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Abstract

This paper presents a system designed to cooperatively
track and share the information about moving objects using
a multi-robot team. Every robot of the team is fitted with a
different omnidirectional vision system running at different
frame rates. The information gathered from every robot is
broadcast to all the other robots and every robot fuses its
own measurements with the information received from the
teammates, building its own “vision of the world”. The co-
operation of the vision sensors enhances the capabilities of
the single vision sensor. This work was implemented in the
RoboCup domain, using our team of heterogeneous robot,
but the approach is very general and can be used in any
application where a team of robot has to track multiple ob-
jects. The system is designed to work with heterogeneous
vision systems both in the camera design and in computa-
tional resources. Experiments in real game scenarios are
presented.

1 Introduction

To perform a task, an agent needs as much information
as possible about the environment. Unfortunately, every
robotic agent or human agent, has a limited sensorial hori-
zon, i.e. it can perceive the environment up to a certain limit
and beyond that limit it can only make hypothesis. If the
environment is static the agent can analyse the environment
by parts and store in a sort of memory the acquired informa-
tion [6]. If the environment is dynamic, this approach does
not work anymore, because the information that can be re-
trieved in the memory of the agent is not up-to-date. This
is one of the reasons why in dynamic environments mobile

Figure 1: A picture taken during the laboratory experiments
to test the Omnidirectional Distributed Vision System.

robots are more and more fitted with omnidirectional vision
systems [15]. These systems provide in one shot a com-
plete view of the surrounding of the robot. Nevertheless, in
highly dynamic environment, as the RoboCup soccer fields,
this is not enough. In fact, omnidirectional vision sensors
solve the problem of sensing at once the surrounding of
the robot, but does not solve the problem of perceiving oc-
cluded objects or very distant objects1. If the robot is part of
a multi-robot team, the sensorial horizon of the single robot
can be extended by using the information perceived by the
teammates.

The work presented in this paper consists in the imple-
mentation of anOmnidirectional Distributed Vision Sys-
tem (ODVS). The purpose of this ODVS is to track mov-
ing objects in a highly dynamic environment by sharing the

1Note that usually, the effective range for omnidirectional sensors is
shorter then for perspective cameras due to the lower resolution.
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Figure 2: The reference frame of the single robotx′y′ and
the common reference frame of the robotsXY , i.e. the
reference frame of the field of play. The ellipse represents
the distribution of probability of the single measurement.

information gathered by every single robot. The testbed
we choose is the Middle-Size competition of RoboCup2.
The amount of information shared between the robots of
our team increased year after year. Step by step, we in-
troduced information sharing for cooperation, planning and
dynamic role assignment [11]. With this work, we intro-
duce information-sharing also in the sensing process. This
work was inspired by previous works on cooperative sens-
ing, mainly by the works of Stroupe et al. [14] (that used
perspective cameras) and Gutmann et al. [2] (that used per-
spective cameras and laser range finders). Beside the fact of
using omnidirectional vision systems, the major extensions
of our work with respect to the work of Stroupe are that: we
modified her approach in order to account for observations
made at different instants in time and we took into account
the speed of the objects to be tracked. With respect to the
work presented in [2], the biggest difference is that they
use an external computer running what they called aGlobal
Sensor Integrator(GSI). This GSI receives the observations
made by the different robots, integrates them elaborating a
merged vision of the world and send it back to every single
robot. Every single robot uses the information received by
the Global Sensor Integrator only to locate objects out of its
field of view. On the contrary in our system, every robot
is fusing, without the need of an external computer, the in-
formation coming from the teammates. At the same time,
these measures are used to improve the measures made by
the robot itself.

