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Redundancy of the Lempel-Ziv 
Incremental Parsing Rule 

Serap A. Savari, Member, IEEE 

Abstract- The Lempel-Ziv codes are universal variable-to- 
fixed length codes that have become virtually standard in prac- 
tical lossless data compression. For any given source output 
string from a Markov or unifilar source, we upper-bound the 
difference between the number of binary digits needed to encode 
the string and the self-information of the string. We use this 
result to demonstrate that for unifilar or Markov sources, the 
redundancy of encoding the first n letters of the source output 
with the Lempel-Ziv incremental parsing rule (LZ'78), the Welch 
modification (LZW), or a new variant is O((lnn)-'), and we 
upper-bound the exact form of convergence. We conclude by 
considering the relationship between the code length and the 
empirical entropy associated with a string. 

Zndex Terms- Lempel-Ziv codes, Markov sources, unifilar 
sources, renewal theory. 

I. INTRODUCTION 

N important and challenging problem in data com- A pression is trying to better understand the Lempel-Ziv 
incremental parsing rule [ 13, which has motivated many practi- 
cal lossless data compression schemes. We assume that we are 
encoding the output of a Markov source or a unifilar source: 
the terms are often used interchangeably (see, e.g., [2, Sec 
3.61, [3, Sec 6.41, and [4]). We define a Markov source, i.e., 
a unifilar source, with finite alphabet {0,1, . . . , K - 1) and 
set of states (0, 1, . . . , R - 1) by specifying, for each state s 
and letter j, 

1) the probability p s , j  that the source emits j from state s 
2)  the unique next state S[s, j] after j is issued from state s. 

For any source string a with an initial state so, these rules 
inductively specify its final state S[SO, a], its probability 
P(a I SO), and its self-information in natural units, I(cr I so) = 
- In P(a I SO). In the underlying Markov chain, let fs,, denote 
the transition probability from state s to state r; then 

fs,, = P s , j .  
j :  s [s , j ]  =T 

We assume the source has a single recurrent class of states: 
i.e., the underlying Markov chain has a single recurrent class 
of states or, equivalently, for each pair of states s and r ,  there 
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is a string ~7 with positive probability that drives the source to 
state r from state s. Let 7rs denote the steady-state probability 
that the source is in state s and let 'FI represent the entropy of 
the source in natural units. If F = [fa,,], r = (TO. TB-~), 
and e denotes the column vector of length R consisting of all 
ones, then r and IFI are given by 

r . e = l  
R-1 K-1 

3-1 = - T s P s , j  1npsj. 
s=o j = o  

The class of sources that can be modeled by a Markov source 
is fairly general and includes, for each I 2 1, the family of 
sources for which each output depends statistically only on 
the I previous output symbols. 

We also assume that the output of the source is encoded into 
a uniquely decodable sequence of letters from a binary channel 
alphabet. In [5], Shannon established that the average number 
of binary digits per source symbol that can be achieved by any 
such source coding technique is lower-bounded by 3-1 log2 e. 
The redundancy of a source code is the amount by which the 
average number of binary digits per source symbol associated 
with that code exceeds Shannon's entropy bound. One of the 
goals in developing source coding algorithms is to minimize 
redundancy. 

There are many well-known source codes such as the 
Huffman code [6], the Tunstall code (see [7] and [8]) and 
arithmetic codes (see [9]) for which the average number of 
binary digits per source symbol comes arbitrarily close to 
Shannon's entropy bound. A practical disadvantage of each 
of these algorithms is that they require an a priori knowledge 
of the source model. The alternative is to use an adaptive 
or universal source code, i.e., a code which needs no a priori 
assumptions about the statistical dependencies of the data to be 
encoded. There is an extensive literature on universal coding, 
and there are many types of universal codes. For example, 
the dynamic Huffman code (see, e.g., [lo]) is an adaptive 
version of the Huffman code, and there is a way to use 
arithmetic coding in an adaptive way (see [Ill).  However, 
among the existing universal codes, the encoding techniques 
motivated by the 1977 Lempel-Ziv algorithm (see [12]) and 
the 1978 Lempel-Ziv algorithm (see [l]) are virtually standard 
in practical lossless data compression because they empiri- 
cally achieve good compression, and they are computationally 
efficient. However, the Lempel-Ziv codes are not as well 
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understood as many other well-known codes. We will focus on 
gaining insight into the 1978 Lempel-Ziv code, often called 
the Lempel-Ziv incremental parsing rule or LZ’78, and two 
of its variants. 

The Lempel-Ziv incremental parsing rule starts off with a 
dictionary consisting of the K source symbols. At any parsing 
point, the next parsed phrase LT is the unique dictionary entry 
which is a prefix of the unparsed source output. For all three 
of the encoding procedures we will consider, if the dictionary 
contains M entries, then [log,M1 bits are used to encode 
the next parsed phrase. Once this phrase has been selected, 
the dictionary for the Lempel-Ziv incremental parsing rule is 
enlarged by replacing B with its K single-letter extensions. As 
an example, suppose that we have a ternary source, and the 
source output is the string 0 0 0 0 2 . . .. 

0 Initially, the dictionary is (0, 1, 2). 
* The first parsed string is 0, and the dictionary is updated 

to (00, 01, 02, 1, a}. At this point, the unparsed source 
output is 0 0 0 2 .... 

9 The second parsed string is 00, and the revised dictionary 
is (000, 001, 002, 01, 02, 1, a}. Now, the unparsed 
source sequence is 0 2 . . .. 

