An XML Virtual Machine for Distributed Image-Based
Localization for Mobile Robots

E. Menegatti?, E. Mumolo', E. Pagello®, F. Seriani'
! DEEI, Universita’ degli Studi di Trieste,
34127 Trieste, Italy, email: mumolo@univ.trieste.it
2 DEI, Universita’ degli Studi di Padova, Italy

Sommario

In questo articolo descriviamo un sistema di calcolo dis-
tribuito che localizza un robot che si muove autonoma-
mente in un ambiente chiuso. La localizzazione viene
fatta mediante confronto tra immagini omnidirezionali.
Le immagini vengono rappresentate nel dominio spet-
trale ed il confronto é realizzato mediante una norma
Lq. 1l sistema distribuito utilizza XML per descrivere
gli algoritmi che vengono distribuiti attraverso i nodi re-
moti. Il parsing dei documenti viene effettuato con il
parser di Apache Xerces e l'interprete é scritto in Java.
Nell’articolo sono riportati alcuni risultati sperimentali
rappresentativi delle prestazioni del sistema.

Abstract

This paper describes a software system to perform dis-
tributing image-based localization for mobile robots nav-
igation according to the 'Grid Computing’ paradigm.
Omnidirectional images are acquired in the environmen-
t where the robot moves, represented by Fourier signa-
tures and compared to a set of images, acquired previ-
ously in given points of the environment. Comparison
between images is based on L; norm. The distributed
system has been realized by describing the operations
using XML documents distributed among the remote n-
odes with the XML-RPC protocol. An assembly-like
language, called XML-VM, has been developed in XML.
Parsing of the XML documents is based on the parser of
Apache Xerces while the interpret is written in JAVA.
Representative experimental results are reported.

Keywords: Mobile robot, omnidirectional images,
XML, distributed computing, Fork/Join.

1 Introduction

This paper deals with the problem of localizing a mobile
robot by visual landmarks. The localization problem

is clearly one of the most important problems in au-
tonomous mobile robotics, as it is fundamental in tasks
such as navigation and map building. We use a set of
omindirectional images acquired at given points of the
environment as a basis for localization. The localization
process is performed by comparing the current image
viewed by the mobile robot to the pre-acquired refer-
ence images of the set. The best matching image indi-
cates, with a given likelihood, where the robot is located.
Images are represented by Fourier signatures, i.e. the
Fourier transformations of each line of the images. Of
course, omnidirectional represent all the robot view in
one shot; hence, there is no need to rotate the camera.
Moreover, it is straightforward to see that Fourier signa-
tures are invariant to image rotations, so the orientation
of the robot does not need to be taken in consideration
in the matching phase. Finally, representing the image
by Fourier signatures greatly reduces the amount of data
needed to represent the image. Images O; and O; are
compared by means of the distance described in (1).

L-1M-1

D(0i,0;) = Y Y |Fu(k) = Fju(k)] (1)

where Fj; is the module of the Fourier transform of the
t-th row of image O; and k represent frequency.

However, although the amount of data is reduced, the
computations required by (1) can be quite demanding if
the number of reference images is high. For this reason,
a distributed system has been deviced as described in
this paper.

This paper is structured as follows. Section 2 deals
with the state of the art, describing in particular a popu-
lar Grid system and highlighting its positive aspects and
defects. In Section 3 we describe the architecture of the
system. In Section 4 we summarize the XML-VM lan-
guage, while in Section 5 we describe some information
on the parsing and interpretation of a XML-VM pro-
gram. In Section 6 some experimental result are shown.

In Section 7 some final remarks are reported.

2 A distributed system for image
signatures comparison

In the last decade there has been an increasing interest
in the development of systems for distributed comput-
ing aiming at sharing computing resources available on
a large scale. These systems exploit the unused CPU
cycles of a potentially enormous number of computers
available in internet, conveying to a final user a large
computing power at a very low cost. These implemen-
tations originated the computing paradigm known as
”GRID Computing” [1]. The work described in this pa-
per represents a preliminary effort towars the goal of
building a GRID, in the sense that we reduced the num-
ber of involved computers to a smaller number of net-
worked machines.