The Omnidirectional Distributed Vision Systems, pro-
posed in this paper, could be applied in more general situa-
tions than soccer robotics, for instance in systems of surveil-
lance or intelligent space applications. Every time the ap-
plication requires the monitoring of a large area that cannot
be framed in the field of view of a single sensor, the cooper-

2URL: http://www.robocup.org

Figure 3: An omnidirectional image processed by the Vi-
sion Agent of the perception module. Note the ball has been
detected.

ation of different sensors becomes extremely useful. Some
examples are: the work of Ishiguro in which a Distributed
Vision System composed of perspective cameras is able to
drive a robot through a toy-scale model of a town [3], or the
work of Nakazawa where multiple perspective cameras can
track people moving from one room to another [10], or the
work of Lee and Hashimoto in which the Distributed Vi-
sion System is able to support the activity of robot and hu-
mans [5]. Another interesting work on Distributed Vision
System is the work of Ishiguro [13]. Differently from our
approach, the problem there is to solve the N-stereo corre-
spondence problem with syncronised homogeneous sensors
at precisely known locations and orientations. We are ex-
perimenting with Omnidirectional Distributed Vision Sys-
tems also within other projects. For instance, we are build-
ing an ODVS composed of a network of omnidirectional
vision systems able to autonomously learn how to control a
mobile service robot and drive it from the field of view of
one sensor to the field of view of next sensor [9].

This paper is organised as follows: in Section 2 we ex-
plain how the omnidirectional images are processed by the
perception module on board of the single robot and we il-
lustrate how we calculated the variance associated to every
measure. In Section 3, we explain how different measures
are fused to obtain a more accurate estimation for the ob-
ject position and we detail the Kalman filtering technique
adopted. In Section 3.1, we highlight the problems that need
to be solved when fusing informations coming from differ-
ent robots. In Section 4, the realistic experiments performed
on the field of play with the real robots are presented.

2 Single Sensor Observation

Every robot of the team is fitted with a catadioptric omni-
directional vision system [4]. Every omnidirectional sensor
mounts a mirror with a different profile especially tailored
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Figure 4: A sketch of thePerception Moduleinside every
single robot. On the right the two graphical representation
of the information stored in theScene Module(top) and in
theDistributed Vision Module(bottom).

for the task of the robot [7, 8]. The omnidirectional vision
sensor is calibrated in order to be able to transform posi-
tions in the image to positions in the real world. The in-
stantaneous positions of the objects to be tracked, relative
to the robot’s frame of reference, is determined assuming
the objects lie on the floor. In Fig. 4, we sketched thePer-
ception Module implemented inside our robots. The om-
nidirectional image is the input, on the left, of the image
processing module, calledVA Module (Vision Agent Mod-
ule). The result of the image processing is sent to the so
calledScene Module. Here is stored a description of the
scene (i.e. the position of the objects of interest) as seen
from the sensor of the robot (see radar-like image on the
right). The measurements on the positions of the objects
are then passed to theDistributed Vision Module (DV),
discussed in detail in Section 3, and broadcast to the other
robots.

A two dimensional Gaussian distribution is associated to
every measurement, see Fig. 2. The centroid of the Gaus-
sian is located at the estimated object position. The widths
of the Gaussian along the principal axes (σr, σθ) correspond
to the uncertainty of the observation along those axes. The
height of the Gaussian at a certain point represents the prob-
ability that the object is actually located at that point given
that measurement. Every measure is made in the reference
frame of the robot and is then transformed in the frame of
reference of the field of play. This assumes that the robot
perfectly knows its pose in the environment while it moves
(i.e. in the field of play). The self-localisation algorithm
used was developed within our team of RoboCup [12]. Due
to the robustness of the self-localisation algorithm, the as-
sumption of an error free localisation is sensible, even when
the robots move in the field of play. The remaining localisa-
tion error is taken into account by overestimating the error
associated to the single measurements. We determined ex-

Figure 5: The plot of the measured variances for Robot 1
in the measurements of the distance object-robot vs. the
different distances (in mm).

