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Abstract

Wireless sensors can be integrated with rechargeable batteries and energy harvesting (EH) devices to

allow for long-term, autonomous operation. To this end, efficient energy management policies are needed.

Existing research relies on the assumption that the energy available to the sensor is known; however,

the accurate estimation of the battery state-of-charge (SOC) in real-world devices is typically costly or

impractical. This paper investigates the impact of imperfect SOC knowledge, and tackles the design of

optimal operation policies to cope with such imperfect knowledge. The performance degradation with

respect to the idealized scenario where the SOC is perfectly known is quantified, and it is shown that

it decreases with increasing storage capacity and decreasing uncertainty in the EH source. It is shown

that the performance degradation is within 5% for most cases of practical interest, and that near-optimal

performance is achieved by only a loose knowledge of the SOC, which distinguishes between high and

low SOC levels. Moreover, the impact of time correlation in the EH source is investigated, and it is

shown that knowledge of the EH state is more critical than accurate SOC knowledge, so that a precise

knowledge of the former can obviate the need for accurate information about the latter.
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I. INTRODUCTION

Energy harvesting devices (EHDs) can operate autonomously over long periods of time, as

they are capable of collecting energy from the surrounding environment, e.g., solar, motion, heat,

and aeolian EH [3], [4], to sustain tasks such as data acquisition, processing and transmission.

EHDs may find a very important application in wireless sensor networks (WSNs), which are

distributed systems of autonomous devices, deployed over an area of interest with the purpose

of monitoring (e.g., sensing) environmental conditions and other relevant data, processing this

information and transmitting or relaying it to a fusion center, with applications such as health

care, disaster prevention, and industrial, agricultural, or home monitoring [5]. The wireless sensor

devices in a WSN typically integrate multiple capabilities concerning the actual environmental

sensing (data collection) but also transmission via radio techniques, as well as autonomous

control of the overall network operation. In this regard, the exploitation of energy collected by

the sensor devices from the surrounding environment makes it possible to overcome a severe

limitation of battery powered WSN deployments, namely, the finite lifetime of wireless devices,

which results in WSN failure and connectivity loss in those scenarios where battery replacement

is costly or prohibitive. Since wireless sensors already involve an integration process between

communication and sensing elements, it may be sensible to think of a further integration with

EHDs, with the aim to achieve virtually continuous and indefinitely long network operation [6],

[7], at least within the limits of physical degradation of the rechargeable batteries [8].

Combining EHDs with wireless sensors in a single terminal poses a new challenge, i.e., how

to optimally manage the harvested energy with the goal of optimizing the long-term performance

related to sensing and data-communication tasks [7], [9], [10]. The EHD component of a sensor

can be modeled as an energy buffer, where energy is stored according to a given statistical

process, and from where it is drawn to feed sensor microprocessors and transceiver equipments,

whenever needed. To find whether and how much energy can be used, a battery management

algorithm is employed, which makes its decision based on internal state information, such as

the amount of energy stored in the buffer or “state-of-charge” (SOC) [11], [12], the importance

of the data packets to be transmitted [13], or the health state of the battery [8], as well as on

external state information, such as the state of the external energy source [13] or the channel

state [14]. In this regard, exact knowledge of the SOC is especially useful since, when the SOC
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is low, the wireless sensor can remain idle to preserve energy, thus avoiding running out of

energy during the execution of an important task.

However, practical EHDs store energy in electrochemical rechargeable batteries and/or super-

capacitors. Thus, it is questionable to assume that the SOC of these devices can be characterized

with infinite precision and immediate availability at any time. For example, [4] argues that the

actual value of a supercapacitor capacitance may fluctuate by approximately 30% with respect

to the value reported on the data sheet. The SOC level can be estimated online, although this

comes at the price of additional energy and processing costs. Other algorithms [15] have been

proposed to estimate the open circuit voltage, which is closely related to the SOC, but have

non-negligible complexity, which may be an issue for resource-limited small devices. We thus

conclude that SOC estimation is a complex and resource-expensive task and a precise knowledge

of the SOC may be difficult to acquire.

Motivated by the aforementioned real-world concern, we claim that it is of interest to design

battery management policies for scenarios where SOC knowledge is, if not entirely unavailable,

at least imperfect. Thus, in this paper we consider an EHD where the controller knows the SOC

only to the extent of a rough quantization, i.e., a range of values it falls within, but not the

exact value. We investigate policies regulating how energy should be drawn from the battery.

These can be seen as the result of an optimization problem where the goal is to maximize a

long-term reward metric, such as throughput. Differently from traditional investigations of sensor

networks, where a constraint is set on the average long-term power used to perform a specific

task, so as to attain a target lifetime of the device, here the constraints on the operation of the

device are induced by the random fluctuations in the EH source and by the finite battery storage

capacity. Specifically, we determine how partial knowledge of the SOC influences the goodness

of the resulting solution. For example, in the special case of a linear reward function, it is

shown that, under loose assumptions, the optimal policy when SOC knowledge is limited to two

intervals, which can be denoted as LOW and HIGH, incurs no performance loss with respect to

the idealized scenario where the SOC is perfectly known. The numerical evaluations, based on a

logarithmic reward function, which models, for instance, the achievable capacity of a Gaussian

channel, demonstrate that in typical scenarios the performance penalty due to imperfect SOC

knowledge is at most 5%. The intuition behind all these results is that the optimal policy should

aim at avoiding energy outage (i.e., depleting the battery) when the SOC is LOW, while at the
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same time being aggressive when the SOC is HIGH, in order to stay away from energy overflow

(that is, receiving energy that cannot be stored because the buffer is already full). Beyond these

operational criteria, a precise knowledge of the SOC yields only a marginal additional benefit.

Further, we address the impact of correlation in the EH source. We model the EH process as

a hidden Markov chain, reflecting the underlying scenario of the energy generation process [16].

Intuitively, an efficient battery operation policy should also exploit knowledge of the state of this

generation process, to better reduce the occurrences of energy outage and overflow events. In

this regard, we show that adaptation to the underlying scenario process is extremely beneficial to

achieve near-optimal performance. As a result, we show that knowledge of the state of the EH

process and adaptation to it are more critical than perfect knowledge of the SOC. In particular, in

the time-correlated setting, near-optimal performance (within 2% of the globally optimal policy)

can be achieved by only knowing whether the SOC is high or low, but perfectly knowing the

state of the EH source. On the other hand, a more significant performance degradation is incurred

by neglecting the state of the EH source while knowing the SOC perfectly. This confirms our

previous findings [13], where a simple balanced policy, which only adapts to the scenario process

but not to the exact energy level in the battery, achieves performance within 3% of the globally

optimal solution.

The rest of this paper is organized as follows. Sec. II introduces the mathematical represen-

tation of the EHD and the variables involved. Sec. III discusses the optimization methods and

also derives some notable performance bounds and discusses some special scenarios. In Sec. IV,

we present the main numerical results, In Sec. V, we discuss some extensions of the model, and

Sec. VI concludes the paper.

II. SYSTEM MODEL

The main parameters of the model are listed in Table I. We consider an EHD, which scavenges

energy from the surrounding environment (e.g., solar, kinetic, wind, radio frequency). We assume

a slotted-time system, where time slot k ∈ N0 corresponds to the time interval [k, k + 1). The

harvested energy is stored in an energy buffer, in the form of energy quanta of value ∆e [J],

with capacity emax (quanta). In the following sections, we further describe the model in terms

of battery dynamics, scenario process, imperfect SOC, exogenous process, and reward function.
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Table I

PARAMETERS OF THE MODEL.

∆e Energy quantum (in J) emax Battery storage capacity (quanta)

Ek ∈ E SOC state (quanta) Nk ∈ N Interval index of SOC state Ek

Qk ∈ Q Action (quanta) Bk ∼ pB(Bk|Sk) Energy harvested & distribution (quanta)

Sk ∼ pS(Sk|Sk−1) EH scenario & transition prob. qmin, qmax Minimum & maximum load requirements (quanta)

Ck ∼ pC|W (Ck|Wk) Exogenous process & distribution Wk ∼ pW (Wk|Wk−1) Underlying exogenous state & transition prob.

g(Qk, Ck, Ek) Reward function G(µ) Long-term average reward per time slot

µ Policy

A. Battery dynamics

The SOC available in the buffer at time instant k is denoted by Ek ∈ E , taking values in

the set E ≡ {0, . . . , emax}. At the beginning of the kth time slot, the EHD controller requests

a number of energy quanta Qk to be drawn from the buffer to perform a certain task, drawn

from the action space Q = {0} ∪ {qmin, qmin + 1, . . . , qmax}, where 0 < qmin ≤ qmax ≤ emax.

qmin ∈ N and qmax ∈ N represent the minimum and maximum load requirements, respectively.