* The third parsed string is 02, resulting in the dictionary 

Practical implementations of the Lempel-Ziv incremental 
parsing rule often differ somewhat from the original LZ’78 
algorithm. We will focus on the LZW algorithm introduced 
by Welch in [13]. Initially, the dictionary entries are the K 
source symbols. At any parsing point, the next parsed phrase 
is the longest dictionary entry which is a prefix of the unparsed 
source output. Thus far, the parsing rule is identical to the one 
used by LZ’78. The difference is in the way the dictionaries are 
updated in the two procedures. In the Lempel-Ziv incremental 
parsing rule, the last parsed phrase is replaced by its K 
single-letter extensions. For LZW, the dictionary is enlarged 
by adding the last parsed phrase concatenated with the first 
symbol of the unparsed source output. According to [13], 
LZW achieves very similar compression to LZ’78, but is easier 
to implement. Miller and Wegman discussed a “character 
extension improvement” algorithm in [14] that is identical to 
LZW. They claimed that the algorithm empirically achieves 
better compression than LZ’78 on English text, especially 
for small dictionary sizes. Miller and Wegman attributed 
the empirical success of LZW to the addition of one new 
dictionary string per parsed string versus the net gain of K - 1 
dictionary strings per parsed string created by LZ’78; i.e., each 
parsed string is represented by approximately log,(K - 1) 
fewer binary digits. Note that any string can appear as a parsed 
phrase at most once for the original Lempel-Ziv incremental 
parsing rule, while it can occur as a parsed phrase up to K 
times for LZW. Let us continue the previous example by 
examining how the LZW parser would segment the source 
output sequence 0 0 0 0 2 . . .. 

(000, 001, 002, 01, 020, 021, 022,1, 2). 

0 Initially, the dictionary is (0, 1, 2). 
e The first parsed string is 0, and the remaining source 

output is 0 0 0 2 . . .. Hence, the dictionary is enlarged 
to (0, 00, 1, 2). 

0 The next parsed string is 00, and the unparsed source 
sequence is now 0 2 . . .. The dictionary is expanded to 

e The third parsed string is 0, and the rest of the source out- 
put is 2 . . .. The new dictionary is (0, 00, 02, 000, 1, 2 )  
and the fourth parsed phrase is 2. 

For LZ’78, it is clear that the decoder can use the sequence 
of code symbols to simulate the evolution of the parser’s 
dictionary and subsequently reconstruct the source output; it 
is less obvious that the LZW decoder has this property. For 
any string LT and letter j ,  define the string LT o j as the string 
formed by appending j to the string LT. The LZW decoder can 
easily determine the first source output symbol u1. The new 
dictionary entry is of the form u1 o j  for some source symbol j. 
To find j, the decoder looks at the code letters corresponding 
to the second phrase. If these code letters indicate that the 
second parsed phrase is u1 or u1 o j ,  then j and u1 are the 
same symbol. Otherwise, the second parsed phrase is some 
u2 which is distinct from u1 and, therefore, j is the same as 
u2. This argument can be extended to show that it is possible 
to accurately decode any source string from its corresponding 
string of code letters. 

There are many small modifications that c q  be made to 
LZ’78 or LZW,in order to create new encoding rules. For 
example, Gallager [15] proposed a variant G of LZW. Suppose 
that a string CJ has occurred K - 2 times as a parsed string 
for LZW. Then it has two single-letter extensions, say B o j1 

and a o j z ,  which are not dictionary entries. Without loss of 
generality, assume that a is next used as a parsed string when 

o jl is a prefix of the unparsed source output starting from 
a parsing point. Then B o j ,  will be the new dictionary entry 
and B will be used as a parsed string for the Kth time if and 
only if there is a parsing point at which B o j 2  is a prefix of 
the unparsed source output. In G, when a string is used as a 
parsed string for the K - 1st time, the dictionary is updated 
by replacing the string with its two single-letter extensions 
which are not already in the dictionary. Note that the size of 
the dictionary for G grows by one each time a string is parsed, 
and a string can be used as a parsed phrase up to K - 1 times. 
For K = 2, the rule G is the same as LZ’78. Let us continue 
our example and see how G would segment the source output 
sequence 0 0 0 0 2 .... 

(0, 00, 000, 1, 2 ) .  

* Initially, the dictionary is (0, 1, 2). 
0 The first parsed string is 0, and the remaining source 

output is 0 0 0 2 . . .. The new dictionary is (0, 00, 1, 2 ) .  
e The second parsed string is 00, and the dictionary is 

enlarged to {O, 00, 000, 1, 2). Now, the unparsed source 
sequence is 0 2 . . .. 

* The next parsed string is 0 and the remainder of the source 
output is 2 . . .. Since this is the second time that 0 is a 
parsed string, it will be removed from the dictionary and 
the strings 01 and 02 will be added. The new dictionary 
is (00, 01, 02, 000, 1, 2) and the fourth parsed phrase 
is 2. 

,un. It is assumed that 
the decoder knows the length n of U;  in advance. If the last 
parsed phrase B is a partial phrase, the encoder will transmit 

Let U;” symbolize the string u1, 
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the codeword corresponding to any dictionary entry which has 
cr as a prefix. Let LLz(u;"), Lw(u;), and LG(u;") denote the 
length of the encoding of the string U;  in bits for LZ'78, 
LZW, and G, respectively. Let Up be the random string 
corresponding to the first n letters emitted from the source. 
The redundancies RLZ, RW, and RG of the codes in bits are 

(1) 

RW = E -Lw(V;") -Xlogae  (: ) 
and 

(3) 

where the expectations are taken over all n-tuples. It was 
demonstrated in [ 11 that 

lim zLZ = 0. 

In [4], it was established that for a binary source, every source 
output string U; satisfies 

n-oo 

LLz(uy) - I (u;  I so) log, e 
n 

In Inn 
I- 

and hence, 

Lz l n lnn  R 5 -  In n 

In [4], it was conjectured that RLz = @((lnlnn)/(lnn)). 
However, in recent years, much of the data compression 
community believed that RLz = @((lnn)-l). This question 
was next addressed in [16]; it was claimed there that for a 
binary, memoryless source, there exists a constant C which 
is a function of source parameters and a fluctuating function 
S(n) with small amplitude that satisfies 

R L Z  = C + 6(n) + .( l n l n n )  
In n (In n) ,  

and that an extension of this result exists for those Markov 
sources for which each output symbol depends statistically 
only on the previous output symbol. The redundancy bound 
of [4] was obtained by studying the number of parsed phrases 
of a given length in order to bound the total number of parsed 
phrases. The results of [16] were derived using [17], which 
states that as n increases, the number of phrases in the parsing 
of Up approaches a normal distribution with a mean and 
variance which are functions of n and the source parameters. 