Generally speaking, the computing environments for
GRID computing are usually very heterogeneous from
an hardware and software point of views; thus the first
problem to be faced is the necessity of developing vir-
tual machines independent from the various platforms.
Of course, the most important characteristics of a vir-
tual machine, which must be considered with care, are
the easiness of use, performance, security and scalability.
One of the currently most popular virtual machines is Ja-
va. In fact, the Java virtual machine has been designed
for running in different computing environments, from
dedicated systems to general purpose machines. Howev-
er, the Java virtual machine does not behave particularly
well against attacks or intrusions. Moreover, the execu-
tion time of a Java process is not deterministic, mainly
because of the memory management.

However, the image-based localization problem is in-
herently real-time, in the sense that the image matching
results should be available within a deadline imposed by
the navigation module. In a GRID framework, dead-
line constraints can be mainly taken into consideration
by balancing the load of the involved machines in or-
der to be sure that a remote method can have a suf-
ficient computing power for its execution, by choosing
a real-time language without garbage collection and by
assuring that the network loading is low, to reduce com-
munication times. In this work, we used a cluster of 16
computers made available for this work from the Par-
allel Programming Lab of the University of Karlsruhe,
Germany. Each machine is equipped with Pentium IIT
biprocessors at 800 MHz, with 512 Mbyte of memory
and running a Linux Operating System. In this work,
the load of the machines were not monitored but we sup-

posed that the load were not so high because the average
number of processes running on the machines were quite
low. For the same reason, and also because the ma-
chines communicate only inside the network, the load of
the network is low. The system was used to experiment
the XML-VM language described below.

In addition to the cluster described above, a machine
located in the Trieste Lab has been used to represent the
robot. The machine used a Pentium IT processor at 400
MHz and runs a Windows 2000 Operating System. The
configuration of the system is described in Fig.1.

Robot (Trieste)

1th
Pentium

16th
Pentium

Figure 1: System architecture

Cluster (Karlsrhue)

Generally speaking, there are two main approaches
for bulding a distributed programming system based on
Java virtual machines [10]. One is to give the program-
mer an unique environment in which the threads are
distributed on the different nodes by the operating sys-
tem. This solution is quite complex to develop, since
many problems arise concerning both implementation
and performance. Projects in this area include the IBM
cluster VM for Java, the Kaffe virtual machine and the
JDSM [9].

Other solutions are based on the development of com-
munication mechanisms such as, for example, message
passing. A typical approach is RMI (Remote Method
Invocation). Other approaches are based on extensions
of Java with parallel programming linguistic constructs.
An example of the latter approach is JavaParty, devel-
oped at the University of Karlsruhe [5]. JavaParty intro-
duces the definition of a remote’ class. A remote class

can be used by all the remote virtual machines of the
distributed system. A remote class can be used like a s-
tandard Java class, but it can interact with other classes
independently to the location. The typical use of Java-
Party is described in Fig.2. More precisely, the main
method, which runs on a given node, creates a num-
ber of threads on the same node. Each of the threads
instantiates an object of a ‘remote’ class using a ‘new’
statement. At this point the object is distributed on a
remote node. A method of the class is then started in
the standard way. The threads are then joined togeth-
er to collect the results. It is worth noting that there
are three ways to distribute the remote objects, name-
ly randomly, at fixed addresses and letting the system
deciding the remote addresses.

Main

Start Threads
Remote Remote
__method method

Join Threads

Figure 2: JavaParty remote method invocation

Of course the main advantage of JavaParty is that a
sequential code can be run in a distributed computing
environment using a few modifications. Let us consid-
er however the speed-up results reported in Fig.3. The
speedup(n) is a function of n, where n is the number of
renote nodes, and it is computed as the ratio between
the execution time of one program on one node and the
execution time of the same program on n nodes. In
this way, speedup(1) is equal to the execution time on
a GRID made by 1 remote node, speedup(2) represents
the increment of the time of a GRID made of 2 remote
nodes, which is ideally twice the previous one, and so
forth. The ideal speedup curve is therefore a 45 degrees
line. In the initial speedup measurements, two programs
have been used: the distributed computation of the first
N Fourier coefficients of the function f(z) = (z + 1)%,
x €]0,2], and the multiplication of two sparse matrices.