In particular, qmin may capture fixed energy costs, circuit power, as well as the energy cost

of performing data acquisition and transmission, e.g., see [17], [18]. Action Qk = 0 accounts

for the possibility to remain idle in a given time slot, due to either a controller’s decision or

energy outage. During the time slot duration, the EHD harvests Bk ∈ B energy quanta from

the environment, which are stored in the buffer, where B = {0, 1, . . . , bmax} is the set of arrival

values, with bmax ≤ emax. Accordingly, starting from the initial SOC level E0 ∈ E available at

time instant 0, the temporal evolution of the random variable Ek follows the equation

Ek+1 = min
{

[Ek −Qk]
+ +Bk, emax

}

, k ≥ 0, (1)

where [·]+ ! max{·, 0}.

Remark 1 Note that Ek, Bk and Qk are discrete variables expressed in number of energy

quanta. Since the energy quantum is ∆e[J], the corresponding physical quantities are given

by ∆eEk[J], ∆eBk[J] and ∆eQk[J], respectively. However, in practice, these are continuous

variables taking values in R. This assumption thus represents a quantization of the corresponding

real-valued variables. The error introduced by this quantization decreases with a finer granularity

of the energy quantum ∆e. However, the smaller the energy quantum, the larger the quantized

battery capacity emax, maximum harvested energy bmax and maximum action qmax needed to

represent such quantities, hence the higher the optimization complexity. Therefore, the value of
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the energy quantum reflects a trade-off between optimization complexity and modeling accuracy.

Optimization of the energy quantum according to this trade-off is not considered in this paper

and is left for future work.

The EH/consumption mechanism given by equation (1) entails two important phenomena.

The former, denoted as energy outage, corresponds to the EHD running out of energy before

the completion of the requested task, which happens when Qk > Ek. This determines the failure

of the requested task, and the energy available in the battery is depleted. Alternatively, energy

overflow may occur if Bk > emax − [Ek −Qk]+, i.e., the energy buffer is unable to store all of

the harvested energy Bk, resulting in the loss of Bk − emax + [Ek − Qk]+ energy quanta. This

is a consequence of the limited energy buffer capacity.

B. Scenario process

We model the energy arrival process {Bk} as a homogeneous hidden Markov process, taking

values in the set B. We define an underlying scenario process {Sk}, taking values in the finite set

S , which evolves according to a stationary irreducible Markov chain with transition probability

pS(sk+1|sk) ! P(Sk+1=sk+1|Sk=sk). Given the scenario Sk = s, the energy harvest Bk is

drawn with probability mass function pB(b|s) ! P(Bk = b|Sk = s), for all b ∈ B, s ∈ S .

We define πS(s), s ∈ S , as the steady state distribution of the scenario process, and we refer

to b̄ = E[Bk] =
∑

s∈S πS(s)
∑

b∈B bpB(b|s) as the average EH rate. Note that this model is a

special instance of the generalized Markov model presented in [16]. Therein, the scenario process

is modeled as a first-order Markov chain, whereas Bk statistically depends on Bk−1
k−L and on Sk,

for some order L ≥ 0, where we have defined Xj
i = (Xi, Xi+1, . . . , Xj). In particular, in [16] it

is shown that, by quantizing Bk with 20 states, L = 0 models well a piezoelectric energy source,

whereas L = 1 models well a solar energy source. For simplicity, in this paper we assume L = 0.

The analysis can be extended to the case L = 1, similarly to [13], but this extension is beyond

the scope of this paper. The scenario Sk−1 can be estimated from measurements of the past

energy arrivals Bk−1
0 . The posterior distribution of state Sk−1 can be inferred recursively as

P(Sk−1 = s|Bk−1
0 ) ∝ pB(Bk−1|s)

∑

σ∈S

pS(s|σ)P(Sk−2 = σ|Bk−2
0 ),

where ∝ denotes proportionality up to a normalization factor, independent of s ∈ S , and

P(Sk−2 = σ|Bk−2
0 ) is the posterior distribution inferred in the previous time slot. Sk−1 can
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then be estimated using, e.g., a maximum a-posteriori (MAP) probability criterion Ŝk−1 =

argmaxs∈S P(Sk−1 = s|Bk−1
0 ). Typically, the scenario process {Sk} is slowly varying over

time, hence it can be estimated accurately from the harvested sequence {Bk}. In this paper, we

assume that perfect knowledge of Sk−1 is available at the EHD controller at time instant k. The

case where Sk−1 is only partially known (e.g., via the posterior distribution) can be treated using

the framework of POMDP, but its analysis is beyond the scope of this paper. On the other hand,

only statistical knowledge of Sk is available at time k, since the energy arrival Bk, drawn from

pB(Bk|Sk), has not yet been observed.

C. Imperfect SOC

By keeping track of Bk, Qk, it is possible, to some extent, to gain some aggregate knowledge

on the SOC Ek, via (1). However, this open loop approach is prone to error propagation, so that

the estimate of Ek may become unreliable; yet, this information can serve to identify whether

the SOC state is generally “high” or “low.” Instead, accurate measurement of the current value

of the charging state (scenario process Sk−1) may be much easier to acquire, as discussed

above. Thus, we assume that only partial knowledge of the SOC Ek is available, e.g., due to

uncertainty in its estimation. We model this uncertainty by defining a partition of the SOC

space, {I(n), n ∈ N}, where I(n) = {ẽn, . . . , ẽn+1−1}, N ≡ {0, . . . , ñ−1}, n is the nth SOC

interval, and 0 = ẽ0 < ẽ1 < · · · < ẽñ = emax +1 define the interval boundaries. Suppose that, at

time k, Ek ∈ I(Nk), for some Nk ∈ {0, . . . , ñ− 1}. Then, we assume that the EHD controller

knows only the interval index Nk, i.e., it knows that Ek ∈ I(Nk), rather than the exact SOC

Ek. We define the interval index process {Nk, k ≥ 0}, taking values in {0, . . . , ñ − 1}. The

special case with perfect SOC knowledge is obtained by letting ñ = emax + 1, hence Ek = Nk.

In particular, we are interested in the case ñ = 2 with ẽ1 = (emax/2). In this case, we denote

the two intervals I(0) and I(1) as LOW and HIGH SOC, respectively.

D. Exogenous process

We define an exogenous process {Ck, k ≥ 0}, where Ck takes value in the set C ⊂ R, and an

underlying Markov chain {Wk}, taking value in the finite set W , with transition probabilities

pW (w2|w1), w1, w2 ∈ W and steady state distribution πW (w), w ∈ W . Given Wk = w, Ck = c is

distributed according to pC|W (c|w), c ∈ C, and is conditionally independent of {(Wj, Cj), j < k}.

Ck models, e.g., the channel gain in slot k, or the priority of the current data packet [13]. The
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Markov assumption on Wk models memory effects, e.g., time correlation in the channel gains.

Similarly to the EH scenario Sk−1, Wk can be estimated by measuring the past values of the

exogenous process {Cj, j ≤ k} (we assume that Ck is known to the EHD controller at time

instant k). The posterior distribution of state Wk can then be inferred recursively as

P(Wk = w|Ck
0 ) ∝ pB(Ck|w)

∑

ω∈W

pW (w|ω)P(Wk−1 = ω|Ck−1
0 ).

where P(Wk−1 = ω|Ck−1
0 ) is the posterior distribution inferred in the previous time slot. Wk

can then be estimated using, e.g., the MAP criterion Ŵk = argmaxw P(Wk = w|Ck
0 ). Typically,

{Wk} varies slowly over time, hence it can be estimated accurately from the exogenous sequence

{Ck}. For instance, if Wk represents the average channel gain associated to the large-scale fading,

whereas Ck is the actual small-scale fading channel gain, Wk can be estimated accurately by a

moving time average of appropriate window length, which depends on the coherence time of

the small- and large-scale fading. For simplicity, in this paper we assume that the state of the

exogenous process at time k, denoted as (Wk, Ck), is known to the EHD, which can schedule

the amount of energy Qk accordingly. The case where (Wk, Ck) is only partially known (e.g.,

via the posterior distribution) can be treated using the framework of POMDP, but its analysis is

beyond the scope of this paper.