Our approach to analyzing the performance of an encoding 
rule is new. Instead of focusing on the number of parsed 
phrases of a given length, we show how to use renewal theory 
to bound the number of phrases corresponding to the parsing 
of a string in terms of the self-information of the string, and 
this leads to an upper bound on the length of the encoding of 
the string. Our main result is to demonstrate that for each of 
the three encoding rules that we are investigating 

furthermore, the number of binary digits used to represent any 
string U;" satisfies 

In every case, we upper-bound the exact rate of convergence. 

11. NEW REDUNDANCY BOUND 
In evaluating LLz(uy), LW(uy), and LG(u?), we will use 

Lemma 1: For any integer k 2 2, and real number x 2 0, 
the following elementary result. 

5 k log, k+kx+k log, (lo: ~ e )  +O(lnk). 

The proof of Lemma 1 can be found in Appendix I. A related 
result is presented in [18, Example 1.2.4.421. 

Let cLz, cw, and cG represent the number of complete 
phrases obtained by parsing U? according to LZ'78, LZW, 
and G, respectively. For LZ'78, the dictionary starts with K 
entries and has a net gain of K - 1 strings per parse; hence, 
the size of the dictionary used to select the $th parsed string 
is +(K - 1) + 1. Since pog,Ml bits are used to encode 
any entry of a dictionary of size M for each parsing rule, 
LLz ( U?) satisfies 

C L Z + l  

j=1  

CLZ + 1 

3=1 

LLZ(U?) < 

< 

Pog,(j(K - 1) + 111 

rlog,(K - 1) + log,(j + 111. 

Therefore, it follows from Lemma 1 that 

LLZ(u;L> 5 CLZ log, CLZ 

For LZW and G, the number of possibilities for the $th parsed 
string is II, + K - 1 and thus Lemma 1 implies that 

L"(u;) 5 c ~ ~ o ~ , c ~  + c w l o g z ( ~ )  + O(1ncW) (6) 

and 

From (5)  to (7), we see that upper bounds on cLz, cw, and 
cG lead to upper bounds on LLz, Lw, and LG, respectively. 
We have the following results. 
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Theorem 1: Assume that the source has positive entropy 
X and that the self-information corresponding to the symbols 
emitted by the source has a nonarithinetic distribution; i.e., 
there is no constant A such that - lnp,,, is an integer multiple 
of A for all pairs of states s and symbols j satisfying p 8 , j  > 0. 
Abbreviate I(u? I so)  < CO by I .  For the three encoding 
rules we are studying, we have the following asymptotic 
relationships between the number of phrases associated with 
the parsing of U'; and the self-information of U;: 

1 n I  
c L z .  - 1 + o(1) I -  

In I 
I CG . - I 1 + #(I) 

In I R(K - 1)e 
(CGlog, CG - Ilog, e) . - 5 log, ( 3-1 ) + o(1). I 

The asymptotic relationship between the length of the encod- 
ing of U'; and the self-information of U'; satisfies 

n 

Pro08 We introduce the following notation for the Lem- 
pel-Ziv incremental parsing rule. Let 

0, denote the z t h  phrase of the source output 
* $, denote the source state just before phrase U ,  

0 0 = { T  : S(o I s) = T for some string CT and state $3 
C ( T )  = I { u ,  : 1 1. i 5 cLz ,  I(u,  14,) = r}I 

* 4 7 )  = I{(% a) I ( Q  I .) = .>I 
$7-1 = I{(s,a) : I ( 0 l S )  I 7-11 
f = 

CLZ 

I (a ,  I &);f 5 I 
beca&'of the possible final partial phrase. 

Note that 

CLZ = c(7) (15) 
r E C 2  

and 

f = r .  

To upper-bound cLz for a given I(u?), we maximize 

subject to the constraints 

7- . c(7-)'1 I 
T € 0  

and 0 5 C(T)  5 P(T)  for all r E R. We will show that 
the number of phrases is maximized by selecting as many 
phrases with small self-infomation as possible. In particular, 
we are going to pick a "threshhold" self-information 7 and 
consider the set S of strings with self-infomation upper- 
bounded by 7. Our choice of 7 is determined by the criterion 
that the cumulative self-information of the strings in S is 
approximately I .  We will upper-bound cLz by the size of S.  
More precisely, we have the following result. 

Lemma 2: An upper bound on cLz is given by 

CLZ 5 y(7) (19) 

where I is chosen so that 

Note that 7 is a nondecreasing function of I and that as n 
approaches infinity, both I and 7 approach infinity. 

Proof of Lemma 2: To arrive at a contradiction, suppose 
that (19) is false. Then cLz 2 $7) + 1. The encoding 
rule ensures that every complete phrase in the parsing is 
distinct. Let h, denote the self-information of phrase i ;  i.e., 
h, = I (a ,  1 $,). Without loss of generality, reorder the self- 
informations so that hl I ha 5 ... 5 h C ~ z .  Now consider 
the $7) distinct pairs (s, 4 )  with I ( 4  I s )  5 ?; and order the 
pairs so that 

I(41 I S1) 5 I (42  132)  I . . . 5 I(&(?) I S T ( T ) ) .  