perimentally the width of the Gaussian along the two major
axes, i.e. along the radial direction robot-object (i.e.σr)
and along the line orthogonal to this direction (i.e.σθ). We
placed one of the object to the tracked3 at different known
distances from the robot and, for every position, we calcu-
lated 1000 times from 1000 omnidirectional images the dis-
tance robot-ball and the azimuth of the ball. We extracted
the varianceσr for every set of 1000 measures. The plot
representing the measured varianceσr for Robot 1 is dis-
played in Fig. 5. The data of the variance have been inter-
polated with the exponential curve of Eq. 1 and we got a
function to associate to every measurement the correct vari-
ance along the radial axis4. This procedure was repeated for
every different robot, because they mount heterogeneous vi-
sion systems and they provide measurements with different
accuracies.

y(x) = kxa + q (1)

Only the plot of the data about the distance object-robot
is displayed, because the variance on the azimuth resulted to
be so small that one could assume a zero error on azimuth.
The zero value is not a valid one, because this would result
in a degenerated Gaussian distribution, so we assumed a
certain non-zero variance increasing with the distance from
the robot. This will also take into account the errors intro-
duced by a non-perfect localisation of the robot.

One has to remember the objects observed by the robots
are moving, they are not static. We need to associate at ev-
ery measurement a precise time stamp indicating when the
measurement was made. One cannot make any assumption
on the time interval between two measurements. In fact, we
are working with robots with very different computational
power, working at different frame rates. So, we associate to

3In the first experiments, this was the orange soccer ball of Fig. 1.
4For Robot 1 the constants of Eq. 1 arek = 0.0000009, a = 2.52,

q = 90mm.
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every measurement the time stamp of the omnidirectional
image processed to extract that measurement. One cannot
make any assumption also for measurements made by the
same robot. In fact the measurements are not granted to ar-
rive at regular interval. This is because, to fully exploit the
low computational resources of our robots, we use a thread-
scheduling system which allows a certain flexibility to the
execution time of the threads [1], so the measurements are
made available at different time intervals. The measurement
made on the position and speed of one particular object are
not considered independent, they are fused in a track that is
used to increase the robustness of the observations.

3 Fusing Multiple Observations

The measures of the position and speed of the tracked ob-
jects can come from two sources: the repeated observations
of the single robot or the observations of other robots. In our
system, all these information are processed in the same way.
In the work of Stroupe et al. [14], they do not take into ac-
count the dynamics of the objects to be tracked and they as-
sume that the objects are instantaneously steady. They use a
minimal variance estimation approach to fuse the measure-
ments of the different robots assuming the measurements
are made at the same instant. In the real world, measure-
ments of different robots are never made at the same time
and because the objects are moving, every robot will mea-
sure the object when it is in a different position. Stroupe
solved the problem by throwing away measurements to dis-
tant in time to be compatible. On the contrary, the solution
we adopted is similar to the one proposed in [2], with the
main difference that they used the externalGlobal Sensor
Integrator to fuse the information, while in our implemen-
tation, every robot is fusing the received measures. Every
time a new measurement is received, independently if it
comes from the robot it-self or from another robot, this is
compared with the existing tracks of the objects. If this is
compatible with an existing track, the measurement is added
to the track, otherwise a new track is initialised. In order to
test the compatibility of a new measurement with a track,
because the objects are moving, we need to predict the po-
sition of the track at the instant in which was taken the new
measurement. The prediction is made using the last posi-
tion registered for the track and the speed associated to it.
The objects are assumed to move at constant speed from
the last observed position. The state of an object at the time
tk is described by a Gaussian distribution with mean~x and
varianceΣ~x.