E. Reward function

We define the reward function g(q, c, e) when the SOC level is Ek = e ∈ E , action Qk = q is

chosen, and the exogenous process takes value Ck = c, as

g(q, c, e) =







0 q > e,

g̃(q, c) q ≤ e,
(2)

where g̃ : Q × C ,→ R+ is an increasing function of q with g̃(0, c) = 0, for any c ∈ C, and

increasing in c, for each q. Notice that, if q > e, then g(q, c, e) = 0, which models an energy

outage event, i.e., the incapability of the wireless sensor to complete the task assigned. More in

general, the reward function g(q, c, e) may be the expected reward with respect to a “nuisance”

process Uk, independent and identically distributed (i.i.d.) over time, as seen in Example 1.

Example 1 Let Ck be the channel gain, known to the EHD controller. Letting Uk be the power

of the interference from nearby terminals, modeled as an exponential random variable with mean

mU (Uk ∼ Exp(mU)), unknown to the EHD controller, the signal-to-noise ratio (SNR) at the
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receiver is given by QkCk

1+Uk
.1 In this case, g̃(q, c) may model the success probability to transmit

R bits, i.e., assuming that the transmission is successful if and only if R < 1
2 log2

(

1 + qc
1+Uk

)

[19], or equivalently, Uk >
qc

22R−1 − 1, and using the fact that Uk ∼ Exp(mU), we obtain

g̃(q, c) = P

(

Uk ≤
qc

22R − 1
− 1

)

=











0, q ≤ 22R−1
c ,

1− exp

{

−
qc

22R−1
−1

mU

}

, q > 22R−1
c ,

(3)

Knowledge of Ck can be exploited to perform power adaptation (Qk) to the channel gain.

Remark 2 Note that, in the special case qmin = qmax = 1, Bk ∈ {0, 1} with binary scenario

process Sk ∈ {G,B}, where Sk = G and Sk = B denote the “good” and “bad” EH scenarios,

respectively, pB(0|B) = 1 (Bk = 0 if Sk = B), pB(1|G) = λG (Bk = 1 with probability λG and

Bk = 0 otherwise, if Sk = G), and Wk = 1, ∀k, we obtain the model considered in [13] as a

special case, where Ck represents the i.i.d. “importance” of the current data packet. Therein,

balanced policies are developed which adapt only to the scenario state Sk−1 but not to the exact

SOC Ek, thus not requiring knowledge of the SOC, and it is shown that they achieve near-

optimal performance with respect to the globally optimal policy. In this paper, we investigate the

impact of imperfect SOC knowledge for the more general setting. Moreover, when Ck = 1, ∀k,

we obtain the model analyzed in [2] as a special case and, by further letting Sk = 1, ∀k, we

obtain the case with i.i.d. EH process analyzed in [1].

III. OPTIMIZATION PROBLEM

A. Policy definition and problem statement

A policy µ is a function that decides on the amount of energy Qk to be requested from

the buffer, based on the interval index Nk at time instant k, the previous scenario state Sk−1,

the previous energy outage event Ok−1 = χ(Qk−1 > Ek−1), where χ(·) denotes the indi-

cator function, the exogenous state (Ck,Wk), and, possibly, the history Hk, which includes

1In the SNR expression, it is assumed that the interference is treated as a Gaussian random variable and the noise is assumed to

be zero-mean Gaussian with unit mean. Note that the exact expression of the SNR should include the noise power spectral density

at the denominator. For notational simplicity, we ignore this issue, which amounts to assuming the presence of a normalization

factor, e.g., in the definition of the transmit power.
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all past values of these quantities, i.e., (Nk−1
0 , Ok−2

0 , Ck−1
0 ,W k−1

0 , Sk−2
−1 , Qk−1

0 ). In particular,

µ(q|Nk, Ok−1,Hk, Ck,Wk, Sk−1) denotes the probability that Qk = q ∈ Q in slot k.2

We define the long-term average reward per time slot under policy µ, starting from state

E0=e0, S−1=s−1 and W0 = w0, as

G(µ, e0, s−1, w0) ! lim
K→∞

inf
1

K
Eµ

[

K−1
∑

k=0

g(Qk, Ck, Ek)

∣

∣

∣

∣

∣

E0 = e0, S−1 = s−1,W0 = w0

]

, (4)

where the expectation is computed with respect to the realization of the random variables

{Bk, Sk, Qk, Ck,Wk, Ok} induced by policy µ, for k = 0, . . . , K−1. In all cases of practical

interest, the Markov chain induced by a policy µ has a unique communicating class, hence the

long-term reward is independent of the initial state (E0, S−1,W0) [21], therefore we denote it

as G(µ) in the following treatment. The problem is to determine a policy µ∗ such that

µ∗ = argmax
µ

G(µ). (5)

Due to the partial knowledge of the SOC, problem (5) can be recast in the context of partially

observable Markov decision processes (POMDPs) [20], and can be solved by using numerical

optimization tools available in the literature [22]. For this case, due to properties of MDPs

and POMDPs [23], the optimal policy µ is deterministic and is a function of the belief state

on the energy level Πk(e), e ∈ E (since Ek is not perfectly observed) and the other state

variables (Ck,Wk, Sk−1) (perfectly observed), i.e., Q∗(Π, c, w, s) is the optimal action in state

(Πk, Ck,Wk, Sk−1) = (Π, c, w, s), and µ∗(q|Π, c, w, s) = χ(q = Q∗(Π, c, w, s))3. However, the

optimal POMDP formulation suffers from the curse of dimensionality for the following reasons:

• Policy optimization complexity: the optimization via, e.g., value iteration, has high com-

plexity and poor convergence properties, since the optimal action needs to be determined

for every possible value of (Π, c, w, s), where the belief Π is a probability distribution over

a |I(n)|-dimensional space, n ∈ N and (c, w, s) ∈ C ×W × S;

• Operational complexity: once the optimal policy µ∗ has been determined, it needs to be

stored in a look-up table; in particular, the optimal action needs to be stored for every

2We remark that, for the sake of generality, a randomized policy is defined. However, the optimal POMDP policy is

deterministic for this case [20]. See the discussion following (5).

3Note that µ∗ is independent of Nk, Ok−1,Hk, since this information is used to compute the belief state Πk, which is

sufficient for decision making [20].
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possible value of (Π, c, w, s), resulting in very demanding storage requirements, which are

not available in practical deployments; moreover, the belief Πk(·) needs to be updated in

each slot, as observations are collected, resulting in additional complexity overhead.

Therefore, due to the limited processing capability of EHDs, in this paper we focus on

suboptimal policies, which neglect the history Hk available up to time slot k, and only map the

current interval index, exogenous state and scenario state (Nk, Ck,Wk, Sk−1) to the probability

µ(q|Nk, Ck,Wk, Sk−1) of drawing q energy quanta from the buffer. Note that, for this case, the

optimal policy may not be deterministic, unlike the optimal POMDP formulation. In fact, by

using randomization, the risk of incurring energy outage, resulting from the uncertainty on the

true SOC Ek, can be optimally balanced. The advantages resulting from such formulation and

other approximations will be discussed in Remark 5.

Remark 3 Note that, in the case of perfect SOC knowledge Ek = Nk, neglecting the history does

not incur any loss of optimality, since the sequence {(Ek, Ck,Wk, Sk−1, Qk), k ≥ 0} constitutes

a Markov decision process [23]. In contrast, in the case of imperfect SOC knowledge, the

history could bring additional information about the current energy level Ek, hence neglecting

it incurs a loss of optimality in general. For instance, knowing only that Nk = n implies

that Ek ∈ {ẽn, . . . , ẽn+1 − 1}. If, additionally, it is known that Nk−1 = n + 1 (i.e., Ek−1 ∈

{ẽn+1, . . . , ẽn+2 − 1}), Bk−1 = 0 and 1 ≤ Qk−1 ≤ min{ẽn+2 − ẽn+1, ẽn+1 − ẽn}, and that

no outage nor overflow occurred in slot k − 1 (resulting in Ek = Ek−1 − Qk−1 from (1)), by

combining this information with Nk = n we obtain ẽn < ẽn+1 −Qk−1 ≤ Ek ≤ ẽn+1 − 1, hence

Ek /∈ {ẽn, ẽn+1, . . . , ẽn+1−Qk−1−1}, so that more information can be inferred on the value of

Ek. In the numerical results, we will evaluate the validity of such approximation by comparing

it with the idealized scenario where the SOC is known perfectly.