Observe that for each z E {1,2 , .  . . ,y(7)}, h, 2 I ($ ,  I s,), 
and for each z > y(?), h, > 7. Hence 

i=l i=l i=l 

which is a contradiction. 0 
To understand the relationships among 7, y(7), and 

Y r .uir) 
U 

r E S 2 : r < ?  

we investigate how the source generates self-information. We 
can model the generation of self-infomation as a renewal 
process (see [19, Sec 31 and [20, Sec 31). In a renewal 
process, renewals occur at randomly chosen epochs in time 
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and successive interrenewal periods, i.e., the intervals between 
renewals, are independent and identically distributed nonneg- 
ative random variables; we assume that the process starts 
evolving at time zero. A related type of stochastic process is a 
delayed renewal process. A delayed renewal process is almost 
identical to an ordinary renewal process; the only difference 
is that the first interrenewal period of a delayed renewal 
process may have a different probability distribution from the 
remaining ones. For our purposes, we choose the interrenewal 
periods to represent the self-information generated by the 
source between successive returns to some given state II,; 
an epoch can then be interpreted as the self-information of 
the source string upon an entrance of the source into state 
?I. Because of the Markovian nature of the source, these 
interrenewal periods are independent random variables and all 
but the first interrenewal period are also identically distributed. 
That is, if the source is initially in state II,, the stochastic 
process defined above is a renewal process; otherwise, it 
is a delayed renewal process. For each state ?,h and integer 
k > 2, we let Ji') symbolize the self-information, in natural 
units, generated by the source between the k - lth and the 
lcth occurrences of state 4; Ji') denotes the self-information 
produced until the source reaches state II, for the first time. 
Let TL')=Ji')+-. -+Ji"), and let {N(+?')(t);  t > O }  be the 
renewal or delayed renewal process defined, for each state 
II,, and starting state s, by specifying the random variable 
N(+ls) ( t )  as the number of renewals until the self-information 
reaches t ,  i.e., the largest integer k for which 7':') 5 t < 
T(+) 
k+1- Let 

m(++)(t) = E[N'+7"'(t)]. 

Given the starting state s and the source output 211, 212, . . ., 
each prefix vi with S[s,  $1 = $ corresponds to a renewal in 
the corresponding sample function; the expected number of 
renewals in the interval ( t ,  t + dt]  is given by 

" 4 ( t + d t )  -m(+4(t)  = c P((T I 3). 

o.l(ols)€(t,t+dt],+=S[s,o] 
(21) 

For each string (T with I((T I s) E (t,t  + d t ] ,  we have that 
e-t-dt 5 P((T I s )  < e-t. Hence, it follows from (21) that 

, - t -d t .  la:I((T I s )  E (t , t+dt],II ,=S[s,(T]I 
5 m ( q t  + d t )  - " ~ 7 " ' ( t )  

< e-t. I (T : I((T I s )  E (t , t  + d t ] ,+  = S[s,o]I 

and thus the number of strings (T with I((T I s )  E ( t ,  t + d t ]  and 
II, = S[s,a] is in the interval 

(et[m(++)(t + d t )  - m(++)(t)], 
et+dt[m(++)(t + d t )  - m(++)(t)ll. 

We have that 
R-1R-1 ,*+ 

Hence, by multiplying both sides of (22) and (23) by e-', we 
find that 

and 

R-1R-1 ".t+ 

(25) 

In Appendix 11, we establish the following result for sources 
in which the self-information per symbol has a nonarithmetic 
distribution. 

Lemma 3: For all states s, as 7 increases 

It follows from (24)-(28) that as 7 increases, 

(29) 
- R  

y ( ~ )  e-' = + o( 1) 

and 

(30) ( ~ $ 7 )  - 1 ) .  e ' = - + o(1). 

Taking the logarithm of both sides of (29), we find that as d 
increases, 

- - R  
7i 

log, y(7) - 7 log, e = log, (;) + 41). (31) 

Multiplying (29) by (31), we see that 

($7) log, $7) - T ~ ( T )  log, e )  . e-' 
= .Ft R log, (a) + o(1). (32) 
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Multiplying both sides of (30) by log, e and adding the 
resulting expression to (32), we find that as 7 increases, 

Formulas (39) and (40) are equivalent to (8) and (9), respec- 
tively. From (5j, (8), and (9), we have 

In I 
(~""(u;) - Ilog, e) . ~ 

T ($) + o(1). 
- R  

3-1 (~(7) log, $7) - I log, e) . e-r = - log, 

(33) 
Next, we would like to determine the asymptotic relation- 

ship between e-" and I. Substituting (29) into (30), we see 
that Since the source has positive entropy, I = @(n) and, therefore, 

(14) is equivalent to (41). 
We use the same ideas to prove the rest of Theorem 1. For 

LZW and 6, the lemma corresponding to Lemma 2 is 
Lemma 4: 

R 
3-1 T -  + o(?) - I .  eCT = 0. (34) 

Define 6 to satisfy 

R I  
= In ( ( 1 + t, ) . In( %) (35) 

Substituting (35) into (34), we find that 

where rw and rG are chosen so that 

( K -  1) r . p ( r )  < I F  ( K -  1) T . ~ ( T ) .  

and dividing both sides of this equation by Rln(XI/R)/X,  
we see that 

r € O : r < r G  r €0 .r SrG 

Proof of Lemma 4: The difference between Lemma 2 
and Lemma 4 lies in the number of times a given string can 
appear as a parsed phrase for each encoding rule. In LZ'78, a 
string can occur at most once. Any string can occur up to K 
times as a parsed phrase for LZW and up to K - 1 times as 

U 
For LZW, the counterparts to (29) and (30) are that as T~ 

a parsed phrase for G. 

increases, 

Thus 

s = o(1) 

and hence, as 7 and I increase, 
R r(rW) exp(-TW) = - 3-1 + o(1) (42) 

and 

Substituting (36) into (29) and (33) ,  we see that as 7 and 
I increase ( K T ~ Y ( ~ ~ )  - I )  . exp(-rW) = ~ RK + o(1) (43) IFt 

and for G, as rG increases, 

Y ( T  G ) .  exp(-r G R  ) = - + o(1) (44) 3-1 
and 

and 

(45) By Lemma 2, cLz 5 ~ ( 7 ) .  Hence, by (37) and (38), as I 
increases With these modifications, the proofs of (10)-(13), (15), and 

0 
Next, we will briefly consider the situation in which the self- 

information corresponding to the source symbols issued has 
an arithmetic distribution with period A. Lemma 3 no longer 
holds, and Theorem 1 is not true in general for arithmetic 
distributions. However, there are some analogous results that 
we present in Appendix 111. For the remainder of the paper, 
we consider only nonarithmetic distributions. 

