
A Probabilistic Model for Stemmer Generation

(extended abstract)⋆

Michela Bacchin, Nicola Ferro, and Massimo Melucci

Department of Information Engineering – University of Padua
Via Gradenigo, 6/B – 35131 Padova (PD) – Italy

{michela.bacchin, nicola.ferro, massimo.melucci}@unipd.it

Abstract. Today managing textual resources and providing full-text
search capabilities on them is a relevant issue also for database manage-
ment systems. Stemming is part of the indexing and searching processes,
when we deal with textual resources. In this paper we present a language-
independent probabilistic model which can automatically generate stem-
mers for several different languages. The variety of word forms makes the
match between the end user’s words and the document words impossible
even if they refer to the same concept - this mismatch degrades retrieval
performance. Stemmers can improve the retrieval effectiveness, but the
design and the implementation of stemmers requires a laborious amount
of effort. The proposed model describes the mutual reinforcement rela-
tionship between stems and derivations and then provides a probabilistic
interpretation of it. A series of experiments shows that the stemmers gen-
erated by the probabilistic model are as effective as the ones based on
linguistic knowledge.

1 Introduction

Managing and indexing textual documents is crucial not only for traditional
Information Retrieval Systems (IRS) but also for DataBase Management Sys-
tems (DBMS), which often provide full-text indexing and search capabilities on
the data they manage. Systems like Content Management Systems (CMS) or
Electronic Documents Management Systems (EDMS) have to deal with huge
amounts of textual data and they are often based on DBMS technology. Many
open source and commercial DBMS provide full-text capabilities on the content
they manage: for example, PostgreSQL1 and its module Tsearch22, MySQL3,
IBM DB24 and its Text Extender5, Oracle Database6 and its component Oracle

⋆ An extended version of this paper has been accepted for publication in Information
Processing & Management, Elsevier [3].

1 http://www.postgresql.org/
2 http://www.sai.msu.su/∼megera/postgres/gist/tsearch/V2/
3 http://www.mysql.com
4 http://www.ibm.com/software/data/db2/
5 http://www.ibm.com/software/data/db2/extenders/text/
6 http://otn.oracle.com/products/database

Text7, and Microsoft SQL Server8. A DBMS, which provides full-text indexing
and search functionalities, can enable information access in two distinct and
complementary ways: exploiting the structure of the textual data by means of
structured queries and exploiting the content of the textual data by means of
full-text queries expressed in natural language. Searching documents against nat-
ural language queries, arises several issues, but in this paper we will focus the
attention on the problems related to the presence, in the text, of several morpho-
logical variant word forms which refer to a common concept. The normalization
of these word forms to an approximation of the morphological root is called
stemming, and it aims to allow words to group up with each other, indicating
a similar meaning [7]. Basically, a stemming algorithm forms word equivalence
classes such that each class includes the words sharing a common stem, which
is an approximation of the common morphological root. One such class may
be, for example, “computer”, “computers”, “computerized”, and “computing”
which share the common stem “comput”. This way a user can formulate a query
without worrying about the morphology of query words, because relevant doc-
uments can be retrieved even if the morphology of their own words is different
from the morphology of the words of a given query. All of the DBMS mentioned
above offer some stemming capability apart from MySQL, which plans to add it
in the future.

To design a stemming algorithm, it is possible to follow a linguistic approach
based on prior knowledge of the morphology of the specific language, or a statis-
tical approach which tries to infer the word formation rules from the corpus of
documents. The linguistic approaches can be more effective because the morpho-
logical analysis is performed by experts in the linguistic field, but the benefits
that could be reaped are outweighed by the time necessary to complete the
morphological analysis especially when new languages have to be added. Fur-
thermore, it is a demanding task to codify all of the word formation rules for
languages with a complex morphology and the resulting stemmers can be im-
precise; in addition it is not always possible to have an expert for each language.
On the other hand, stemming algorithms based on statistical methods ensure no
additional costs to add new languages to the system – this is a crucial advantage,
especially for applications which manage documents written in many different
languages.