~x(tk|tk) =
(
x
y

)
Σ~x(tk|tk) =

(
σr 0
0 σϑ

)
(2)

So, given the Gaussian variable~x(tk|tk) representing the

estimate of the object’s position at the instanttk given ob-
servations up to the instanttk, when we receive a new obser-
vation~y(tk+1) at the instanttk+1, we can predict the state
of the system at the instanttk+1 with Eq. 3 and Eq. 4:

~x(tk+1|tk) = ~x(tk|tk) + ~v(tk+1 − tk) (3)

Σ~x(tk+1|tk) = F (tk+1 − tk)Σ~x(tk|tk)F (tk+1 − tk)T (4)

whereF is a matrix whose coefficients depend on the
time interval between the two measurements. We consider
that the new measure is compatible with the track if the
measure is within one standard deviation from the mean~x
of the track. As we said, if the measurement is not compat-
ible, a new track is initialised, otherwise we fuse it with the
track using the formulas of Eq. 5 for the mean and of Eq. 6
for the covariance (Fig. 6).

~x(tk+1|tk+1) = ~x(tk+1|tk) + Σ~x(tk+1|tk)

[Σ~x(tk+1|tk) + Σ~y(tk+1)]−1(~y(tk+1)− ~x(tk+1|tk))
(5)

Σ~xk+1|tk+1) = Σ~x(tk+1|tk) − Σ~x(tk+1|tk)

[Σ~x(tk+1|tk) + Σ~y(tk+1)]−1Σ~x(tk+1|tk)

(6)

This is the classical Kalman filtering in which every new
data that is coming can reduce the variance of the Gaus-
sian distribution, reducing the uncertainty on the position
of the object, as detailed in [14]. In the classical Kalman
filtering approach is implicit that measurements arrive one
after the other. In Section 3.1, we will see how we modi-
fied this classical approach to take into account the fact that
measurements come from different robots and that we want
to be able to accept measurements older than the last one
(usually, only newer measurements are taken in account).

When a track is not updated, the associated variance in-
creases in time. When the variance of a track is too high,
the track is considered no longer valid and it is deleted. This
means that, if none of the robot can see the tracked object,
the system presumes the object is still in the last position
where it was seen, but the uncertainty on its position in-
creases. When the uncertainty on the position grows over
a certain threshold the information carried by the track is
considered useless and the old track is deleted.

This approach also allows to store multiple tracks for a
single object, in other words to have multi-modal distribu-
tions for every object. The real position of the object is
decided to be the one with smallest variance, i.e. the one
with smaller uncertainty. Let us see how this strategy works
in a real game scenario. During a match, it may happen
that the ball is kidnapped by the referee, e.g. in ball-stuck
situations. The referee lifts the ball from the field of play,
shielding it to the view of the robots and put the ball down
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Figure 6: A conceptual sketch of the fusion of measures
coming from different robot in the Distributed Vision Mod-
ule (DV) of Robot1. Note that Robot 1 is measuring the
object s position only 4 times in this time interval and the
object’s position is updated 11 times.

again in a different point. In this case the track of the ball
behaves as follow: when the ball is lifted from ground, the
ball track is no longer updated, its variance starts to grow,
but this is the only track of the ball available to the robot, so
the robot will move toward it. When the ball is again put on
the floor, a second track is initialised. The variance of this
new track is smaller than the previous one. The new track
having smaller variance is chosen as the true position of the
ball, see Fig. 10. Once the variance of the old track grows
over the set threshold, the track is deleted5.

This system is designed to be totally independent from
the number of robot active on the field. Every robot uses all
the measurement available, independently from the number
of the teammates. This is intended in order to be robust to
failures of the single robots. Again, this is the reason why
every robot is equal to the others. If we had a master or an
external computer governing the fusion of the information a
failure on this master will cause the collapse of all the sys-
tem, in this case we implemented a real distributed vision
system.

3.1 Fusing Observations from Different
Robots

Fig. 6 shows the process of fusing measurements coming
from different robots. Every time that the DV Module (Dis-
tributed Vision Module) of Robot 1 receives a new measure
from Robot 2 or Robot 3, it fuses this measure with its own

5If there were two balls in the field of play, every robot will consider
only the ball with the smallest variance, so probably every robot will move
toward the closest ball. This never happens in real game situations.