(16) are identical to the proofs of (8), (9), and (14). 

An immediate consequence of Theorem 1 is 

(39) 

and 

R 
I - 3-1 log, ($) + o( 
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Corollary 1: Assume that the source has positive entropy. 
Let h,, denote the maximum self-information generated by 
the source upon emitting a symbol. Note that h,, is finite. 
Then for all source output strings with nonzero probability 

Theorem 2: Assume the source has positive entropy. Then 

In n 

n and 
hmax 

C"(u7) - I log,e  
n Proofi Taking the expected value of both sides of 

(14)-(16) with respect to U?, we see that R K  log, e 

L"Z(U?) - I(U," I SO) log, e 
n 

~ " ( u ? )  - Ilog, e I n n - E  
n. 

L~ (U?) - I(U? I so)  log, e 
n 

RK log, e 

Pro08 We have that I 5 n.hmax. This fact and (14)-(16) 
imply the result. 1 n n . E  

For a very probable collection of strings, we can further 
tighten the bound presented in Corollary 1. In particular, we 
have the following result. 

Corollary 2: Assume that the source has positive entropy. 
With probability 1 - O( h), 

'H 

L~(u?) - I ( U ~  I so) log, e 
n 

I n n .  E 

CLz (Up)  - I(U? I so) log, e 
n 

In n In n (49) 
Lw (U?) - I(U? I so) log, e 

n We have that for all strings U?, 

In n 0 5  I hmax. (50) 

Since (46) holds with probability 1 - O ( l / f i )  and (50) 
applies for the remaining cases, we have that 

I(u? I so> 
n L" (U?) - I(UC I so) log, e 

n 

Proofi Since 

lim E(I(U," I so)/n) = 3.t 
11'03 

and the variance and third moment of the self-information of 
every source symbol emitted is finite, it follows from [21] that 

with probability 1 - 0 - . (46) (2 
The corollary follows from (46) and (14)-(16). 0 

It is also easy to derive upper bounds on the redundancy of 
the codes using Theorem 1 and (46). We have the following 
result. 

(47)-(49) and (5) imply the theorem. 0 
Thus far, we have been assuming that the source has positive 

entropy. To finish our analysis of these three encoding rules, 
we will investigate the performance of the algorithms on the 
output of a source with zero entropy. In this case, for every 
state s, there is a letter j ,  such that 

p ,  33s . = 1. (52) 

This implies that from any starting state so, there is only 
one possibility for the output from the source. We have the 
following result. 

Lemma 5: Assume that the source has zero entropy. Let m 
be any positive integer. For each of the three encoding rules 
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we are studying, the parsing of the source output U; can result 
in at most R complete parsed phrases of length m. 

Proof: For each algorithm, (52) implies that the m letters 
following a parsing point are uniquely determined by the state 
of the source at that parsing point. Therefore, since the source 
has R states, there are at most R distinct strings of length 
m that can appear as a parsed phrase. In the case of LZ’78, 
the lemma holds because all complete parsed phrases must be 
distinct. For LZW and G, let v1 o . . . o v,+1 be the m + 1 
letters following a parsing point. If the parsed string following 
this parsing point is wl o . . . o U,, then u1 o . . . o w,+~ is 
not in the current dictionary. However, if at any future point 
w10 .  . .O’U,+~ is a prefix of the unparsed source output, then the 
encoding rules for LZW and G guarantee that ‘ ~ 1  o . . . o wm+l 

will be a prefix of the corresponding parsed string. Our earlier 
argument implies that there are at most R distinct possibilities 
for the string q o . . o vm+l. Therefore, there can be at most 

0 
From Lemma 5, we can obtain the following bound on the 

Lemma 6: Assume that the source has zero entropy. Let X 

R complete parsed phrases of length m. 

number of phrases associated with the parsing of U?. 

denote the smallest integer for which 

+ + x + 1 > n. 
2 

Then for each of the encoding rules, an upper bound on the 
number of complete phrases c in the parsing of U: is given by 

c 5 RA. (53) 

Pro03 We will establish (53)  by contradiction. Suppose 
that (53) is false for one of the encoding rules. Then for that 
encoding rule, c 2 R A  + 1. Let I ,  represent the length of 
phrase 2. Without loss of generality, reorder the lengths so 
that 11 5 12 5 . . .  5 I,. From Lemma 5, we know that for 
every positive integer m, there can be at most R complete 
phrases of length m. Hence, for R(m - 1) + 1 5 j 5 Rm, 
we have that I, 2 m, and Z R X + ~  2 X + 1. Thus 

c RX+l x 

i=l i=l m = l  j=R(m-l)+l 

x 
2 ( A +  1) + 77 Rm 

m=l 

which is a contradiction. 0 
Using Lemma 6, we obtain the following result. 
Theorem 3: Assume the source has zero entropy. For the 

three encoding rules we are considering, we have the following 
asymptotic bound on the length of the encoding of the source 
output string U;: 

m ( K  - 1) log, e )  
( I n n )  

+ o  - 
x log, ( e  

(54) 

x log, ( slog, e e ) + O ( F )  (55)  

Prooj? By Lemma 6, we have that for each of the 
encoding ruleb, the number of complete parsed phrases c 
satisfies 

(57) 