B. Upper bound and Balanced policy

In this section, we derive an upper bound to the long-term reward G(µ). To this end, notice

that the EH mechanism induces the constraint
∑K−2

k=0 Bk + E0 ≥
∑K−1

k=0 min{Qk, Ek}, i.e., the

amount of energy consumed up to slot K − 1 cannot exceed the amount of energy harvested up

to slot K − 2. Dividing by K and taking the expectation and the limit for K → ∞, we obtain

lim
K→∞

1

K
Eµ

[

K−1
∑

k=0

min{Qk, Ek}

]

≤ b̄. (6)
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We thus obtain the bound

G(µ) = lim
K→∞

inf
1

K
Eµ

[

K−1
∑

k=0

g(Qk, Ck, Ek)

]

≤ lim
K→∞

inf
1

K
Eµ

[

K−1
∑

k=0

g̃(min{Qk, Ek}, Ck)

]

≤ g∗(min{qmax, b̄}), (7)

where we have defined g∗(x), x ∈ [0, qmax] as the solution of the linear program (LP)

g∗(x) = max
y(·|·)

∑

q∈Q,c∈C

y(q|c)πC(c)g̃(q, c) (8)

s.t.
∑

q∈Q,c∈C

y(q|c)πC(c)q ≤ x, (9)

∑

q∈Q

y(q|c) = 1, ∀c ∈ C, y(q|c) ≥ 0, ∀q ∈ Q, c ∈ C,

where πC(c) =
∑

w pC|W (c|w)πW (w), c ∈ C is the steady-state distribution of Ck, y(q|c)

represents the conditional probability of using action Qk = q when Ck = c, and the EH

mechanism is replaced by a (looser) average energy per slot constraint with intensity x. The LP

(8) can be solved efficiently using, e.g., interior point methods [24]. In particular, since g̃(q, c) is

an increasing function of q, the inequality constraint (9) is attained with equality under the optimal

y∗(·|·), and therefore it can be replaced with the equality constraint
∑

q∈Q,c∈C y(q|c)πC(c)q = x.

We denote the policy solving the optimization problem (8) for x = min{qmax, b̄} as balanced

policy, µ̂BP , which draws Qk = q energy quanta with probability µ̂BP (q|c), when the exogenous

state is Ck = c, independently of the SOC Ek, Nk and exogenous state Wk. In particular, if

b̄ ≤ qmax, this policy draws, on average, b̄ energy quanta from the battery in each slot, equal to

the average EH rate, hence the name balanced policy [13]. This policy achieves the upper bound

(7), for asymptotically large battery capacity emax → ∞. In fact, for infinite battery capacity, no

energy overflow can occur, hence all the harvested energy is used for reward accrual.

C. Perfect and Imperfect SOC knowledge

When perfect SOC knowledge is available at the EHD controller, policy µ maps the state of

the system (Ek, Ck,Wk, Sk−1) to the probability of drawing q energy quanta from the buffer.

The sequence {(Ek, Ck,Wk, Sk−1, Qk), k ≥ 0} constitutes a Markov decision process, and the

long-term reward is maximized by a stationary, deterministic policy [25]. In this case, the

optimal policy is found by using standard tools, such as policy or value iteration [25]. Thus,
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the long-term reward under perfect SOC knowledge represents an upper bound to the perfor-

mance of any policy under SOC uncertainty. Conversely, under SOC uncertainty, the sequence

{(Nk, Ck,Wk, Sk−1, Qk), k ≥ 0} does not constitute a Markov process, hence the optimal policy

µ∗ cannot be found via the policy/value iteration algorithm. Moreover, problem (5) under policies

of the form µ(q|n, c, w, s) cannot in general be recast as a convex optimization problem, so that

multiple local maxima may exist, and convergence to the global maximum may not be achieved

under any finite complexity algorithm. Therefore, we recur to sub-optimal methods, that aim at

achieving a local maximum rather than a global one. Furthermore, due to the high dimensionality

of the optimization, we restrict it to policies of the form

µ(q|n, c, w, s) = µ̂(q|n, c, w, Q̄(n,w, s)), (10)

where Q̄(n,w, s) is the expected action in state (Nk,Wk, Sk−1) = (n,w, s), after marginalization

with respect to Ck, and µ̂(q|n, c, w, x), x ∈ [0,min{qmax, ẽn+1 − 1}] is the solution of the LP

µ̂(·|n, ·, w, x) = argmax
y(·|·)

∑

q∈Q,c∈C

y(q|c)pC|W (c|w)g̃(q, c) (11)

s.t.
∑

q∈Q,c∈C

y(q|c)pC|W (c|w)q ≤ x,
∑

q∈Q

y(q|c) = 1, ∀c ∈ C, (12)

y(q|c) = 0, ∀q ≥ ẽn+1, ∀c ∈ C, y(q|c) ≥ 0, ∀q ∈ Q, c ∈ C.

Similarly to (8), this problem can be solved efficiently [24]. Moreover, since g̃(q, c) is an increas-

ing function of q, the inequality constraint (12) is attained with equality under the optimal y∗(·|·),

and therefore it can be replaced with the equality constraint
∑

q∈Q,c∈C y(q|c)pC|W (c|w)q = x.

Moreover, the constraint y(q|c) = 0, ∀q ≥ ẽn+1, ∀c ∈ C is due to the fact that, when Ek ∈ I(n),

then Ek ≤ ẽn+1 − 1, hence any Qk ≥ ẽn+1 would lead to outage and is thus sub-optimal. Note

that (11) and (8) are different optimization problems. In fact, in (11), we are conditioning to

Wk = w, whereas in (11) we are marginalizing with respect to its steady-state distribution

πW (w), w ∈ W . The maximization in (11) is independent of the EH process (Sk−1, Bk), and in

fact the EH mechanism is replaced by a (looser) constraint on the expected amount of energy

drawn in each slot (12).

Policy (10) can be interpreted as follows. When the EHD is in state (Nk,Wk, Sk−1), it draws

from the battery an expected amount of energy equal to Q̄(Nk,Wk, Sk−1). The actual action Qk

is random, depending on the realization of the exogenous random variable Ck. The dependence
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of (10) on Ck is such that, neglecting the impact of energy outage, the expected instantaneous

reward with respect to Ck is maximized, over all policies that draw an expected amount of

Q̄(Nk,Wk, Sk−1) quanta from the battery, as expressed in the optimization problem (11). Note

that policy (10) is fully described by the expected action Q̄(·), which does not depend on the

exogenous process Ck, thus yielding a reduction in the optimization complexity. Using the

functional constraint (10), the optimization of the expected action policy Q̄ : N × W × S ,→

[0, qmax] is expressed as the solution of the non-convex optimization problem

Q̄∗ = argmax
Q̄

G(Q̄), (13)

where we have defined

G(Q̄) =
∑

n∈N

∑

e∈I(n)

∑

w∈W

∑

s∈S

πQ̄(e, w, s)
∑

q,c

µ̂(q|n, c, w, Q̄(n,w, s))pC|W (c|w)g(q, c, e), (14)

and πQ̄(e, w, s) is the steady state distribution of state (Ek,Wk, Sk−1) = (e, w, s) induced by the

expected action policy Q̄, defined as the solution of










































∑

n∈N

∑

e∈I(n)

∑

w∈W

∑

s∈S

πQ̄(e, w, s) = 1, (normalization),

πQ̄(e, w, s) ≥ 0, ∀(e, w, s) ∈ E ×W × S, (non-negativity),
∑

nk∈N

∑

ek∈I(nk)

∑

wk∈W

∑

sk−1∈S

πQ̄(ek, wk, sk−1)PQ̄ (ek+1, sk |ek, wk, sk−1) pW (wk+1|wk)

= πQ̄(ek+1, wk+1, sk), ∀(ek+1, wk+1, sk)∈E ×W × S, (steady-state),

(15)

where PQ̄ (ek+1, sk |ek, wk, sk−1) pW (wk+1|wk) is the transition probability of the Markov chain

{Ek,Wk, Sk−1} under the expected action policy Q̄, and is given by

PQ̄ (ek+1, sk|ek, wk, sk−1) = pS(sk|sk−1)
∑

q,b,c

pB(b|sk)µ̂(q|η(ek), c, wk, Q̄(η(ek), wk, sk−1))

× pC|W (c|wk)χ
(

min
{

[ek − q]+ + b, emax

}

= ek+1

)

, (16)

where we have used (1) and we have defined η(ek) as the index of the SOC interval which

ek belongs to, i.e., ek ∈ I(η(ek)). Note that the randomness induced by Ck is captured in the

expected instantaneous reward in (14) and is marginalized in the steady-state probabilities (15).

Remark 4 The same policy (11) can be defined for the case of perfect SOC knowledge (Nk =

Ek), in order to reduce the dimensionality of the optimization (i.e., remove the dependence on the
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exogenous random variable Ck). In this case, the optimal expected action Q̄∗(e, w, s), (e, w, s) ∈

E ×W × S , can be found efficiently using the policy or value iteration algorithms.