The results shown in Fig.3 are far from the theoretical
performances represented by the diamonds curve. This
is mainly because of the thread join operations (the re-

8
Number of nodes

Figure 3: Speed ups measured with JavaParty: in dia-
mond the ideal curve, in triangle the matrix multiplica-
tion, in squares the Fourier benckmark.

mote method running on the more loaded node make
the other threads waiting for its completion), but also
because a method may behave non deterministically and
also due to the distribution mechanism of the methods
on the remote nodes. Even if the loading on the remote
nodes were accurately balanced, it should not be possi-
ble to have a deterministic behaviour. In conclusion, a
real time distributed operation is not possible with Java.
For this reason, a new virtual machine has been devel-
oped. In the future we build an interpret of the virtual
machine using a high level language like C and by dis-
abling all the conditions which can cause non determin-
ism. For now, however, the interpret has been written
in Java. Therefore, the current system may be used only
for comparison of the distribution mechanism based on
XML-RPC with the execution efficiency obtained with
JavaParty.

3 System architecture

The distributed system described in this paper and de-
scribed in Fig.4 is structured in a peer-to-peer style, lim-
iting the tasks of the central node of the system mainly
to the activation of the remote methods, the collection
of the result and the measurements of the performances
of the system.

The central node does not know nearly anything about
what is happening in the remote nodes, where the com-
putation effectively takes place. Each algorithm decides
if and when to call other remote nodes and the method
to execute. On the central node a particular daemon is
running, called 'name resolving daemon’, which knows
what remote nodes are available. When a generic n-
ode ’A’ needs to fork a procedure on a remote node, it

Reso Locato | T
\

Main
Process

Request for
=qa Computmg
Resource

Process

T

Figure 4: Architecture of the distributed system

calls the central node for determining the address of an
available remote node. At this point, node A’ contacts
directly the remote node for sending information on the
distribution of the XML-VM code and its remote execu-
tion; this procedure is executed each time a remote call
is needed. The remote node is therefore informed about
what XML document it has to download and interpret,
and downloads the related code from the central node,
which acts as a Web Server.

Clearly, node A’ must join the conclusion of the re-
mote call by waiting for the return of results. This pro-
cedure is implemented through the use of the linguistic
framework Fork/Join.

The linguistic framework Fork/Join has been intro-
duced by M.Conway [3] and J.Dennis [4]. Starting from
the initial definition, many programming languages used
the Fork/Join concept in several ways. The Fork/Join
operations has been largely studied from a queueing
point of view [2, 8, 7]. Fork generates a concurrent
thread of execution, while the Join waits for termination;
in this way it is possible to build concurrent processes.
In Fig.5 a system of concurrent processes is shown using
an interpretation of the Fork operation based on a data
type defined by the language, process, which is used as
an operand of Join to specify the process to synchro-
nize with. A similar approach for the implementation of
Fork/Join has been used in this work.

4 The language XML-VM

In this Section we will summarize the main characteris-
tics of the XML-VM language. First of all, it is worth
noting that two sets of memory are generated, declared
in Java as Array of Object, which simulate registry and
a virtual disk available to the virtual machine. The reg-
istry is constituted by 32 cells numbered from 0 to 31,

p1, p2 : process;
begin

'Y
p1 fork sub1;
p2 fork sub2;

jOIn p1;
Jjoin p2;
G:

end;

procedure sub1;
begin

D;

=X
end;

procedure sub2;
begin
E

end; ‘
—

Figure 5: Example of a Fork/Join concurrent processes
with a predefined data type

while the virtual disk is constituted by 10000 blocks of
data, numbered from 0 to 9999.