By substituting (57) into (5)-(7), we obtain (54)-(56), respec- 

It is interesting to compare the redundancy of the code 
associated with the Lempel-Ziv incremental parsing rule with 
that of a different type of Lempel-Ziv code. LZ’77, i.e., the 
encoding rule developed by Ziv and Lempel in 1977 (see 
[12]), uses a greedy parsing scheme. Essentially, if the first 
n symbols U; of the source output have been parsed, the next 
parsed string is the longest prefix U of the unparsed source 
output that is of the form for some m 5 n. The string 
is encoded by using [logz n] bits to represent m and @(log I )  
bits to represent 1.  For a fixed-database implementation of 
LZ’77, Wyner demonstrated in [22] that as n increases, the 
length I of the next parsed phrase is asymptotically normally 
distributed with mean (Inn)/% + O(1) and variance O(1nn). 
This suggests that the redundancy of encoding the first n 
letters of the source output using LZ’77 is @((In In n)/(ln n)). 
Since LZ’78 and its vasiants can also be viewed as greedy 
procedures, it was conjectured that these schemes would also 
have redundancy @((lnlnn)/(lnn)).  For LZ’78, LZW, and 
G, we upper-bounded the redundancies of the algorithms by 
minimizing the self-information per parscd phrase. The goal of 
LZ’77 is to maximize the self-information per phrase, but the 
resulting decrease in the number of phrases is more than offset 
by the size of the “dictionary” corresponding to the parsed 
string U;, and this is why LZ’78 and its variants asymptotically 
outperform LZ’77. However, recent trends in practical lossless 
data compression suggest that LZ’77 and its variants perform 
as well as, if not better than, LZ’78 and its variants. There are a 
few explanations for this. For small to moderate values of n, 
the difference between @((lnInn)/(lnn)) and o ( ( l n n ) - l )  
is not significant and an understanding of the lower order 
terms is very important in order to make a fair comparison. 
The other limitations to our analysis are the assumptions that 
the source statistics do not change over time and that the 
dictionary of source strings can grow arbitrarily large. If either 
of these assumptions are violated, then the situation may be 
very different. 

tively. 0 

111. BOUND ON POINTWISE CODE LENGTH 

The results of the last section and earlier analyses of the 
compression achieved by the Lempel-Ziv codes assume a 
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model for the source and bound the average number of code 
symbols per source symbol used by the code for a random 
output from this source. In practical situations, we would like 
to be able to bound the number of code symbols per source 
symbol needed for the encoding of a particular string U;". 
The appropriate way to modify the analysis carried out in the 
last section is to select a source model and then choose the 
parameters of this model to maximize the likelihood that U; is 
emitted. For example, given a positive integer I, one standard 
source model assumes that each output depends statistically 
only on the 1 previous output symbols. As usual, let us suppose 
the source letters come from a finite alphabet { 0, 1 , . . . , K - 1 } . 
We will apply a model for the source in which there are a set 
of states {0,1,. . . , R - 1) with an initial state SO and S [ s , j ]  
defines the next state if symbol j is emitted from state s. 
In order to complete the definition of the model, we need to 
specify Os,g, the probability that the source emits symbol j 
from state s. Let & and i?s be the empirical probability that 
j is emitted from state s and the empirical probability that the 
source is in state s, respectively. That is, 

number of times j is emitted from state s in 
number of times the source is in state s in U;" 

P S J  = 

and 

number of times the source is in state s in U? 

n 
?ra = 

The empirical entropy f i n  for this model is given by 

and the self-information I(u';" I S O )  of U';" assuming a model 
with the probabilities {0,,j} is 

Lemma 7: The choice of the probabilities to minimize 
the self-information I(.; I SO) of U;  is O s , J  = fis,j for all 
states s and symbols j .  

Proof: The problem of minimizing I(@ I S O )  is equiva- 
lent to selecting the Os,g to minimize the empirical divergence 
D, defined by 

R-1 K-1 

s=o j = o  

Using the inequality that for all z > 0,111s 5 x - 1 with 
equality if and only if z = 1, we have that 

= 0  

and D, = 0 if and only if BS,j  = p, , j  for all states s and 
symbols j .  0 

Let f(u;" 1 S O )  be the self-information of the string assuming 
the empirical model; i.e., when Os,j  = BS,j for all states s and 
symbols j .  Note that Lemma 7 implies that for this model of 
the source, we have that 

(58)  qu; 1 so) = n6,. 
The analysis on individual sequences carried out in the last 
section applies for U;  assuming the empirical model of the 
source. We have the following results. 

Theorem 4: If 6, is positive, then 

If f i n  is zero, then 

Proofi We will demonstrate (59) and (62). Expression 
(59) follows from (39), (40), (3, and (58). Expressions (57), 
(9, and the fact that R = O(n) imply (62). The proofs of 
(60), (61), (63), and (64) are similar to the proofs of (59) and 
(62). 0 

IV. CONCLUSION 

We have investigated the redundancy of LZ'78, LZW, 
and G as the length n of the source string encoded tends 
toward infinity and we established that for each algorithm, the 
redundancy decreases toward zero as O( (In n)-'). Moreover, 
we upper-bounded the number of code symbols per source 
symbol needed for the encoding of a particular string U;. The 
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main idea was to upper-bound the number of parsed phrases 
used to encode U? by the maximum number of phrases with 
cumulative self-information less than I(u;" 1 so) and to use 
renewal theory to understand the asymptotic behavior of the 

Proof of Lemma 8: Let X(t(2cI) represent the entropy in 
natural units of the next source symbol, given that the source 
is in state 4;  i.e., 

second quantity. 

j = O  
APPENDIX I 

proofofLemma 1: Let E - 1.J. Then 0 5 E < 1 and Just as we can define a renewal process where the inter- 
renewal variable is the self-information generated by the 
source, we can view the process by which the source generates 
self-information as a semi-Markov process (see, e.g., [19, Sec 
4.81) with the properties that whenever the source enters state 

k k 

[IC + log, il = k1.J + 
a=1 2=1 

so it is sufficient to prove the lemma assuming 0 5 z < 1. 
Let z = ~loga(2"k)J and suppose that I is the largest integer 
for which z = ~log,(2"Z)l; i.e., 2"Z 5 2' < 2.(Z + l), and so 
I 5 2z-x < Z + 1. We have that 

k k 

1% + log, 21 = [log, (2"i)l 
i=l i=l 

j=1 

+ ( 5  - l ) ( z  + 1) 
2 

= Cj . (integers i: ZJ--"-' < i 5 2'-"( 
3=1 

+ ( k  - Z) (x  + 1) 

2"-" + 1)(z + 1) 
3=1 

= 2-(z - 1) + 2-" 

= kz + IC - 2 3 Y-" + O(Z)  
+ (IC - 2 7 ( z  + 1) + z + 1 

(65) 

which is equivalent to the first inequality. Let y = 2"-". Since 

$: 
1) The next state it will enter is state T with probability 

f+ ,T .  

