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Abstract. In Information Retrieval (IR), stemming enables a match-
ing of query and document terms which are related to a same meaning
but which can appear in different morphological variants. In this pa-
per we will propose and evaluate a statistical graph-based algorithm for
stemming. Considering that a word is formed by a stem (prefix) and
a derivation (suffix), the key idea is that strongly interlinked prefixes
and suffixes form a community of sub-strings. Discovering these com-
munities means searching for the best word splits which give the best
word stems. We conducted some experiments on CLEF 2001 test sub-
collections for Italian language. The results show that stemming improve
the IR effectiveness. They also show that effectiveness level of our algo-
rithm is comparable to that of an algorithm based on a-priori linguistic
knowledge. This is an encouraging result, particularly in a multi-lingual
context.

1 Introduction

In an Information Retrieval (IR) system that manages text resources, indexing
is the process that assigns a set of best content describing index terms to each
document or query. Usually, both documents and queries are written in natural
language, so the words may often occur with many morphological variants, even
if they are referred to as a common concept. The basic idea which exists in
stemming is that words which are similar in morphology are likely to be similar
in meaning, so they can be considered as equivalent from an IR point of view.
The goal of a stemming algorithm is to reduce variant word forms to a common
morphological root, called “stem”.

The effectiveness of stemming is a debated issue, and there are different re-
sults and conclusions. If effectiveness is measured by the traditional precision
and recall measures,1 it seems that for a language with a relatively simple mor-
phology, like English, stemming influences the overall performance little. [8] In
contrast, stemming can significantly increase the retrieval effectiveness and can
1 Recall is the fraction of relevant documents that has been retrieved, and precision
as the fraction of retrieved documents that are relevant.
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also increase precision for short queries or for languages with a more complex
morphology, like the romance languages. [10,15] Finally, as the system perfor-
mance must reflect user’s expectations it has to be considered that the use of
a stemmer is intuitive to many users, who can express the query to the system
using a specific term without keeping in mind that only a variant of this term
can appear in a relevant document. [8] Hence, stemming can be viewed also as
a sort of feature related to the user-interaction interface of an IR service.

To design a stemming algorithm, it is possible to follow a linguistic approach,
using prior knowledge of the morphology of the specific language, or a statisti-
cal approach using some methods based on statistical principles to infer from
the corpus of documents the word formation rules in the language studied. The
former kind of algorithms imply manual labor which has to be done by experts
in linguistics – as matter of the fact, it is necessary to formalize the word for-
mation rules, the latter being hard work, especially for those languages whose
morphology is complex. Stemming algorithms based on statistical methods en-
sure no costs for inserting new languages on the system, and this is an advantage
that becomes crucial especially for applications to Digital Libraries which are
often constructed for a particular institution or nation, and can manage a great
amount of non-English documents as well as documents written in more than
one different languages.

2 Methodological Approach

We will consider a special case of stemming, which belongs to the category
known as affix removal stemming. [5] In particular our approach stays on a suffix
stripping paradigm which is adopted by most stemmers currently in use by IR,
like those reported in [11,14,18]. This stemming process splits each word into two
parts, prefix and suffix, and considers the stem as the sub-string corresponding
to the obtained prefix.

By exploiting a sort of mutual reinforcement between prefix and suffix of a
word, we compute the best stem and the best derivation, i.e. the best split, of
the word. The rationale of using mutual reinforcement is based on the idea that
stems extracted from a finite collection of unique words are those prefixes that are
very frequent and form words together with very frequent suffixes. The key idea
is that interlinked good prefixes and suffixes form a community of sub-strings
whose links correspond to words, i.e. to splits. Discovering these communities is
like searching for the best splits. Note that very frequent prefixes are candidate
to be stems, but they are discarded if they are not followed by very frequent
suffixes; for example, all initials are very frequent prefixes but they are unlikely
stems because the corresponding suffixes are rather rare, if not unique – the same
holds for suffixes corresponding to ending vowels or consonants. Thus, there are
prefixes being less frequent than initials, but followed by frequent suffixes, yet
less frequent than ending characters – these suffixes and prefixes correspond to
candidate correct word splits and we label them as “good”.
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2.1 Mutual Reinforcement as a Method for Discovering the Best
Stems