In general, policy (10) may be sub-optimal for all expected action policies Q̄, since it neglects

the impact of the distribution of Qk, induced by the random Ck, on the evolution of Ek. However,

we argue that, if emax 1 qmax, i.e., the battery storage capacity is sufficiently large, then (10)

yields a good approximation, since the actual distribution of Qk impacts the performance only at

the battery boundaries (i.e., when the battery is almost depleted or almost fully charged), whereas,

for intermediate values of the SOC, the performance is primarily affected by the average amount

of energy drawn from the battery in each slot, Q̄(Nk,Wk, Sk−1). In fact, assuming Wk varies

slowly over time, e.g., it is constant over T slots, then Ck is i.i.d. over this interval of T slots, and

the fluctuations in the energy drawn from the buffer Qk and in the reward g̃(Qk, Ck), induced

by the realization of Ck, are averaged out over relatively short time scales, thus not impacting

the average long-term performance. This is indeed true for asymptotically large battery capacity

for the balanced policy µ̂BP , as discussed in Sec. III-B.

D. Special case

We now consider the special scenario of a linear reward function with a two-interval quanti-

zation of the SOC and constant exogenous process, for which the optimal policy can be derived

in closed form. Proposition 1 shows that always transmitting when the SOC is in the HIGH

state, and refraining from transmitting when it is LOW, is a sufficient condition for optimality.

Proposition 1 (Linear Reward) Under a linear reward function g̃(q, c) = αq, constant exoge-

nous process Ck = 1, a general energy arrival process, and the following assumptions:

(a) Two-interval SOC uncertainty, i.e., ñ = 2, I(0) = {0, . . . , ẽ1−1} and I(1) = {ẽ1, . . . , emax},

(b) bmax ≤ min {ẽ1, emax + 1− ẽ1, qmax}, ẽ1 ≥ qmin,

the optimal reward is G∗ = αb̄, and one optimal policy is

Qk = Nk max{bmax, qmin}. (17)

Proof: As discussed in Sec. III-B, we have the upper bound G(Q̄) ≤ g∗(b̄) = αb̄, since

b̄ ≤ bmax ≤ qmax by hypothesis (b). We now prove that policy (17) achieves this upper bound.

Since the bound holds for any policy µ, (17) is also optimal under perfect SOC knowledge.
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If Ek ∈ I(0), then Qk = 0 from (17). From (1), we have Ek+1 = min{Ek + Bk, emax}.

Since Bk ≤ bmax and Ek ≤ ẽ1 − 1 (from Ek ∈ I(0)), from hypothesis (b) we have that

Ek + Bk ≤ ẽ1 − 1 + bmax ≤ emax. This implies that neither overflow nor outage occurs when

Ek ∈ I(0), hence g(Qk, Ck, Ek) = g̃(Qk, Ck) = αQk.

If Ek ∈ I(1), then Qk = max{bmax, qmin} from (17). Since Ek ≥ ẽ1 ≥ Qk, outage does not

occur, hence g(Qk, Ck, Ek) = g̃(Qk, Ck) = αQk. Moreover, since Bk ≤ bmax ≤ Qk, at any time

slot enough energy quanta are drawn from the buffer to make room for the new arrivals, hence

overflow does not occur.

Since neither overflow nor outage occurs at any time, we have Ek+1 = Ek − Qk + Bk and

g(Qk, Ck, Ek) = g̃(Qk, Ck) = αQk. All harvested energy contributes to reward accrual, hence

G∗ = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

αQk

∣

∣

∣

∣

∣

E0 = e0, Sk−1 = sk−1

]

= αb̄,

which proves the achievability of the upper bound.

If the length of the intervals I(0), I(1) differ by at most one unit, i.e., ẽ1 = (emax/2), then

assumption (b) simplifies to bmax ≤ (emax/2), i.e., the buffer capacity is at least twice the

maximum energy that can be harvested in a time slot. Note that any policy avoiding energy

outages and overflows is optimal in the linear reward case, so that, in general, (17) may not be

the only optimal solution.

Harvested energy is wasted, thus incurring a performance degradation, when there is energy

outage due to uncertain SOC knowledge, or energy overflow due to limited energy buffer capacity.

When the energy arrival or exogenous processes are random, the controller has limited knowledge

about the future arrivals of energy and packet importance. In this case, overflow can be avoided

by an aggressive policy, which draws Qk ≥ bmax energy quanta when the battery SOC approaches

its capacity. This choice guarantees that enough energy quanta are drawn from the buffer, thus

making room for the new energy arrival. Moreover, outage can be avoided by a conservative

policy Qk = 0, which stays idle when the battery SOC approaches depletion. According to

Proposition 1, this approach is optimal under a deterministic exogenous process and linear reward

function. In this case, the EHD only needs to know whether the energy available is either LOW

or HIGH, so that the controller can remain idle or transmit at high power in order to avoid

outage and overflow, respectively. Optimal performance is thus achieved by only adapting to the

(quantized) SOC, but not to the scenario state Sk. Due to the time-sharing nature of this solution,
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sub-optimal performance may be achieved when the reward function is not linear, and/or when

Ck is random.

E. Exhaustive and Local Search Algorithms

For a more general exogenous process {(Ck,Wk)}, EH process {(Bk, Sk)} and reward func-

tion g̃(q, c), the optimal policy is difficult to characterize in closed-form, due to the random

fluctuations in these quantities. In order to further reduce the dimensionality of the optimization

problem (13), the expected action Q̄(n,w, s) can be restricted to take value in the discrete set

J ≡ {jqmax/M, j = 0, 1, . . . ,M}, for some M > 0, rather than the continuous interval [0, qmax].

In order to solve (13) optimally under this restriction, an exhaustive search can be carried out.

Note that there are (M + 1)|W|·ñ·|S| possible expected action policies. Therefore, an exhaustive

search algorithm requires to compute (14) and (15) for every such policy, thus determining the

policy with maximum reward. An exhaustive search algorithm is thus feasible only for some

special cases, e.g., if the exogenous (Ck) and EH (Bk) processes are i.i.d. (|W| = 1 and |S| = 1),

and the battery is quantized to two intervals (ñ = 2), with M not too large. For the other cases of

practical interest, the complexity of the exhaustive search algorithm may be too large, due to the

number of policies that need to be evaluated. For these cases, we resort to a local search method

to optimize the policy, as described below, which guarantees convergence to a local maximum

of (13), rather than the global one.

Algorithm 1 (Local Search) 1) Let Q̄(0) : W × N × S ,→ J be an initial expected action

policy, and i = 0.

2) In stage i:

• Initialize Q̄(i+1) = Q̄(i). For w ∈ W n ∈ N , s ∈ S , sequentially update Q̄(i+1) as

Q̄(i+1)(n,w, s) := argmax
Q̄∈Q(i+1)(n,w,s)

G(Q̄), (18)

where we have defined

Q(i+1)(n,w, s) ≡
{

Q̄ : N ×W × S ,→ J : (19)

Q̄(n̂, ŵ, ŝ) = Q̄(i+1)(n̂, ŵ, ŝ), ∀(n̂, ŵ, ŝ) 2= (n,w, s), Q̄(n,w, s) ∈ J
}

.

• If Q̄(i+1) = Q̄(i), return Q̄(i+1). Else, update the counter as i := i+ 1 and repeat 2).

This algorithm sequentially determines a local optimum of (13) by unilaterally optimizing the

action performed on each tuple (w, n, s), until convergence to a local stable point (note that the
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optimization is performed on a discrete set, so this is not exactly a “local maximum” in a strict

sense). This happens when Q̄(i+1) = Q̄(i) for some i ≥ 0, i.e., any unilateral change in policy

Q̄(i) does not lead to an improved reward. Since the set of policies has size (M + 1)|W|ñ|S|,

convergence of the algorithm is guaranteed within at most (M + 1)|W|ñ|S| evaluations of the

reward G(Q̄) (typically, much fewer iterations are needed). A generally good initialization is the

balanced policy

Q̄(0)(n,w, s) =
∑

q∈Q

∑

c∈C

qµ̂BP (q|c)pC|W (c|w), ∀(w, n, s) ∈ W ×N × S, (20)

which is asymptotically optimal for large battery capacity (Sec. III-B).