Figure 7: A conceptual time diagram showing the process
of fusion of measures older than the last one received.

measure. In Fig. 6, Robot 1 is measuring the position of
the ball only 4 times, but the ball position estimate is up-
dated 11 times in its DV Module. This means the robot has
a more reliable world model, but when fusing measurement
from different robots, there are several problems to solve.

The first problem is that, in order to combine the differ-
ent observations, all the robot must share the same spatio-
temporal frame of reference. In fact, it is not enough to be
able to refer all the measurement made in the frame of ref-
erence of the single robot to the common frame of reference
of the field, the robots need also to be able to refer the time
stamp associated to every measurement to a common frame
of reference in time. In other words, the internal clock of the
robots need to be precisely synchronised in order to know
the time relation between the different measurements. The
problem of the synchronisation of the internal clocks of the
single robots was solved using the Network Time Protocol,
developed by the Network Time Protocol Project6. Anyone
of the robot can act as a server for synchronising the clocks
of the other.

A second problem is that when an agent is cooperating
with other agents, it needs to trust the other agents. The
amount of confidence in the measurements of the others in-
fluences the amount of cooperation. In the previous section,
we said the robot processes in the same way the measure-
ments coming from the internal Scene Module and the mea-
surements coming from the other robots. Actually, this is
not totally true. Every robot weights more its own measure-
ments, i.e. it is more confident on its measurements than on
measurements received by the others. This is done by dub-
bing the variances associated to the measurements received
from the teammates. From Eq. 5 follows, that in the com-
bined estimation, the weight of the internal measurement is
bigger than the ones of the external measurements.

A third problem emerging when working with heteroge-
neous vision system running at different speeds is that the

6URL: http://www.eecis.udel.edu/∼ntp
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Figure 8: A screenshot of the Omnidirectional Distributed
Vision System visualisation software with two robots steady
and the ball moving.

measurements arrives at different instants in time. We al-
ready explained the solution adopted to project in the future
the state of the system in order to combine the old state of
the system with the new observations, but sometimes we
need to project the state of the system in the past. This
mights occur when, the robot receives from another robot a
measurement older than its own measurement. This older
measurement cannot just be thrown away. Many times, it
is carrying useful information even if it is old. For a prac-
tical example, consider the situation of a robot with a very
slow vision system, but close to the object, which reports
very accurate measurements. These measures can improve
the estimation of a robot with a faster, but imprecise, vision
system.

The solution we adopted is conceptually sketched in
Fig. 7. Robot 1 makes two measurements at the instants
tA andtB , these measurements are respectively available at
the instantst1 andt2 (the boxes in Fig. 7 represent the im-
age processing time required by the robot). So, at the instant
t2 the state of the system is estimated by the DV Module of
Robot 1, using the measurements made attA and tB . At
the instantt3 the DV Module of Robot 1 receives a measure
from Robot 2 referring to an instanttC precedingtB . In
order to take into account this new measurement, the DV
module retrieves the state of the system at the instanttA, re-
orders the available measures and evolves again the system
state fromtA fusing, in the correct time sequence, all the
received measures.

4 Experiments

We performed many preliminary experiments on this sys-
tem, but we did not yet test it in an official competition. We
carried out extensive experiments on the simulator of our
RoboCup team [12]. In this simulator is possible to simu-
late also the vision process of the robots, adding a custom
percentage of random noise. These tests were very valu-

Figure 9: In this experiment Robot 2 cannot see the ball.
Nevertheless, it is able to locate it using the measures re-
ceived by Robot 1.

able in the debugging stage, but were not enough to test
the robustness of the system in real game situations. So,
the experiments presented in Fig. 8, Fig. 9 and Fig. 10, are
performed with the real robots reproducing real games situ-
ations in our laboratory.