Let us consider a finite collection of unique words W = {w1, ..., wN} and a word
w ∈ W of length |w|, then w can be written as w = xy where x is a prefix and
y is a suffix, provided |x| > 0 and |y| > 0. If we split each word w into all the
|w|−1 possible pairs of sub-strings, we build a collection of sub-strings, and each
sub-string may be either a prefix, a suffix or both of at least an element w ∈ W .
Using a graphical notation, the set of prefixes and suffixes can be written as a
graph g = (V, E) such that V is the set of sub-strings and w = (x, y) ∈ E is an
edge w that occurs between nodes x, y if w = xy is a word in W . By definition
of g, no vertex is isolated. As an example, let us consider the following toy set
of words: W={aba, abb, baa}; splitting these into all the possible prefixes and
suffixes produces a graph, reported in Figure 2.1a, with vertex set V ={a, b, aa,
ba, ab, bb} and edge set {(ab,a), (ba,a), (b,aa), (ab,b), (a,ba), (a,bb)}.

bab

bba

aa

ba

sub-string prefix score suffix score
a 0.250 0.333
aa 0.000 0.167
ab 0.375 0.000
b 0.125 0.167
ba 0.250 0.167
bb 0.000 0.167

(a) (b)

Fig. 1. (a) The graph obtained from W . (b) The prefix and suffix scores from W

The method used to compute the best split of each word employs the notion
of mutual reinforcement and the criteria based on frequencies of sub-strings to
decide the goodness of prefixes and suffixes, often used in statistical morpholog-
ical analysis, [13,6] and in the pioneer work. [7] The contribution of this paper is
the use of mutual reinforcement notion applied to prefix frequencies and suffix
frequencies, to compute the best word splits which give the best word stems.

If a directed edge exists between x and y, the mutual reinforcement notion
can be stated as follows:

good prefixes point to good suffixes, and good suffixes are pointed to by
good prefixes.
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In mathematical form, let us define P (y) = {x : ∃w, w = xy} and S(x) = {y :
∃w, w = xy} that are, respectively, the set of all prefixes of a given suffix y and
the set of all suffixes of a given prefix x. If px is the prefix score, i.e. the degree
to which the prefix x is a stem, and sy is the suffix score, i.e. the degree to
which the suffix y is a derivation, then the mutual reinforcing relationship can
be expressed as:

sy =
∑

x∈P (y)

px px =
∑

y∈S(x)

sy (1)

under the assumption that scores are expressed as sums of scores and splits are
equally weighed.

2.2 The Estimation of Prefix Scores

To estimate the prefix score, we used the quite well-known algorithm called
HITS (Hyper-link Induced Topic Search) reported in [9] and often discussed in
many research papers as a paradigmatic algorithm for Web page retrieval. It
considers a mutually reinforcing relationship among good authorities and good
hubs, where an authority is a web page pointed to by many hubs and a hub
is a web page which points to many authorities. The parallel with our context
will be clear when we associate the concept of a hub to a prefix and that of
authority to a suffix.

Using the matrix notation, the graph g can be described with a |V | × |V |
matrix M such that

mij =

{
1 if prefix i and suffix j form a word
0 otherwise

As explained in [9], the algorithm computes two matrices after the first iteration:
A = MTM and B = MMT , where the generic element aij of A is the number
of vertices that are pointed by both i and j, whereas the generic element bij of
B is the number of vertices that point to both i and j. The k-step iteration of
the algorithm corresponds to computing Ak and Bk. In the same paper, it has
been argued that s = [sj ] and p = [pi] converge to the eigenvectors of A and B,
respectively.

Here we map HITS in our study context, as follows:

Compute suffix scores and prefix scores from W
V : the set of sub-strings extracted from all the words in W
N : the number of all sub-strings in V
n: the number of iterations
1: the vector (1, ..., 1) ∈ R|V |

0: the vector (0, ..., 0) ∈ R|V |
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s(k): suffix score vector at step k
p(k): prefix score vector at step k
s(0) = 1
p(0) = 1
for each k = 1, ..., n

s(k) = 0
p(k) = 0
for each y

s
(k)
y =

∑
x∈P (y) p

(k−1)
x ;

for each x

p
(k)
x =

∑
y∈S(x) s

(k)
y ;

normalize p(k) and s(k) so that 1 =
∑

i p
(k)
i =

∑
j s

(k)
j

for each x

p
(n)
x = p

(n)
x /|S(x)|

end.