All the data related operations take place on the reg-
isters. The numbers must be stored in two data cells of
registry. There are no variables, and every operation
must be performed specifying the involving register’s
cells; from this point of view, XML-VM is an assembler-
like language. The storage of data on the virtual disk is
performed exclusively through the STORE instruction.
Instead, the LOAD instruction is the only instruction
that allows to copy the content of the cells of the virtual
disk into the registers. Ten different data types are im-
plemented in the language; nine of them follow the Java
data types: int, long, short, byte, float, double, boolean,
char and string while the tenth data type, defined in
XML-VM as ”index”, represents a pointer to another
data cell in the virtual disk or in a register. The index
data type can be used by the load, store and procedure
call operations; moreover, this type is fundamental for
parameter passing to the remote methods. The syntax
of the language exploits the use of tags attributes as in-
tegrating parts of the instructions, while nesting of tags
is rare. This decision was taken in order to facilitate the
writing of XML-VM code. A simplified description of
the instructions of XML-VM, grouped by type, is given
below.

4.1

e <ADD target="rl” first="r2" second="r3"/>

Mathematical tags

e <SUB target="rl” first="r2" second="r3"/>

The Tags execute the sum (subtraction) of the registers
reported as arguments, according to the involved data

types.
e <CONV register="r1" target="r2" to="type” />

The Tag executes the conversion of a data contained in
one register to the specified type. It reports conversion
errors: if it is asked to convert a String in a number, the
execution is interrupted and an error is notified.

e <DIV first="rl”
rest="r4" />

second="r2” result="r3"

This Tag executes the division between two numbers; if
the two numbers are integer, the register specified by the
attribute "rest” contains the rest of the division.

e <ELEV target="rl"
exponent="r3" />

register="r2"

The Tag performs the exponentiation operation regis-
ter**exponent. It reports errors on the types of the in-
volved data: if one of the two operators does not contain
a number, but, for example, a String, the execution is
interrupted and an error is notified.

e <MUL target="rl" first="r2" second= "r3" />

The Tag executes the multiplication between two num-
bers. It reports errors on the types of the involved data.

e <FFT from="rl" to="r2"/>

This Tag perform a Fourier transform.

4.2 Data movement tags
e <LOAD register="r1” index="m1” />

The Tag loads the specified register with the content of
the specified cell of the virtual disk.

e <MOVE target="r1” source="r2"/>
The Tag moves the source to the target.

e <STORE
</STORE>

This Tag stores in the ”m1” location of the virtual disk,
the data whose value and data type are specified respec-
tively in the field ”value” and by the attribute ”type”.

e <LOADIMAGE type="xxx" index="x" to="y” />

This tag reads the image whise name is pointed to by
the ”x” cell and writes its content in the virtual disk.
The image can be ”fft” or ”ppm” depending on the type
of data, namely, a Fourier signature file or an image file.

e <STOREIMAGE
from="y” />

to="ml” type="type’> ’value’

b))

type="xxx" index="x

This tag performs the following operations: the image
of the type indicated (fft or ppm as before) is written
synchronously on the remote disk. The name of the
remote file is pointed by to the ”x” cell and the pointer to
the matrix data is stored in the ”x” cell. On the remote
side, a daemon server waits for this type of requests.

4.3 Logical tags
e <CMP first="rl” second="r2"/>
The Tag compares first with second registers.
e <JEQ to="label” />
The Tag performs a jump if equal.
e <JGR to="label” />
The Tag performs a jump if greater.
e <JNEQ to="label” />
The Tag performs a jump if not equal.
e <JNGR to="label” />

The Tag performs a jump if not greater.

4.4 Procedure call tags

e <CALL ip="IPINDEX:NPORT”
file="Path/name.xml” name="name” to="mj-
m7”> <PARAM> r2 </PARAM> <PARAM>
ml5 </PARAM> ... </CALL>

The Tag executes the remote synchronous call: the call-
ing node is blocked until the results from the remote n-
ode are received. The attributes IP, Path, file aim at ad-
dressing the remote procedure. The arguments indicat-
ed in the <PARAM?> section are passed through XML-
RPC to the remote node, while the "to=" attribute in-
dicates where the results from the remote procedure are
stored.