In the first experiment depicted in Fig. 8, two robots are
steady at the centre of the field, like in Fig. 1, and the ball
is passing between them. Every one of the two robot is
measuring the ball position, sending to the other these mea-
sures and fusing the measures received by the teammate. In
Fig. 8, the red squares are the measurements made by Robot
1, the black squares are the measurements made by Robot 2
and the blue crosses are the positions of the ball calculated
for Robot 2 taking into account the measurements made by
Robot 1. Note that the frequencies of the measurements
made by the two robots are different: Robot 1 is measuring
at 16.5 fps (frame per second), Robot 2 is measuring at 25
fps.

In a second experiment, Fig. 9, one robot (Robot 2) can-
not see the ball, because the colour threshold of its vision
system for ball recognition were expressly set to wrong val-
ues. The other colour threshold are set correctly, so the
robot is able to self-localise. A second robot (Robot 1)
can see the ball and sends its measures to Robot 2 (the red
squares in Fig. 9). Robot 2 is able to correctly estimate the
position of the ball using the measures of Robot 1 (the blue
crosses in Fig. 9).

The third experiment tests the robustness of the proposed
system to theball kidnappingdescribed in Section 3. In
this experiment, the two robots are at the two sides of the
field of play (approximately 6m apart) and the ball iskid-
nappedfrom the position on the left, where it was steady,
to a position on the right where it starts to move. Note that
the DV Module considers the new ball position only after
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Figure 10: In this experiment the ball is kidnapped from the
position on the left, where it was steady to a position on the
right where it starts to move.

it received 4 measures (i.e. the blue crosses appears on the
right-side only after 4 measurements). This is the time in-
terval needed by the variance of the old track to grow over
the variance associated to the new track.

At the moment of writing we are carrying more inten-
sive tests in real games situations in which three and more
robots are fusing their measurements to track multiple-
moving objects while moving them-self. These first exper-
iments showed there are several parameters that requires to
be finely tuned in order to have a good performance of the
distributed vision system (e.g. the weights associated to the
measures coming from different robots, the rate of grow in
time of the variance associated to a track, the time-to-live of
non-updated tracks, etc.).

5 Conclusions

In this work, we presented our implementation of an Omni-
directional Distributed Vision System where heterogeneous
Omnidirectional Vision Systems share the information ex-
tracted from their omnidirectional images. This completes
the information sharing in our team, where information are
broadcast for cooperation, planning, dynamic role assign-
ment, and now, for sensing. We faced (and solved) many
of the problems that a multi-robot team encounters when
working in a real environment. For instance: to be able to
relate all the measurements to a common spatial frame of
reference (we have a robust self-localisation software), to
be able to synchronise the observation of the members (we
used the Network Time Protocol to synchronise the inter-
nal clocks of the robots), to take into account the different
computational resources and the heterogenity of the robots
(we introduced the possibility to recalculate the state of the
system using measures older than the last one), to improve
the performances of the system by exploiting the redun-
dancy of the observations and of the observers (we fused
the measures coming from different robots shrinking the

uncertainty of the single measure), to make accessible the
measurements of an high resolution sensor to all the mem-
ber of the team (we expressly managed the heterogenity of
the sensors). Experiments realised in real games situations
where the real robots have to track moving objects are pre-
sented. In these experiments the robot are static, but we are
testing the system also on moving robots.

Despite the fact, that in this work we fused informa-
tion coming only from omnidirectional vision sensor, this
approach is very general and can be applied to fuse mea-
surements coming from different sensors (e.g. perspective
cameras or laser range finders) provided those measures can
be represented as Gaussian distributions. In the future, we
wish to port this system, developed in the RoboCup domain,
to surveillance applications. We are realising a surveil-
lance system, where static Vision Agents and mobile Vision
Agents (i.e the Vision Agents mounted on mobile robots)
cooperate to uncover and collect information on intruders
in a off-limit zone.
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