific literature collections, we create the following
fields: <docid> and <text>. As for clinical trials, the <text> field
contains the entire content of each target document.

Query Reformulation Step. The approach relies on two types
of query reformulation techniques: query expansion and query
reduction.

Query expansion: We perform a knowledge-based a priori query
expansion. First, we rely on MetaMap [2], a state-of-the-art medical
concept extractor, to extract from each query field all the Uni-
fied Medical Language System (UMLS)3 concepts belonging to the
following semantic types4: Neoplastic Process (neop), Gene or
Genome (gngm) and Cell or Molecular Dysfunction (comd). The
gngm and comd semantic types are related to the query <gene> field,
while neop is related to the <disease> field. Also, for those col-
lections where an additional <other> field is included — which
considers other potential factors that may be relevant — MetaMap
is used on <other> with no restriction on the semantic types, as its
content does not consistently refer to any particular semantic type.

Second, for each extracted concept, we consider all its name vari-
ants contained into the following knowledge sources: National Can-
cer Institute5 (NCI), Medical Subject Headings6 (MeSH), SNOMED
CT7 (SNOMEDCT) and UMLS Metathesaurus8 (MTH). All knowl-
edge sources are manually curated and up-to-date.

The expanded queries consist in the union of the original terms
with the set of name variants. For example, consider a query only
containing the word “melanoma” — which is mapped to the UMLS
concept C0025202. The set of name variants for the concept “mela-
noma” contains, among many others: cutaneous melanoma; malig-
nant melanoma; malignant melanoma (disorder); etc. Therefore, the
final expanded query is the union of the original term “melanoma”
with all its name variants.

Additionally, we expand queries that do not mention any kind
of blood cancer (e.g. “lymphoma” or “leukemia”) with the term
solid. This expansion proved to be effective in [5] where the authors
found that a large part of relevant clinical trials do not mention the
exact disease. A more general term like solid tumor is preferable
and more effective.

Query reduction: We reduce original queries by removing, when-
ever present, gene mutations from the <gene> field. To clarify,
consider a topic where the <gene> field mentions “BRAF (V600E)”.
After the reduction process, the <gene> field becomes “BRAF”. The
reduction process aims to mitigate the over-specificity of topics,
since the information contained in a topic is too specific compared
to those contained in the target documents [8].

Additionally, we remove the <other> field from those collections
that include it — since it contains additional factors that are not

3https://www.nlm.nih.gov/research/umls/
4https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
5https://www.cancer.gov/
6https://www.ncbi.nlm.nih.gov/mesh/
7http://www.snomed.org/
8https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/

necessarily relevant, thus representing a potential source of noise
in retrieving precise information for patients.9

Retrieval Step. We use BM25 [11] as retrieval model. Addition-
ally, query terms obtained through query expansion are weighted
lower than 1.0 to avoid introducing too much noise in the retrieval
process [6].

Filtering Step. The eligibility section in clinical trials com-
prises, among others, three important demographic aspects that a
patient needs to satisfy to be considered eligible for the trial, namely:
minimum age, maximum age and gender; where minimum age and
maximum age are the minimum and the maximum age, respectively,
required for a patient to be considered eligible for the trial, while
gender is the required gender.

Therefore, after the retrieval step, we filter out from the list
of candidate trials those for which a patient is not eligible — i.e.
her demographic data (age and gender) does not satisfy the three
eligibility criteria aforementioned. In those cases where part of
the demographic data is not specified, a clinical trial is kept or
discarded on the basis of the remaining demographic information.
For instance, if the clinical trial does not specify a requiredminimum
age, then it is kept or discarded based on its maximum age and
gender required values.

3 SETUP AND EVALUATION
In this section, we describe the experimental collections and the
setup used to conduct and evaluate our approach. Then, we com-
pare the results obtained with our approach with those of the best
performing systems from TREC PM 2017 and 2018. All these sys-
tems make use of external knowledge sources to enhance retrieval
performance; moreover, most of them are complex multi-stage re-
trieval systems, like those proposed in [5, 8], while the approach
we present is quite simple and straightforward – facilitating its
reproducibility.10

Experimental Collections. Both tasks in TREC PM use the
same set of topics, but with two different collections: scientific
literature, clinical trials.

Topics consists of 30 and 50 synthetic cases created by precision
oncologists in 2017 and 2018, respectively. In 2017, topics contains
four key elements in a semi-structured format: (1) disease (e.g. a
type of cancer), (2) genetic variants (primarily present in tumors),
(3) demographic information (e.g. age, gender), and (4) other factors
(which could impact certain treatment options). In 2018, topics
contains three of the four key elements used in 2017: (1) disease,
(2) genetic variants, and (3) demographic information.