<FORK id="N02” file="Path/name.xml”
name="nome” to="r5-r7” clone="m5-m7” />

The Tag executes the remote asynchronous call. The
attribute ”id=" selects the remote node, the attributes
”file”, "name” addresses the procedure to execute, the
attribute “to=" indicated where the results are stored
and the ”clone” field indicate the arguments to pass to
the remote node.

e <JOIN to="r5-r7"/>

The Tag executes the synchronization of two processes.
The calling procedures waits until the registers indicated
in the ”to” attributes contain results.

e <LOCALCALL name="name” to="mb5-m7”>
<PARAM> r2 </PARAM> <PARAM> ml5
</PARAM> ... </LOCALCALL>

The Tag executes the local call.
e <RETURN from="m5-m7”/>

The Tag represents the term of one procedure recalled
from a CALL, a FORK or from a LOCALCALL.

4.5 Miscellanea tags
e <LABEL name="name” />

The Tag marks the position through a label, that can be
recalled from a Tag of conditioned jump.

° <QUIT/>
The Tag marks the end of a document XML-VM.
e <START/>

The Tag marks the begin of a document XML-VM
”stand-alone”.

e <STRUCT/>

This Tag marks the beginning of a document XML-VM
not ”stand-alone”; this means that the document XML-
VM that contains this Tag can be used only by another
document through the remote calls.

5 Parsing and interpretation

The parser performs a complete analysis of the XML-
VM document, expanding all the tags, attributes, values.
One of the most complete and used XML parser is the
Apache Xerces XML Parser. Xerces supports SAX 1.0
and 2.0; SAX stands for Simple Api for XML. Once we
completed the first version of XML-VM virtual machine,
embedding the XML-RPC protocol for communication
between remote nodes, we noticed a decrease of perfor-
mance due to the slowness of the XML parser. In order
to overcome this overhead we decided to use the same
parser chosen by the developers of Apache XML-RPC,
that is MinML, a light and fast SAX 1.0 parser. MinML
is very fast and it has been integrated in our system. The
high performance obtained with MinML is mainly due to
the fact that the parser does not process the Data Type
Definition (DTD). The interpreter of XML-VM language
has been written in Java for portability reasons; the in-
terpreter executes the action associated to the XML tags
as they are analyzed by the parser. A pseudo-code of the
interpreter is outlined in the Appendix. Let us consider
the following steps needed to operate the system: 1) it is
necessary to install on each machine the XML-VM virtu-
al machine; the virtual machine is started and works as
a service, waiting for remote requests. 2) on the central
node, we install the same XML-VM virtual machine and
the name resolving daemon used by remote nodes 3) the
sources of the algorithms to be executed are published
through a web server reachable by all the nodes 4) now
we are ready to launch the distributed execution of the
program.

The pseudo-code of the XML-VM interpreter is re-
ported below.

public Object startExecution (0Object[] arg,
xmlvmMachine Machine) throws Exception
{
Initialize XML-VM stack, registers,
virtual disk;
Verify the XML document;
try {
FOR(all the XML-VM tags) {
If (Tag in [ADD, LOAD, MOV, STORE, SUB,
MUL, DIV, COMP, LOCALCALL, CALL,
FORK, JOIN, CONV, ELEV, OPER, FFT,
LOADIMAGE, STOREIMAGE, RANDOM])
Then {
Call the related procedure;
X
else {
Process the other instructions;
}
}
} catch(Exception e)
If (non ending with QUIT)
Then error;
Log the execution times;

6 Experimental results

The goal of the experimental analysis is to study the
performance of the Grid computing system presented in
this paper. In general, the efficiency of a distributed
application is related to various factors, including: the
network speed, the load of the remote nodes, the homo-
geneity of the machines which participate to the Grid,
the degree of parallelism of the algorithm, the protocol
used for method distribution.