Remark 5 The local search algorithm brings the following benefits with respect to the ”optimal”

POMDP formulation (5):

• Policy optimization complexity: we have verified that, typically, only few iterations of

the local search algorithm are sufficient, when initialized with the balanced policy, thus

requiring only few evaluations of (14) and (15) in stage 2). This represents a significant

complexity saving with respect to the POMDP formulation, where the optimal action needs

to be determined, e.g., using the iterative value iteration algorithm, for each value of the

belief state (Π, c, w, s);

• Operational complexity: once the expected action Q̄(n,w, s) has been determined, it can be

stored in a look-up table, for each possible value of (n,w, s). Hence, log2(M +1)|W|ñ|S|

bits are required to store such policy. This represents a significant storage saving with

respect to the POMDP formulation, where the optimal action needs to be stored for every

possible value of (Π, c, w, s). Moreover, the belief state Πk need not be tracked.

IV. NUMERICAL RESULTS

We present quantitative evaluations for both the case of independent energy arrivals, and

a more realistic scenario with correlated EH. For simplicity, we assume that the exogenous

process is i.i.d. over time, i.e., Wk = 1, ∀k and {Ck} is i.i.d. with distribution πC(c), so that any

dependence on the exogenous state Wk can be neglected. In fact, the main focus of this paper is

on the impact of time correlation of the EH process and imperfect knowledge of the SOC on the

performance of EHDs. However, the framework we have proposed in this paper allows also to

model time-correlated exogenous processes, whose study is left as an item for future research.

May 23, 2014 DRAFT

Page 18 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

19

We consider the reward function

g̃(q, c) =
1

2
log2(1 + qc), (21)

which represents the achievable capacity under Gaussian signaling over an AWGN channel with

gain Ck = c [19], so that qc represents the signal-to-noise ratio (SNR) at the receiver. Therefore,

the average long-term metric G(Q̄) represents the throughput of scheme Q̄. The channel is

Rayleigh fading, and its gain Ck has uniform distribution in the discrete set C ≡ {−α ln(u), u ∈

{j/(NC + 1), j = 1, 2, . . . , NC}}, which represents a quantized exponential random variable. In

fact, when NC → ∞, we have Ck = −α ln(Uk), where Uk ∼ U((0, 1)), so that Ck approaches

the exponential distribution πC(c) =
1
αe

−c/α. Herein, we use NC = 10. The parameter α is set

so as to achieve a target average SNR Λ = b̄
∑

c∈C cπC(c) at the receiver, where Λ is computed

assuming transmissions occur with expected energy b̄ in each slot, due to the EH constraint. We

then obtain

α = −
ΛNC

b̄ ln
(

NC !
(NC+1)NC

) . (22)

For this case, if the action Qk were allowed to take values in the compact set [0, qmax], the solution

of the optimization problem (11) would be given by the well-known water-filling solution [19]

(with maximum power constraint min{qmax, ẽn+1−1} when Ek ∈ I(n)), given by µ̂(q|n, c, x) =

χ(q = qWF (n, c, x)), where

qWF (n, c, x) ! min

{

[

λ(x)−
1

c

]+

, qmax, ẽn+1 − 1

}

, (23)

where λ(x) uniquely solves

1

NC

NC
∑

j=1

qWF (n,α ln((NC + 1)/j), x) = x. (24)

The water-filling solution is asymptotically achieved by a sufficiently small energy quantum,

i.e., large emax [energy quanta] and qmax [energy quanta]. As in Sec. III-B, assuming b̄ ≤ qmax,

an upper bound GUP to G(µ), achieved for asymptotically large battery capacity emax and fine

grained quantization (small energy quantum) is then given by

GUP =
1

2
E
[

min
{

[log2(λ(b̄)Ck)]
+, log2(1 + qmaxCk)

}]

, (25)

where the expectation is computed with respect to Ck.

In the next two sections, we consider the i.i.d. and time-correlated EH scenarios
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A. I.i.d. Energy Arrivals

We consider a scenario with b̄ = 10 and (unless otherwise stated) a geometric energy arrival

distribution truncated at bmax = 4b̄, with probability mass function

pB(b) = e−βb 1− e−β

1− e−β(bmax+1)
, (26)

where β uniquely solves b̄ =
∑bmax

b=0 bpB(b), which can be determined using a bisection method

[24]. We let qmin = 1 and qmax = bmax = M (recall that M is the quantization of the average

action space [0, qmax]). This choice represents a good trade-off between a sufficiently fine-grained

quantization of the physical quantities of interest and, at the same time, manageable computation

time. Note that, due to the discrete action space Q, the water-filling solution (23) cannot be

achieved exactly. Therefore, we approximate µ̂(q|n, c, x), i.e., the solution of the optimization

problem (11), as

µ̂ (q|n, c, x) =



















qWF (n, c, x) + 1− (qWF (n, c, x)) , q = (qWF (n, c, x)) ,

(qWF (n, c, x)) − qWF (n, c, x), q = (qWF (n, c, x)) − 1,

0 otherwise.

(27)

The smaller the energy quantum ∆e employed to discretize the action space Q, the better this

approximation, i.e., the water-filling solution (23) is asymptotically achieved by µ̂ (q|n, c, x) as

the energy quantum ∆e approaches 0. We have verified that, for the chosen value qmax = 40, this

approximation is indeed very good. This solution is such that
∑

q∈Q qµ̂ (q|n, c, x) = qWF (n, c, x),

i.e., for each value of the exogenous variable Ck = c and SOC interval Nk = n, the average

energy expenditure of policy µ̂ (q|n, c, x) is the same as that of the water-filling solution. Unless

otherwise stated, we use the average SNR Λ = 10.

We consider the following policies: balanced policy µ̂BP (BP), defined in Sec. III-B, policy

with perfect SOC knowledge (IID), optimized via the policy iteration algorithm [25], policy

with no SOC knowledge (P1iid, i.e., one-interval uncertainty I(0) = E), and policy with two-

equal-interval uncertainty (P2iid, i.e., I(0) = {0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax} with

ẽ1 = ( emax
2 )). Moreover, we plot the upper bound (UB), given by (25). The label ”iid” is used for

policies that neglect the correlation in the EH process and treat it as i.i.d. While this is optimal

in the case considered in this section, where the EH process is indeed i.i.d., these policies are

sub-optimal in the time-correlated case considered in Sec. IV-B. Note that BP can be seen as a

specific, non-optimal, instance of a policy with one-interval uncertainty.
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Figure 1. Throughput as a function of emax/b̄, for the i.i.d. EH scenario, for different policies. (Λ = 10, b̄ = 10)

In Fig. 1, we plot the long-term throughput G(µ) vs. the ratio of the buffer capacity over the

average EH rate emax/b̄. For this case, we plot also the performance of the globally optimal policy

computed via policy iteration under the assumption of perfect SOC knowledge, but operated

based on a MAP estimate Êk of the SOC Ek, rather than the true SOC Ek. The MAP estimate

is obtained from the posterior belief Πk(e), i.e., Êk = argmaxe∈I(Nk) Πk(e), which is updated

over time as a function of the action Qk−1, the outage event Ok−1 = χ(Qk−1 > Ek−1), the

SOC measurement Nk, and the previous belief Πk−1(Ek−1). We denote these policies as MAP1

and MAP2, for the cases of one-interval and two-equal-interval uncertainty, respectively. As

expected, the best performance is achieved by IID, followed by P2iid, P1iid and BP. At a buffer

capacity emax = 2b̄, the performance degradation of P2iid with respect to IID is about 5%, and

that of P1iid with respect to IID is about 13%. As emax increases, the degradation becomes

smaller (e.g., 0.5% for P2iid and 4% for P1iid, at emax = 20b̄), since the impact of outage and

overflow, which occur when the SOC approaches 0 and emax, respectively, becomes smaller.

Also note that P1iid performs better than BP, since BP is a special instance of a policy that does

not exploit SOC knowledge, and P1iid is optimized among such policies. We have verified that

P1iid is more conservative than BP for small values of emax. On the other hand, for large emax,

P1iid draws energy with rate b̄, so that it performs the same as BP. Finally, we note that MAP1

May 23, 2014 DRAFT

Page 21 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22

0 5 10 15 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Average SNR, Λ

L
o
n
g
te

rm
re

w
a
rd

,
G
(µ

)

 

 

UB
I ID
BP
P1iid
P2iid

Figure 2. Throughput as a function of the average SNR Λ. (emax = 100, b̄ = 10)

and MAP2 perform poorly, compared to P1iid and P2iid, respectively. This is due to the fact that

MAP1 and MAP2 operate based on the optimistic assumption of perfect SOC knowledge, and

thus incur frequent outages, whereas P1iid and P2iid are designed to cope with SOC uncertainty,

and thus keep into account the risk of outage events resulting from such uncertainty.