2) Given that the next symbol to be emitted is letter j ,  the 
amount of self-information generated until the transition 
from t(2cI to S[+, j ]  is -lnp+,J. 

Note that X($) is the mean information growth produced 
by this semi-Markov process from its entrance into state $J 

until it makes a transition. E[Ji')] can now be interpreted 
as the information growth between successive transitions into 
state $. To complete the proof, we note that the long run 
proportion of self-information generated while the process is 
in state ~ can be shown (see [19, Sec 4.81) to be equal to both 
W)/E[J;+O' l  and 

/R-1 \ 

To finish the proof, note that 

R-1 

7-t = 7rT7-t(7-). 
r=O 

0 

log, y = 1]-0g,(2~k)] - IC we have that k / 2  < y 5 k .  The 
expression k log, y - 2y is maximized at y = k(log, e ) / 2 ,  and 
for this value of y, we find that 

Proof of Lemma 3: For (26), we let h(t)  = e-t and for 
the other equations, we let h(t) = -teVt. The lemma follows 
from Theorem 5 and Lemma 8. 0 

z = log, IC + z + log, (log, e )  - 1. 

Substituting this value of z into ( 6 3 ,  ,we obtain the second 
inequality. 0 

APPENDIX I1 
In order to prove Lemma 3, we employ the following well- 

known renewal theorem (see [19, Secs. 3.4 and 3.51). 
Theorem 5: For all states s and $, if Ji'), k > 1 has 

a nonarithmetic distribution and if h(t)  is directly Riemann 
integrable, then 

APPENDIX I11 
Throughout this appendix, we assume the self-information 

associated with the source symbols emitted has an arithmetic 
distribution with period A. Furthermore, we presume that for 
all pairs of states 4 and symbols j ,  P ~ , ~  < 1. If necessary, 
it is possible to change the alphabet and set of states in order 
to satisfy this assumption. 

In the results that follow, we use a stronger version of Lem- 
mas 2 and 4 that more accurately relates the self-information 
of a string to the number of phrases associated with the parsing 
of that string by more carefully counting the number of strings 
at the threshhold self-information. Let 

T ( 7 )  2 l((s,o): I(c7 1 s) < .}I. 
We have the following relationship among E[J$'"], 7-t, and T+. 

Lemma8: E[J$'"] = X / T + ,  li, E {O,. . . ,R-l} .  We have the following result. 
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Lemma 9: The number of phrases in the parsing of U? 

(66) 
(67) 

satisfies 

CLZ I pLZ = T(7) + QLZ 

cw I pw = K q r W )  + aw 

cG 5 PG ( K  - l)T(TG) + QG (68) 

JLZ= T . p ( r ) + T . a L z > I >  JLZ-?: (69) 

J w = K  r . p ( r ) + r w . a w > I > J w - r  W 

and 

where 7, rW, rG, QLZ, QW, and QG are chosen so that 

T € O  T<7 

T E Q  T<TW 

(70) 
JG = ( K  - 1) T . p ( T )  + T G  ' Q G  2 1 > Jw - TG 

TEO.T<TG 

(71) 
(72) 
(73) 
(74) 

Proofi The proof of Lemma 9 is identical to the proofs 
of Lemmas 2 and 4. 0 

We first consider sources that are acyclic in the sense 
that there is no integer D greater than one for which the 
self-information generated by the source between successive 
occurrences of state 1c, is an integer multiple of DA for all 4. 
We use Blackwell's theorem (see [19, Secs 3.4 and 3.51). 

Theorem 6: If Ji'), k 2 1 has an arithmetic distribution 
with period A, then 

1 I QLZ I: P(7)  

1 I: Qw I K P ( T W )  
1 5 aG 5 ( K  - ~ ) / - ' J ~ S ( T " ) .  

A 
lim E[number of renewals at mA] = - 

m-w E [ J;')] . 

Since p+,3 < 1 for all pairs of states $ and symbols j ,  at time 
mh, there will either be no renewal or one renewal. From 
Lemma 8, E[Ji')] = X / T +  (see [20, Sec 5.61). Hence, it 
follows from Theorem 6 and Lemma 8 that as m increases, 
the probability of a renewal at mA (for the process associated 
with returns to state $) is r+A/'H. For all states $I and starting 
states s 

-- T'A - lim Prob{a: I(a I s) = mA and S[s, e] = i} 
H m-cm 

= m-+w lim c P(. I s) 
U :  I ( u  I s )=mA,S[s ,u]=+ 

= lim e-m"({a: I(. I s) = mA and S[s,a] = $}I. 
m-+w 

(75) 

Consequently, we have the following counterpart to (26)-(28) 
for acyclic, arithmetic sources. 

Lemma 10: As m increases, the number of ordered pairs of 
states s and strings a with self-information mA starting from 
state s satisfies 

AR 
m-w 3-1 lim e-m"l{(s,a):I(aIs) =mA}l = -. (76) 

Hence 

(77) 
AR 

lim e - m " ~ { ( s , c ) : I ( a ~ s )  < mA}I = 
m-cc %(e" - 1) 

m. 

j = O  

Proof: Equation (76) follows by summing both sides of 
(75) over s and q5. To demonstrate (77), note that 

and (76) implies that 

Equation (77) follows from (81) and (82). We obtain (78) by 
adding together (76) and (77). Equations (79) and (80) follow 
from (82) and the fact that 

0 - A' Re" - 
%(e" - 1 ) 2 '  

Using Lemmas 9 and 10, we have the following analog to 

Theorem 7: Assume that the source is arithmetic with pe- 
riod A and acyclic. As usual, we abbreviate I(u7 I SO) by 1. 
Let 

(14)-( 16). 

C = ("(0, A - 1) + (e" - I)-') . log, e. 