The first benchmark used to test XML-VM is the
Fourier benchmark. The results obtained with XML-
VM are slightly better than that obtained with Java-
Party, reported in Fig.3 with squares. XML-VM was
then used to realize the image comparison system. The
XML document interpreted on the local machine is sum-
marized below.

<?xml version=’1.0’7>

<XMLVM>

<START>

<!-- Initialization tags —-—>

<LOADIMAGE type="ppm" index="10" to="5" />
<LOAD register="r1" index="5"/>

<FFT from="r1" to "r2"/>

<STOREIMAGE type="fft" index="11" from="r2"/>
<FORK id="NO1"

file="http://140.105.50.110:80/Texel.xml"
name=Texel" to "m8[m7]" clone="m9[m6]"/>

<FORK id="N16"
file="http://140.105.50.110:80/Texel.xml"

name=Texel" to "m8[m7]" clone="m9[m6]"/>

<JOIN topointed="mb5[m4]"/>

<!-- next tags extract from the output cells
best images with related distances -->

<!-- other tags sort the images with
increasing distances -->

<QUIT/>

</XMLVM>

Clearly, the role of Fork is to start a section of the al-
gorithm, in parallel to other sections, on a remote node
whose address is chosen in a suitable manner.

The acquired image is first represented as Fourier sig-
natures with the tag

<FFT from="rl1" to "r2"/>

and then is transmitted to the remote cluster where it
will appear as a shared file. The writing is synchronous,
so that the image comparisons which are performed
thereafter can be sure to use a stable image. The FORK
tags distribute the comparison tasks on the remote n-
odes. The cluster nodes access, through the shared disk,
all the reference images previously acquired and the un-
known image, all of them are given as Fourier signatures.
The method ”Texel.xml” performs a small number of
comparisons, from 3 to 9. Since sixteen remote meth-
ods are distributed, this corresponds to 48 to 144 image
comparisons.

The algorithm which runs on each remote node is de-
scribed below in XML-VM:

<?xml version=’1.0’7>

<XMLVM>

<STRUCT/>

<LABEL name="Texel" />

<!-- initialization tags -->

<LOADIMAGE type="fft" index="13" to "4">
<!--the following tags compute distance -->
<!--as indicated as follows in pseudocode-->

<!-- For the i-th reference image, -—>
<|-- <LOADIMAGE i-th/> -—>
<l-- For each row -—>
<l-- For each column -—>
<l-- Accumulate distance -—>

<RETURN results/>

<QUIT/>
</XMLVM>

The function of a Fork instruction is similar to the
function of a For instruction, such that simply varying
the value of the constants (number to add and workload
for node) it automatically varies also the number of calls
and the parameters passed to the remote node. Clear-
ly, the computing time is dependent on the number of
machines used in parallel for the elaboration of the al-
gorithm. What it is expected is an hyperbolic behavior,
since the T(n) function should be of the type 1/n, where
n is the number of machines involved in the distributed
computation. The measured values are shown in Fig. 6
and Fig. 7. In Fig. 6, the absolute execution time versus
the number of remote nodes is shown.

N
3

T
—*

Execution time [s]

8
Number of nodes

Figure 6: Absolute time versus number of nodes for the
comparison of 48, 96 and 144 images

In Fig. 6, the computations with 3, 6 and 9 image
per remote method ” Texel.xml” is indicated with points,
triangles and squares respectively. As it can be observed,
the experimental measurements of Fig. 6 confirm the
expected theoretical results: the absolute time versus the
number of machines follows a hyperbolic curve. With 16
nodes, the comparison absolute time is approximately
2, 2.5 and 4 seconds for 48, 96 and 144 comparisons
respectively. In Fig.7 the speedups related to the XML
system are shown.