In Fig. 2, we plot G(µ) versus Λ, for emax = 10b̄. It is seen that, as the average SNR increases,

the performance also improves, as expected. In this case, the performance degradations of P2iid

and P1iid with respect to IID are within 2% and 10%, respectively, for all SNR values, and

decrease for increasing SNR, approaching 1% and 4%, respectively, for Λ = 20.

Fig. 3 examines the dependence of G(µ) on the energy arrival statistics. All the EH processes

considered have the same average rate b̄ = 10. Other than the geometric EH process, we consider

a Bernoulli process taking values 0 and B with probability 1− b̄/B and b̄/B, respectively, where

B ≥ b̄ is varied. In particular, for B = b̄, we obtain a deterministic process Bk = B, ∀k. It

is seen that, the larger the variance of the EH process var(Bk), the larger the performance

degradation, under both perfect and imperfect SOC knowledge. Interestingly, the geometric and

Bernoulli energy arrival distributions with the same mean b̄ = 10 and variance var(Bk) = 84

yield approximately the same performance. This suggests that the performance depends on the

distribution of the energy arrivals mostly through its second order statistics. For the case of a
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Figure 3. Throughput as a function of emax/b̄, for different statistics of the EH process with the same rate b̄. (Λ = 10, b̄ = 10)

constant energy arrival process Bk = b̄, ∀k, we notice that the upper bound is attained (except

for low battery capacity). As the capacity increases, the impact of an erratic energy source, in

terms of outage and overflow, becomes smaller, hence UB is approached for large emax.

Note that the model developed in this paper does not account for quantization errors. However,

in practice, the quantization region Nk may be measured with errors. In Fig. 4, we evaluate the

impact of such errors on the performance of P2iid. In particular, letting Yk be the observation

of the quantization region Nk available to the EHD controller, we assume that Yk 2= Nk with

quantization error probability pe, and Yk = Nk otherwise. For instance, if Nk = 0 (LOW), then

Yk = 1 (HIGH) with probability pe. The expected action Q̄(y, w, s) (note that this is a function

of the observation Yk = y, rather than the true region Nk) can then be optimized using Algorithm

1, where from (16), the transition probability used to compute G(Q̄) is given by

PQ̄(ek+1, sk|ek, wk, sk−1)=pS(sk|sk−1)
∑

q,b,c

pB(b|sk)pC|W (c|wk)χ
(

min
{

[ek − q]++b, emax

}

=ek+1

)

×[(1− pe)µ̂(q|η(ek), c, wk, Q̄(η(ek), wk, sk−1))+peµ̂(q|1−η(ek), c, wk, Q̄(1− η(ek), wk, sk−1))],

where we have used the fact that, if Nk = η(Ek) ∈ {0, 1}, then a quantization error results

in Yk = 1 − η(Ek). From Fig. 4, we note that the performance of P2iid degrades as the

quantization error probability increases. For pe ≤ 0.12, the performance degradation of P2iid due
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Figure 4. Throughput as a function of the quantization error probability. (emax = 100, b̄ = 10)

to quantization errors is within 1%. Moreover, for pe ≥ 0.32, P2iid attains the same performance

as P1iid. In fact, P1iid is unaffected by quantization errors, since it completely neglects the SOC

information Nk. As pe increases, SOC readings become more and more unreliable and, when

pe = 0.5, they don’t carry any information as to the correct value of Nk, so that the performance

of P1iid, which does not have access to such information, is attained.

B. Correlated Energy Arrivals

In this section, we present numerical results for the case of a time-correlated EH process. The

analysis of Sec. III can be applied to any distribution of the energy arrivals that depends on an

underlying Markov “scenario” process. As a specific example, we consider an energy arrival pro-

cess {Bk} with average EH rate b̄ = 10, and three possible generation scenarios Sk ∈ {G,B,R},

representing a “good,” “bad,” and “random” state of the charging process, respectively. In the

“random” scenario Sk = R, the arrival process follows a geometric distribution with mean b̄,

truncated at bmax = 4b̄, as in the previous section. In the “good” scenario Sk = G, the arrival Bk

takes the value Bk = 2b̄ deterministically, i.e., pB(2b̄|G) = 1, pB(b|G) = 0, ∀ b 2= 2b̄. Finally, in

the “bad” scenario B, the arrival Bk takes the value Bk = 0 deterministically, i.e., pB(0|B) = 1,

pB(b|B) = 0, ∀ b 2= 0.
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The transition probabilities of Sk are defined via the transition matrix [PS]s0,s1 = pS(s1|s0) as

PS =











pS(R|R) 1−pS(R|R)
2

1−pS(R|R)
2

0.05 0.95 0

0.05 0 0.95











, (28)

where pS(R|R) ∈ [0.5, 1]. This process represents a situation where, under given conditions,

i.e., in the good scenario Sk = G, arrivals of energy are guaranteed. On the other hand, in

the bad scenario Sk = B, no energy is harvested at all. Finally, the random scenario Sk = R

is a transient scenario between the good and bad scenarios, where the arrival process exhibits

a random behavior. Notice that the transition probabilities pS(G|B) = pS(B|G) = 0, so that

scenario G (respectively, B) cannot be directly reached by scenario B (G), but only via the

transient scenario R. The steady state distribution of the energy arrival states is

πS(R) =
0.05

1.05− pS(R|R)
, πS(G) = πS(B) =

1

2

1− pS(R|R)

1.05− pS(R|R)
. (29)

Note that, for any value of pS(R|R), the average EH rate is constant and equals b̄. Moreover,

when pS(R|R) = 1, we obtain the i.i.d. energy arrival scenario of the previous section. In this

case, the “random” scenario Sk = R absorbs the Markov chain {Sk}, hence the energy arrival

process {Bk} exhibits an i.i.d. behavior with probability mass function pB(b|R), b ∈ B. We use

the same reward function g̃(q, c) as in the previous subsection, defined in (21).

In the numerical results, we compare two classes of policies. Namely, we consider a set

of policies with perfect knowledge of the scenario Sk−1, in particular: policy with perfect SOC

knowledge (OPT), policy with no SOC knowledge (P1corr, i.e., one-interval uncertainty I(0)=E),

and policy with two intervals uncertainty of equal size (P2corr, i.e., I(0)={0, . . . , ẽ1−1} and

I(1)={ẽ1, . . . , emax} with ẽ1 = ( emax
2 )). Additionally, we consider a set of policies which, on the

other hand, neglect the underlying Markov structure of the energy arrivals and the time correla-

tion, and treat them as i.i.d. with distribution given by the marginal pB(b) =
∑

s∈S πS(s)pB(b|s).

This set of policies is optimized assuming such marginal i.i.d. setting, but their performance is

computed for the actual setting where Bk is time-correlated. For this case, we consider: balanced

policy (BP), policy with perfect SOC knowledge (IID), policy with no SOC knowledge (P1iid,

i.e., one-interval uncertainty I(0) = E), and policy with two intervals uncertainty of equal size

(P2iid, i.e., I(0) = {0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax} with ẽ1 = ( emax
2 )). Policies OPT

and IID are obtained via policy iteration as discussed in Sec. III-C (assuming Markovian and

May 23, 2014 DRAFT

Page 25 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

26

0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

pS(R |R)

L
o
n
g
te

rm
re

w
a
rd

,
G
(µ

)

 

 

UB
OPT
I ID
BP
P1corr
P1iid
P2corr
P2iid

Figure 5. Throughput as a function of pS(R|R), for different policies. (Λ = 10, b̄ = 10)

i.i.d. energy arrivals, respectively). Policies P1corr, P2corr, P1iid and P2iid, on the other hand,

are obtained using the local search Algorithm 1.

In Fig. 5, we plot the long-term throughput as a function of the transition probability pS(R|R).

As discussed above, when pS(R|R) → 1, we approach the i.i.d. setting considered in the previous

section, hence the policies which neglect the Markov structure of the EH process Bk and instead

treat it as i.i.d. become optimal as pS(R|R) → 1. In general, we notice that the long-term

throughput improves for increasing values of pS(R|R), i.e., as the time correlation decreases

and the process Bk approaches the i.i.d. distribution. This result is in line with the analysis

done in [13] for a special case of the model considered in this paper, where Sk ∈ {G,B} and

Bk ∈ {0, 1} with pB(1|G) = λG ∈ [0, 1], pB(1|B) = 0, Qk ∈ {0, 1} and Ck represents the

“importance” of the current data packet. Therein, it is shown that, for fixed battery capacity,

the performance degrades as the EH process becomes more time-correlated. In fact, the device

experiences intervals in which no energy is harvested (“bad” scenario), during which the battery

is discharged until it becomes depleted, thus incurring energy outage, and intervals in which

energy is harvested abundantly (“good” scenario), during which the battery is recharged until

it becomes fully charged, thus incurring energy overflow. Conversely, when the EH process is

i.i.d., a small battery suffices to filter out the randomness of (Ck, Bk) over short time scales.