Scientific Literature consists of a set of 26,759,399 MEDLINE11
abstracts, plus two additional sets of abstracts: (i) 37,007 abstracts
from recent proceedings of the American Society of Clinical On-
cology (ASCO), and (ii) 33,018 abstracts from recent proceedings
of the American Association for Cancer Research (AACR). These
additional datasets were added to increase the set of potentially

9In a personal communication with the organizers of the track, we have been informed
that it was difficult to convince the oncologists why the other field was even necessary.
10source code available at: inserire url
11https://www.nlm.nih.gov/bsd/pmresources.html
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relevant treatment information. In fact, precision medicine is a fast-
moving field where keeping up-to-date with the latest literature
can be challenging due to both the volume and velocity of scientific
advances. Therefore, when treating patients, it would be helpful to
present the most relevant scientific articles for an individual patient.
Relevant literature articles can guide precision oncologists to the
best-known treatments options for the patient’s condition.

Clinical Trials consists of a total of 241,006 clinical trial descrip-
tions, derived from ClinicalTrials.gov12 — a repository of clinical
trials in the U.S. and abroad. When none of the available treat-
ments are effective on oncology patients, the common recourse is
to determine if any potential treatments are undergoing evaluation
in a clinical trial. Therefore, it would be helpful to automatically
identify the most relevant clinical trials for an individual patient.
Precision oncology trials typically use a certain treatment for a
certain disease with a specific genetic variant (or set of variants).
Such trials can have complex inclusion and/or exclusion criteria
that are challenging to match with automated systems.

Experimental Setup. We use Whoosh,13 a pure Python search
engine library, for indexing, retrieval and filtering steps. For BM25,
we keep the default values k1 = 1.2 and b = 0.75 provided by
Whoosh – as we found them to be a good combination [1]. For
query expansion, we rely on MetaMap to extract and disambiguate
concepts from UMLS. We summarize the procedure used for each
experiment below.
Indexing

• Index clinical trials using the following created fields:
<docid>, <text>, <max_age>, <min_age> and <gender>;

• Index scientific abstracts using the following created fields:
<docid> and <text>.

Query reformulation
• Use MetaMap to extract from each query field the UMLS
concepts restricted to the following semantic types: neop for
<disease>, gngm/comd for <gene> and all for <other>;

• Obtain from extracted concepts all name variants belonging
to NCI, MeSH, SNOMED CT and MTH knowledge sources;

• Expand (or not) topics that do not mention “lymphoma” or
“leukemia” with the term solid;

• Reduce (or not) queries by removing, whenever present, gene
mutations from the <gene> field;

• Remove (or not) the <other> field.
Retrieval

• Adopt any combination of the reformulation strategies;
• Weigh expanded terms with a value k ∈ {0, 0.1, 0.2, ..., 1};
• Perform a search using expanded queries with BM25.

Filtering
• Filter out clinical trials for which the patient is not eligible.

Evaluation Measures. We use the official measures adopted in
the TREC PM track: inferred nDCG (infNDCG), R-precision (Rprec)
and Precision at rank 10 (P_10). Precision at rank 5 and at rank
10 were used only for the Clinical Trials task 2017 and are not
reported in this work for space reasons. The inferred nDCG was
12https://clinicaltrials.gov/
13https://whoosh.readthedocs.io/en/latest/intro.html

not computed for the task Clinical Trials 2017 since the sampled
relevance judgments are not available.

Comparison. In Table 1, we report the results of our experi-
ments (upper part) and compare them with the top performing
participants at TREC 2017 and 2018 (lower part). Given the large
number of experiments, we decided to present the top 5 runs or-
dered by P_10 for each year and for each task. Each line shows a
particular combination (yes or no values) of semantic types (neop,
comd, gngm), usage and expansion of <other> field (oth, oth_exp),
query reduction (orig), and expansion using weighted solid (tumor)
keyword. We use the symbol ‘·’ to indicate that the features oth,
oth_exp are not applicable for year 2018 due to the absence of the
<other> field in 2018 topics. We report the results for both Scientific
Literature (sl) and Clinical Trials (ct) tasks. We highlight in bold
the top 3 scores for each measure, and we use the symbols † and ‡
to indicate two combinations that performed well in both 2017 and
2018. For the TREC PM participants, we select those participants
who submitted runs in both years and reached the top 10 perform-
ing runs in at least two measures [9, 10]. The results reported in
the lower part of Table 1 indicate the best score obtained by a par-
ticular run for a specific measure; the best results of a participant
are often related to different runs. The symbol ‘−’ means that the
measure is not available, while ‘<’ indicates that none of the runs
submitted by the participant achieved the top 10 performing runs.
For comparison, we add for each measure the lowest score required
to enter the top 10 TREC results list, and the score obtained by the
best combination of our approach — indicated by the line number –
as if we were participants of these tracks.

In 2018, there is a clear distinction in terms of performances
among the combinations that achieve the best results for the sl and
the ct tasks. For the sl task, considering the semantic type neop
expansion without using the umbrella term solid provides the best
performances for all the measures considered. On the other hand,
two of the best three runs for the ct task (line 5 and 9), use no
semantic type expansion but rely on the solid (tumor) expansion
with weight 0.1.