For the three encoding rules we are considering, we have 
the following asymptotic relationships between the number 
of binary digits used to represent U;" and the self-information 
of U;: 

I n n . (  LLz (U;)  - Ilog, e 

AR(K - 1) log, e '(log' n ( 3-1(eA - 1) 
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In n 

In n 

) + C )  + '(1). (85) 
AR(K - 1) log, e ' ( log ,  n ( - 1) 

Substituting (94) into (86) and (88), we find that 

P L Z .  ( + ( L ) ) ( l + o ( l ) )  P L Z  =pLz (95) 

and 

Proo$ As with the proof of Theorem 1, we will focus 
on obtaining the result for the Lempel-Ziv incremental parsing 
rule, and then slightly modify the analysis for LZW and G. 
Define PLZ by 

B~ L~~~~ 9, c ~ z  p ~ z .  merefore, (95) and (96) imply 

cLZ.  ( ; l n ( q ) ( l + o ( l ) )  I 1  (97) 
P L Z  

P L Z  = P LZ e --+ . (86) and 

Expressions (66), (72), (77), and (78) imply that as 7 increases, (eLz log, cLz - .I log, e) . 
P L Z  

RR ARen A' ReR log, e (87) + O(' )  5 P L Z  I x ( ~ A  - 1) + o(1). 5 log, P L Z  + + o(1). (98) 
PLz7-t(eA - 1)' %(eh - 1) 

From (69), (79), and (SO), we find that From (S), (97), and (98), it follows that 

LZ N AzReh 
X ( e A  - 1) 

(,pLZ - JLZ) . e-T = 2 + 41) ( L  (ul ) - Ilog,e) 

(99) 

5 log, and since JLZ - 7 < I 5 JLZ ,  we have that 

h2 ReA A'Re" log, e - 1) . e-' = + o(1). (88) + 2 + 41). X ( e h  - 1 ) 2  
PLZ%(@ - 1) 

Taking the logarithm Of both sides Of (86), we see that as By maximizing the right-hand side of (99) over the range of 
PLZ given in (871, we find that the maximum occurs at one 
of the endpoints of the interval. We have that 

increases, 

(89) log, pLZ - 7 log, e = log2 PLZ. 

Multiplying (86) by (89), we obtain ( L  LZ (ul N ) - I log ,e ) .  

) +e + o(1) 
(pLz log, pLz - ,pLZ log, e) . e-' = PLZ log, PLZ. (90) 

Multiplying both sides of (88) by log, e and adding the 
resulting expression to (9O), we find that as T increases 

(pLz log, pLz - I logz e )  . e-' 

RR(K - 1) log, e 
log' ( %(eh - 1) 

which is equivalent to (83) because I = o(n). 
For LZW, the analogs to (86)-(88) are 

R2 Reh  log, e ~w = ,ow exp(-TW) 
ARK ARKe' = PLz 1°g2 PLz + x ( e A  - 1 ) 2  + o ( l ) .  (91) 

To determine the asymptotic relationship among e-', I ,  
%(eh - 1) + '('1 5 Pw 5 X ( e A  - 1) + 41) 

A'RKe" 
+ 41) N(eA - 11' 

and PLZ, we substitute (86) into (88) and deduce ( - r W p W - ~ ) . e  -rw - - 
, i 

7. PLZ + O(1) - I .  e-' = 0. (92) respectively, and for G, we have that 
Hence, as 7 and I increase, G 

PG = PG exp(-T ) 
I AR(K - 1) AR(K - l)eh 

' = Cn( P L Z l n ( & )  )) + '('>I (93) - 1) f '('1 5 PG 5 

(TGpG - I) . e-TG = 2 + o ( l ) .  

x(eh - + 41) 
and PR(K - 1)e' 

%(eh - 1) 

e-' = (F ln( L)) (1 + o(1)). (94) With these modifications, we can use the steps in the derivation 
0 of (83) to prove (84) and (85). P L Z  
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Given Theorem 7, it is straightforward to find counterparts 
for the remaining results in Sections I1 and 111. We omit the 
details here. 

Finally, we briefly consider the situation in which the set 
of source states is cyclic. Unfortunately, the results are sub- 
stantially more complicated and less insightful than they are 

’ for the acyclic, arithmethic case. Since (75) is the foundation 
for Theorem 7, we will limit our discussion to finding an 
analog for (75) when the set of source states is cyclic. To 
further specify our cyclic source, let D be the maximum 
integer for which the self-information generated by the source 
between consecutive occurrences of any given state is an 
integer multiple of DR. As an example, we consider the 
following: 

Example: Suppose the source has states {0,1,2} and al- 
ways emits a symbol corresponding to the next state. Let 

0.25 0.25 0.5 

(0.5 0.5 0 ) F = 0.25 0.25 0.5 . (100) 

It is straightforward to demonstrate that this source is arith- 
metic with period In2 and the self-information generated 
between consecutive occurrences of any given state is an 
integer multiple of 2 In 2. 

For each starting state s, the set of states can be partitioned 
into 1 < d 5 D categories with the property that state 
.1cI is in category c relative to s, denoted C(c  I s), where 
c E { O , . . - , D  - I}, if and only if the (possibly delayed) 
renewal process for state 11 has renewals at epochs of the 
form m D h  + ch. The counterpart to Theorem 6 is 

Theorem 8: If state 7c) is in category c relative to the starting 
state, and if Jl’), IC > 1 has an arithmetic distribution with 
period D h ,  then for c’ E (0,. . , D - 1) 

lim E[number of renewals at m D h  + c’h] 
m-cc 

Since Lemma 8 continues to be valid, the analog to (75) is 
‘/r+ D R  - = lim Prob{a: I(u I s) = mDh + C A  and 

I m-+m 

S[S,4 = 11 E C ( C  I .)I 
= m - w  lim c P(. I 3 )  

u: l (u l s )=mDA+cA,  S[s,m]=$EC(cls) 

As we indicated earlier, it is possible to use (102) find the 
counterpart of Theorem 7. 
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