Differently from HITS, each prefix score px is divided after the n-th iteration
by the number of words with the prefix x, i.e. the number of out-links of the
node corresponding to the prefix x. The latter arithmetic operation provides an
estimation of the probability that x is a stem of a given word. This probability is
a component of a probabilistic framework, see [1] for a more detailed discussion,
since the illustration of this framework is out of the scope of this paper. However,
we explain why the scores can be modeled within a probabilistic framework. In
a recent work, it has been proved that HITS scores can be considered as a
stationary distribution of a random walk. [2] In particular, it has been proved
the existence of a Markov chain M (k), which has the stationary distribution
equal to the hub vector after the kth iteration of the Kleinberg’s algorithm,
which is, in our context, the prefix score vector p = [pj ]. The generic element
q
(k)
ij of the transition matrix referred to M (k) is the probability that, starting

from i, one reaches j after k “bouncing” to one of the suffixes which begins to
be associated with i and j. To interpret the result in a linguistic framework, pi

can be seen as the probability that i is judged as a stem by the same community
of sub-strings (suffixes) being resulted by the process of splitting words of a
language. Considering scores as probabilities permits us to model our graph-
based stemming algorithm within a probabilistic framework [1].

In Table 1, all the possible splits for all the words are reported and measured
using the estimated probability. For each word we choose as stem the prefix with
the highest probability.

3 Experiments

The aim of the experiments is to compare the retrieval effectiveness of the link
analysis-based algorithm illustrated in the previous Section with that of an al-
gorithm based on a-priori linguistic knowledge, because the hypothesis is that a
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Table 1. The candidate splits from W={aba, baa, abb}.

word prefix suffix words beginning probability choice
by prefix

baa b aa 1 0.1250
baa ba a 1 0.2500 *
aba a ba 2 0.1250
aba ab a 2 0.1875 *
abb a bb 2 0.1250
abb ab b 2 0.1875 *

language-independent algorithm, such as the one we propose, might effectively
replace one developed on the basis of manually coded derivational rules. Before
comparing the algorithms, we assessed the impact of both stemming algorithms
by comparing their effectiveness with that reached without any stemmer. In fact,
we did also want to test if the system performance is not significantly hurt by
the application of stemming, as hypothesized in [8]. To evaluate stemming, we
decided to compare the performance of an IR system changing only the stem-
ming algorithms for different runs, all other things being equal. We conducted
the evaluation procedure following the trusted Cranfield methodology, [4] which
requires us to evaluate an IR system on a test collection consisting of a set of
documents, a set of queries and a list of relevance judgments – each judgment
states whether a judged document is relevant or not for each query.

3.1 Experimental Setting

We carried out the retrieval experiments by using a test collection, an exper-
imental prototype system, a suite of effectiveness measures for reflecting the
search quality, and statistical methods for judging whether differences between
runs can be considered statistically significant.

Test Collection. We carried out the retrieval experiments on the Italian sub-
collections of the Cross-Language Evaluation Forum (CLEF) 2001 test collec-
tion. CLEF is a series of evaluation campaigns which has been held once a year
since 1999. [3,16] It offers an infrastructure for testing, tuning and evaluating IR
systems operating on European languages. The test documents consist of two
distinct subsets of articles both referring to year 1994:

– La Stampa, which is an Italian national newspaper;
– Italian SDA, which is the Italian portion of the news-wire articles of SDA

(Swiss Press Agency).

We want to concentrate on a morphologically complex European language, as
it is the Italian language, because it poses new challenges to stemming which is
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what we want to investigate. Main features of the test collection are reported
in Table 2. After a simple case normalization, the Italian sub-collection has a
vocabulary of 333,828 unique words. The query set consists of 50 topics, each
one described by a Title, a Description and a body called Narrative.

Table 2. Main features of the collection used in the experiments.

La Stampa SDA Total
Size in KB 198,112 87,592 285,704
Number of documents 58,051 50,527 108,578

Experimental System. For indexing and retrieval, we used an experimental
IR system, called IRON, which has been realized by our research group with the
aim of having a robust tool for carrying out IR experiments. IRON is built on
top of the Lucene 1.2 RC4 library, which is an open-source library for IR written
in Java and publicly available in [12]. The system implements the vector space
model, [19] and a (tf · idf)–based weighting scheme. [20] The stop-list which was
used consists of 409 Italian frequent words and it is publicly available in [21].