In 2017, the situation is completely different. Lines 12 and 13
show two combinations that are in the top 3 performing runs for
both sl and ct . These two runs use query reduction and a weighted
0.1 solid (tumor) expansion. The use of a weighted 0.1 solid ex-
pansion as well as a reduced query (orig = n) seems to improve
performances consistently for all measures in 2017. The semantic
type gngm seems more effective than neop, while comd does not
seem to have a positive effect at all.

Another element that shows how difficult these two tasks are
is the fact that top performing systems in 2017 did not achieve the
same results in 2018. In this sense, our study helps researchers to
select (or remove) semantic types for building strong baselines for
both tasks.

4 CONCLUSIONS AND FINAL REMARKS
In this paper, we proposed and evaluated several state-of-the-art
query expansion and reduction techniques for scientific literature
and clinical trials retrieval. The experimental analysis showed that
no clear pattern emerges for both tasks. In general, a query ex-
pansion approach using a selected set of semantic types helps the

https://clinicaltrials.gov/
https://whoosh.readthedocs.io/en/latest/intro.html
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Semantic Type Field Other sl ct sl ct sl ct
line year neop comd gngm oth oth_exp orig solid P_10 P_10 infNDCG infNDCG Rprec Rprec

1 2018 y y n · · y n 0.5660 0.5540 0.4912 0.5266 0.3288 0.4098
2 2018 y n n · · y n 0.5640 0.5600 0.4961 0.5264 0.3288 0.4138
3 2018 y n y · · y n 0.5480 0.5660 0.4941 0.5292 0.3266 0.4116
4 2018 n n n · · y n 0.5460 0.5680 0.4876 0.5411 0.3240 0.4197
5 2018 n n n · · y 0.1 0.5440 0.5740 0.4877 0.5403 0.3247 0.4179
6 2018 n y n · · y n 0.5440 0.5540 0.4853 0.5403 0.3236 0.4130
7 2018 y n n · · n n 0.5420 0.5700 0.4636 0.5345 0.3180 0.4134
8† 2018 n n y · · y n 0.5340 0.5640 0.4877 0.5337 0.3229 0.4106
9‡ 2018 n n n · · n 0.1 0.5300 0.5820 0.4635 0.5446 0.3148 0.4205
10 2018 y n y · · n n 0.5140 0.5680 0.4572 0.5393 0.3144 0.4122
11 2017 y n y n n n 0.1 0.5033 0.3759 0.3984 - 0.2697 0.3206
12 2017 n n y n n n 0.1 0.4900 0.3931 0.3881 - 0.2677 0.3263
13‡ 2017 n n n n n n 0.1 0.4800 0.4034 0.3931 - 0.2728 0.3361
14 2017 y n n n n n 0.1 0.4767 0.3862 0.3974 - 0.2714 0.3202
15 2017 n n n n n n n 0.4733 0.3931 0.3943 - 0.2732 0.3241
16 2017 y n y n n y 0.1 0.4733 0.3828 0.3567 - 0.2329 0.3253
17† 2017 n n y n n y n 0.4633 0.3862 0.3442 - 0.2254 0.3243

TREC PM Participant Identifier
18 2018 UTDHLTRI 0.6160 0.5380 0.4797 0.4794 < 0.3920
19 2018 UCAS 0.5980 0.5460 0.5580 0.5347 0.3654 0.4005
20 2018 udel_fang 0.5800 0.5240 0.5081 0.5057 0.3289 0.3967
21 2018 NOVASearch < 0.5520 < 0.4992 < 0.3931
22 2018 Poznan < 0.5580 < 0.4894 < 0.4101

2018 Top 10 threshold 0.5800 0.5240 0.4710 0.4736 0.2992 0.3658
2018 Best combination of our approach (1) 0.5660 (9‡) 0.5820 (2) 0.4961 (9‡) 0.5446 (1) 0.3288 (9‡) 0.4205

23 2017 UTDHLTRI 0.6300 0.4172 0.4647 - 0.2993 -
24 2017 udel_fang 0.5067 < 0.3897 - 0.2503 -
25 2017 NOVASearch < 0.3966 < - < -
26 2017 Poznan < 0.3690 < - < -
27 2017 UCAS < 0.3724 < - 0.2282 -

2017 Top 10 threshold 0.4667 0.3586 0.3555 - 0.2282 -
2017 Best combination of our approach (11) 0.5033 (13‡) 0.4034 (11) 0.3984 - (15) 0.2732 (13‡) 0.3361

Table 1: Results for the TREC PM tasks 2017 and 2018. Details are reported in Section 3.

retrieval of scientific literature, while a query reduction approach
without expansion but a small weighted solid (tumor) keyword
expansion improves performances on the clinical trials task. Nev-
ertheless, we found that a particular combination (marked as ‡)
performs well in both tasks – in particular the clinical trials task –
and could have been one of the top 10 performing runs across many
evaluation measures in both TREC PM 2017 and 2018. Therefore,
we consider this run as a baseline on which stronger multi-stage
systems can be built.
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