May 23, 2014 DRAFT

Page 26 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27

0 5 10 15 20 25 30
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

[battery capac ity emax]/[avg harv rate b̄]

L
o
n
g
te

rm
re

w
a
rd

,
G
(µ

)

 

 

UB

OPT

I ID

BP

P1corr

P1iid

P2corr

P2iid

Figure 6. Throughput as a function of emax/b̄ (pS(R|R) = 0.95, Λ = 10, b̄ = 10)

In general, we observe that the policies designed under the assumption of an i.i.d. EH

process perform significantly worse than those policies that, instead, exploit the actual energy

arrival distribution and knowledge of Sk−1. This result suggests that perfect knowledge of the

scenario process Sk−1, but only a loose knowledge of the SOC, suffices to achieve near-optimal

performance (in particular, the performance degradation of P2corr and P1corr is within 2% and

5% of the globally optimal policy OPT, respectively). On the other hand, if perfect knowledge

of the SOC is available, but the time correlation in the EH process is neglected (policy IID),

a much more severe performance degradation may be incurred with respect to OPT (17% for

pS(R|R) = 0.5). Clearly, as pS(R|R) approaches 1, knowledge of Sk−1 becomes less and less

critical, and the performance of IID approaches that of OPT. We conclude that, in the time-

correlated scenario, perfect knowledge of the scenario process Sk−1 is more critical than perfect

knowledge of the SOC, in order to achieve near-optimal performance. This result is in line with

[13], where low-complexity policies achieving near-optimal performance are designed that only

adapt to the scenario process Sk−1, but not to the SOC.

In Fig. 6, we plot G(µ) as a function of the ratio emax/b̄ for pS(R|R) = 0.95. The best

performance is achieved by OPT, followed by P2corr. P1corr and IID obtain lower long-term

reward but, interestingly, perform very similarly to each other. Even lower rewards are obtained
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by P2iid, P1iid, and BP (the worst policy). Unlike Fig. 5, where P1corr outperforms IID (i.e.,

knowledge of Sk−1 is more critical than knowledge of the SOC), in this case P1corr and IID

perform the same. This is because pS(R|R) = 0.95, so that the EH process is almost i.i.d. As

pS(R|R) approaches 1, knowledge of Sk−1 becomes less and less critical and, in the limit as

pS(R|R) → 1, the EH process is i.i.d. and IID becomes optimal. The performance degradation

of P2corr is within 2% of OPT, and that of P1corr and IID is within 5%.

As a general conclusion, we can observe that the performance in the case of incomplete

information on the SOC, but perfect knowledge of the scenario Sk−1, is affected only by a limited

loss. Especially, knowing only whether the SOC is HIGH or LOW (2 quantization intervals) but

perfectly knowing Sk−1 (P2corr), incurs a small degradation with respect to OPT (typically

within 2%). Similarly, not knowing at all the SOC, but perfectly knowing Sk−1 (P1corr), incurs

a degradation within 5% of OPT. On the other hand, the effect of perfectly knowing the current

SOC but not adapting to the scenario Sk−1 (policy IID) incurs a more significant performance

degradation in the time-correlated case, which vanishes as the EH process becomes closer to

i.i.d. When accurate knowledge of neither the SOC nor the energy arrival process is available,

the performance significantly degrades, yet, if the battery capacity emax is sufficiently large, the

degradation decreases, and the performance approaches that of OPT for emax → ∞. In this

asymptotic case, the balanced policy BP, which does not adapt to the SOC nor to the scenario

Sk−1, becomes optimal, as discussed in Sec. III-B.

V. EXTENSIONS

In this section, as in [8], we show how the model (1) can be extended to include non-idealities,

such as battery leakage, sensing, processing and activation costs. The impact of some of these

phenomena has been analyzed from an information theoretic perspective in [26], [27] (battery

leakage) and [12] (sensing and processing costs). In particular, (1) can be extended to

Ek+1 = min
{

[Ek−Qk − Lk]
+ +Bk, emax

}

, (30)

where Lk is the overall energy cost in slot k, not including the control Qk, resulting from

battery leakage, sensing, processing and activation of the circuitry after the node goes to sleep

(if Qk−1 = 0). We model Lk as a random variable with probability distribution pL(Lk|Qk, Ak)

taking values in the set L ! {0, 1, . . . , Lmax}, possibly dependent on the action Qk, and on

the activity state Ak. The activity state Ak = χ(Qk−1 > 0) tracks the idle/active mode of the
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sensor node, so that, if Ak = 1, then the node was active in the previous slot k− 1 (Qk−1 > 0);

otherwise, the node was idle (Qk−1 = 0). The dependence of pL on Ak may be used to model

activation costs of the sensor circuitry, i.e., P(Lk ≥ l|Qk, Ak = 0) ≥ P(Lk ≥ l|Qk, Ak = 1),

∀l, ∀Qk > 0, so that a higher energy cost is incurred when switching from idle to active mode

(Ak = 0 and Qk > 0) than when staying active (Ak = 1 and Qk > 0).

For this more general model, policy µ decides on the amount of energy Qk to be requested from

the buffer, given (Nk, Ck,Wk, Sk−1, Qk, Ak). Note that, in this case, the policy is also a function

of the activity state Ak ∈ {0, 1}. The reward function (2) when (Qk, Ck, Ek, Lk) = (q, c, e, l)

can then be extended to accommodate such non-idealities as

g(q, c, e, l) =







0 q > [e− l]+

g̃(q, c) q ≤ [e− l]+.
(31)

As in Sec. III-C, we can reduce the dimensionality of the optimization problem by restricting

it to policies of the form µ(q|n, c, w, s, a) = µ̂(q|n, c, w, a, T̄ (n,w, s, a)), where T̄ (n,w, s, a) is

the total expected energy cost in state (Nk,Wk, Sk−1, Ak) = (n,w, s, a) (comprising both the

non-ideality cost Lk and the action Qk), after marginalization with respect to the realization of

the exogenous state Ck, and µ̂(q|n, c, w, a, x) is defined as the solution of the LP

µ̂(·|n, ·, w, a, x) = argmax
y(·|·)

∑

q∈Q,c∈C

y(q|c)pC|W (c|w)g̃(q, c) (32)

s.t.
∑

q∈Q,c∈C

y(q|c)pC|W (c|w)
(

q + L̄(q, a)
)

≤ x, (33)

∑

q∈Q

y(q|c) = 1, ∀c ∈ C, y(q|c) ≥ 0, ∀q ∈ Q, c ∈ C,

and L̄(q, a) !
∑

l∈L pL(l|q, a)l. Policy T̄ (n,w, s, a) can then be optimized by Algorithm 1,

by replacing the expected action Q̄(i) with the total expected energy cost T̄ (i), and the local

optimization is done with respect to the extended argument w ∈ W n ∈ N , s ∈ S , a ∈ {0, 1},

so as to account for the additional activity state Ak ∈ {0, 1}.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

Motivated by the characteristics of real-world implementations, we have investigated energy

management policies for EHDs, under the assumption of imperfect knowledge of the SOC of

the battery and time-correlated energy arrivals. In both cases, having partial information on
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either of them improves the performance with respect to having no information at all. Yet, our

numerical evaluations suggest that there is little gain in having costly procedures to determine

the SOC with high accuracy, while accurate estimation of the state of the EH source appears to

be more critical to achieve near-optimal performance. In particular, the degradation due to SOC

uncertainty increases with decreasing battery capacity and increasing variance of the energy

arrival process, and knowing only if the SOC is HIGH or LOW performs within 2% of the

globally optimal policy for typical parameter values, so that close-to-optimal performance may

be achieved by having only a loose knowledge of the SOC and an accurate knowledge of the

state of the EH source.

The model can be extended to consider the impact of battery degradation phenomena induced

by the frequent charge and discharge cycles of the battery [28], [29], using the battery degradation

model developed in [8]. More in general, several challenges can be expected in the future to

determine efficient and sustainable usage of wireless terminals, and the contributions made in

the present paper represent a step forward in this direction. The integration of realistic modeling

considerations and advanced optimization techniques can therefore have important consequences

on the joint design of batteries, network elements, and control and actuation policies.
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