Again, with dots, triangles and squares the results per-
taining to 48, 96 and 144 total comparisons respectively
are represented. The last picture gives rise to several
comments. First of all the results for a different number
of comparisons, mainly for 96 and 144 images, are very
irregular. Second, it appears that in same case, for ex-
ample with four nodes, the speedup is greater than the
ideal curve. The irregularity of the results are due to
the different loading factor of all the nodes but also for
another reason, that is for caching. In fact, in the first

8
Number of nodes

Figure 7: Speedups versus the number of remote nodes

run the first machine have to load all the required ref-
erence images from the disk, thus requiring a high num-
ber of disk I/O. If the number of nodes increases, some
images are already loaded in the system and threfore
the computation time is reduced, leading to a speed-up
greater than the ideal one, which is based on the first
run, which comprises all the I/O requests. As a second
remark, slower machines in the GRID quickly lead to a
performance decrement of the whole system down to the
speed of the slower machines.

7 Final remarks and conclusion

In this paper we dealt with the problem of designing
and developing an efficient architecture based on XML
for realizing a distributed image-based localization for
mobile robots based on the Grid approach. In this work
we use XML for describing an algorithm. By means of
XML it is possible to realize an efficient Grid system; the
distribution of the algorithms, which is done by means
of HTTP protocols, is very fast, the code execution is
quickly performed with an interpreter which was writ-
ten in JAVA, the scalability of the system is realized
efficiently by means of the name resolving daemon. Due
to these reasons, the system performance compare very
favorably with other solutions based on the distribution
of Java code [6]. An XML-VM language has been devel-
oped in order to describe algorithms, and an XML-VM
interpreter has been written in order to execute these
algorithms. Each remote machine runs locally the pars-
er and the interpreter. Many problems are still open.
For example, the distribution of the workload, which is
related to the choice of the nodes where the tasks are dis-
tributed, has not been considered. Another open aspect
is the fault tolerance of the system. Similarly, we did
not consider the problems related to the programming

of complex algorithms; this last problem can be mitigat-
ed by the development of a compiler from a high-level
language to XML-VM.

Acknowledge

The authors wish to thank Dr. Bernhard Haumacher of
the Parallel Programming Lab of the University of Karl-
sruhe for making available to us the cluster of machines
used for implementing the system.

References

[1] C. E. Catlett, J. Toole, ”Testbeds: From Research
to Infrastructure”, in ”The Grid: Blueprint for a
New Computing Infrastructure,” Ian Foster and Carl
Kesselman, ed., Morgan Kaufmann, August 1998.

[2] Ray Jinzhu Chen, ”A Hybrid Solution of Fork/Join
Synchronization in Parallel Queues”, IEEE Trans-
actions on Parallel and Distributed Systems 12(8),
August 2001

[3] M Conway, ”Multiprocessing system design”, Proc.
Of the AFIPS Fall Computer Conf., 1963

[4] J.G.Dennis, E.C.Van Horn, ”Programming seman-
tics for multiprogramming computations”, Commu-
nications of ACM, March 1966

[5] http://www.ipd.uka.de/JavaParty /features.html

[6] Doug Lea, ”A Java Fork/Join Framework”, ACM
Java Grande 2000 Conference, June 3-5 2000

[7] Y.C.Liu, H.G.Peros, ”A Decomposition Procedure
for the Analysis of a Closed Fork/Join Queuing Sys-
tem”, IEEE Transactions on Computers, vol.40, n.3,
march 1991

[8] R.Nelson, A.N.Tantawi, ”Approximate analysis of
Fork/Join Synchronization in Parallel Queues”,
IEEE Transactions on Computers, vol37, n.6, June
1988

[9] Y.Sohda, H.Nakada, S.Matsuoka, ”Implementation
of a Portable Ssoftware DSM in Java”, ACM Java-
Grande Int. Conference, June 2001

[10] M.Surdeanu, D.Moldovan, ”Design and Perfor-
mance Analysis of a Distributed Java Virtual Ma-
chine” | IEEE Transactions on Parallel and Distribut-
ed Systems, Vol.13, N.6, June 2002