As regards the realization of the statistical stemming algorithm, we built
a suite of tools, called Stemming Program for Language Independent Tasks
(SPLIT), which implements the graph-based algorithm described in Section 2.
Using the vocabulary extracted from the Italian CLEF sub-collection, SPLIT
spawns a 2,277,297-node and 1,215,326-edge graph, which is processed to com-
pute prefix and suffix scores – SPLIT took 2.5 hours for 100 iterations on a
personal computer equipped with Linux, an 800 MHz Intel CPU and 256MB
RAM.

Effectiveness Measures. We used R-precision, which is the precision after R
relevant retrieved documents, and Average Precision, computed by the trusted
evaluation program trec eval developed as part of the experimental SMART
system at Cornell University and freely available from [22].

To test the statistical significance of the difference between the compared
runs, we carried out a statistical analysis considering each query as a statistical
unit and applying the paired Wilcoxon test, which is a non-parametric statistical
test working as follows: given two lists X, Y of measures – one list of each run
observed – that test replaces each difference Di between a pair of measures Xi, Yi

with the rank of its absolute value multiplied by the difference sign. The statistics
is then

∑
Ri /

√∑
R2

i , where Ri = sign(Di) × rank|Di| and is compared to
its expected value under the null hypothesis that lists are equal.
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3.2 Runs

We tested four different stemming algorithms:

1. NoStem: No stemming algorithm was applied.
2. Porter-like: We used the stemming algorithm for the Italian language,

which is freely available in the Snowball Web Site edited by M. Porter. [17]
Besides being publicly available for research purposes, we have chosen this
algorithm because it uses a kind of a-priori knowledge of the Italian language.

3. SPLIT: We implemented our first version of the stemming algorithm based
on a link-analysis with 100 iterations.

4. SPLIT-L3: We included in our stemming algorithm a little ignition of lin-
guistic knowledge, inserting a heuristic rule which forces the length of the
stem to be at least 3.

3.3 A Global Evaluation

We carried out a macro evaluation by averaging the results over all the queries
of the test collection. Out the 50 queries of the test collection, 47 queries have
relevant documents in the collection, so only these queries were evaluated in the
analysis. Table 3 shows a summary of the figures related to the macro analysis
of the stemming algorithm.

Table 3. Macro comparison among runs.

N. Relevant Retrieved Av. Precision R-Precision
NoStem 1093 0.3387 0.3437
Porter-like 1169 0.3753 0.3619
SPLIT 1143 0.3519 0.3594
SPLIT-L3 1149 0.3589 0.3668

Note that all the considered stemming algorithms improve recall, since the
number of retrieved relevant documents is larger than the number of retrieved
relevant documents observed in the case of retrieval without any stemmer; the
increase has been observed for all the stemming algorithms. It is interesting to
note that precision increases as well, and then the overall performance is higher
thanks to the application of stemming than when it is without any stemmer. As
previous studies on other non-English languages showed, [15,10] this interesting
result suggests that stemming does not cause any trade-off between recall and
precision, i.e. both precision and recall can be increased. To confirm the increase
of effectiveness, Figure 2 shows the Averaged Recall-Precision curve at different
levels of recall.

As regards the use of link-based stemming algorithms, it is worth noting
that SPLIT can attain levels of effectiveness being comparable to one based on
linguistic knowledge. This is surprising if you know that SPLIT was built without
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Fig. 2. Average Precision Curve for four stemming algorithms.

any sophisticated extension to HITS and that neither heuristics nor linguistic
knowledge was used to improve effectiveness. It should also be considered as
a good result, if you consider that it has also been obtained for the Italian
language, which is morphologically more complex than English.

After analyzing the results obtained at macro level, we realized that perfor-
mance varied with query and that SPLIT performed better than Porter-like
for a subset of queries. This variation led us to carry out the analysis reported
in the next Section.

3.4 Query-by-Query Evaluation

We conducted a more specific analysis based on the evaluation of the stem-
ming effects on each query of the test collection, by calculating the R-Precision
and Average-Precision figures for each query and for each run. We carried out
the analysis for Porter-like and SPLIT-L3; the latter was chosen because it
performed a little better than SPLIT, yet the difference was not statistically sig-
nificant. Table 4 reports the number of queries in which a stemming algorithm
improved, decreased or kept as equivalent R-precision and Average Precision
with respects to the “no-stemming” case.

As Table 4 shows, the number of queries showing improvements in perfor-
mance after the stemming process is greater than the number of queries for
which precision decreased. However, the improvement is not strong enough to
be considered statistically significant. Moreover, all the stemming algorithms
yield comparable results in terms of R-Precision and Average Precision, as the
Wilcoxon test suggests for α = 0.05. This means that the number of queries for
which Porter-like performed better than SPLIT is comparable to, i.e. not sta-
tistically different from, the number of queries for which SPLIT performed better



126 M. Bacchin, N. Ferro, and M. Melucci

Table 4. Behavior of the algorithms compared with non-stemming.

R-Precision Avg-Precision
SPLIT-L3 Porter-like SPLIT-L3 Porter-like

Improved 19 17 26 26
Decreased 13 15 19 19
Equivalent 15 15 2 2

than Porter-like. In other words, SPLIT and Porter-like are equivalently
effective.

The latter way of considering improvements corresponds to assess perfor-
mance from a more user-oriented than system-oriented point of view. If stemming
is applied in an interactive context, such as that of Digital Libraries applications,
the ranking used to display the results to the user acquire a great importance –
from a practical rather than theoretical point of view at least. In fact, it would
more interesting to know if the end user finds the relevant document after 10
or 20 retrieved documents instead of knowing if successful retrieval is reached
after 50% retrieved documents. To assess stemming performance from a more
user-oriented point of view, we were interested in evaluating how the observed
improvement of effectiveness thanks to stemming can change the ranking of re-
trieved documents. Hence, we compared precision at 10, 20, 30 document cutoff,
as suggested in [8]. The paired Wilcoxon test suggests to reject the null hy-
pothesis that stemming has no effect on performance; on the contrary, we can
confirm the hypothesis that stemming improves the results. Table 5 reports the
number of queries in which a stemming algorithm improved, decreased or kept
as equivalent the Precision figure computed at 10, 20 and 30 retrieved relevant
documents.

Table 5. Behavior of the algorithms compared with the baseline of non-stemming.

SPLIT-L3 Porter-like
10 docs 20 docs 30 docs 10 docs 20 docs 30 docs

Improved 14 19 18 20 23 19
Decreased 7 12 14 8 9 13
Equivalent 26 16 15 19 19 15

The test gives the same results both for the SPLIT-L3 and the Porter-like
algorithm at all document cutoff values. To confirm that a statistical and link-
based stemming algorithm can be successfully used instead of a-priori linguistic
knowledge, we compared the SPLIT-L3 with the Porter-like algorithm for the
document cutoff values selected above. Then, we computed the p-value, which
is a measure of the probability that the observed difference between the two
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algorithms could have occurred by chance. We noted that the performances
of such algorithms are so close that the p-value of Wilcoxon test for 20 and
30 document cutoff values are over 90%. This means that it is almost certain
that the observed difference between the two algorithms occurred by chance,
i.e. that there is not any “structural” reason so that the two algorithms are
different. Table 6 reports the effects on the queries of SPLIT-L3 algorithm on
Porter-Like baseline. For precision, in 10 relevant documents retrieved, the

Table 6. Behavior of SPLIT-L3 on Porter-like baseline

10 docs 20 docs 30 docs
Improved 8 16 13
Decreased 13 19 15
Equivalent 26 12 19

Porter-like algorithm performs better than SPLIT-L3 algorithm, this means
that Porter-like is more effective if very few documents are seen; if more than
a few documents are seen, SPLIT performs similarly.

4 Conclusions and Future Work

The objective of this research was to investigate a stemming algorithm based on
link analysis procedures. The idea has been that prefixes and suffixes, that are
stems and derivations, form communities once extracted from words. We tested
this hypothesis by comparing the retrieval effectiveness of SPLIT, a graph-based
algorithm derived from HITS, with a linguistic knowledge based algorithm, on
a quite morphologically complex language as it is the Italian language.

The results are encouraging because effectiveness level of SPLIT is comparable
to that developed by Porter. The results should be considered even better since
SPLIT does not incorporate any heuristics nor linguistic knowledge. Moreover,
stemming, and then SPLIT, showed to improve effectiveness with respects to not
using any stemmer.

We are carrying out further analysis at a micro level to understand the condi-
tions under which SPLIT performs better or worse compared to other algorithms.
In parallel, theoretical work will disclose properties that permit us to improve
SPLIT. Finally, further experimental work is in progress with other languages.
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