While stemming is useful in general, there are examples of words for which
the decision as to whether stemming should be performed or not is not straight-
forward. An example is “stocks” which has a meaning in the financial domain if
used with “trade”, but would have the meaning of “gunstock” in a corpus about
weapons. Therefore, the stem “stock” would be good for a domain, but may
be bad for another. Statistical algorithms like the one proposed in this paper
suit the characteristics of a given text corpus and should produce more effective
results [16] than general purpose linguistic algorithms.

7 http://otn.oracle.com/products/text/
8 http://www.microsoft.com/sql/

This paper presents a probabilistic model, which introduces and exploits
the notion of mutual reinforcement relationship between stems and derivations,
in order to automatically generate stemmers. The notion of mutual reinforce-
ment relationship has been recently investigated in the context of information
retrieval. It has been applied to link analysis and hypertext information retrieval
by Kleinberg in [10], or has been used for image retrieval purposes by Lempel
and Soffer in [11]. In this paper we will investigate if the mutual reinforcement
relationship is a suitable notion also for stemming and we will find a positive
answer to this question. The paper is organized as follows: Section 2 explains the
probabilistic model; the experiments to assess the performances of the proposed
algorithm are described in Section 3; finally Section 4 draws some conclusion
and presents the future work.

2 The Probabilistic Model

Our stemming algorithm is based on a suffix stripping paradigm, in which each
word is split into a pair of substrings, called prefix and suffix, and considers the
prefix as the stem. According to this view, words can be seen as the outcome
of a generative process performed by a hypothetical machine that takes the set
of all the possible prefixes and suffixes as input and produces words as output
according to some type of linguistic knowledge and not at random. Thus, a
word produced by the machine is the result of joining together a stem and a
derivation and not a generic prefix or suffix. Because of this, the probability
of generating a pair is not uniform – since the machine exploits some kind of
linguistic knowledge, the probability that a stem is correctly concatenated with
a derivation is higher than the probability that a generic prefix is concatenated
with a generic suffix. Stemming can be seen as the inverse of this generative
process: given a word, a stemmer has to guess the prefix and the suffix in order
to form the most probable pair that the machine has chosen to generate the
word. As the machine pools together its knowledge of the language, the most
probable pair is formed by the stem and the derivation of the word.

Given a finite collection W of words, let U be the set of N substrings gener-
ated after splitting each word z ∈ W into all possible positions, except for those
which generate empty substrings. If x, y are the prefix and the suffix of word z,
respectively, then z = xy and there are n−1 possible positions to which z is split,
if |z| = n. Let us define the universe of the elementary random events as follows:
Ω = {(x, y) ∈ U × U : ∃z ∈ W, z = xy}, and let Ω(z) = {(x, y) ∈ Ω : xy = z}
be the set of all of the pairs (prefix, suffix) leading to the same word z. The
stemmer has to infer the most probable pair of prefixes and suffixes chosen by
the machine to generate the given word, computing the expression:

(x, y)∗ = arg max
(x,y)∈Ω(z)

Pr(x, y | z)
(a)
= arg max

(x,y)∈Ω(z)

Pr(z | x, y) Pr(x, y)

Pr(z)
=

(b)
= arg max

(x,y)∈Ω(z)
Pr(x, y)

(c)
= arg max

i=1,...,n−1
Pr(xi, yi)

(1)

where: (a) is obtained applying the Bayes Rule; (b) is obtained observing that
Pr(z | x, y) = 1, since (x, y) ∈ Ω(z) yields to z only, and Pr(z) is the same for all
(x, y) and so it does not influence the maximization; (c) is obtained observing
that Ω(z) = ∪n−1

i=1 {(xi, yi)}.
In order to estimate the probability distribution of the pairs (xi, yi), which

is necessary to find the most probable pair, we introduce the following notion of
probabilistic mutual reinforcement in stemming:

stems are prefixes which have a high probability of being completed by
derivations; derivations, in turn, are suffixes which have a high probabil-
ity of completing stems.

If a collection of words is observed, a prefix is completed by diverse suffixes,
and a suffix completes diverse prefixes. The mutual reinforcement relationship
emphasizes that stems are more likely to be completed by derivations; derivations
in turn are more likely to complete stems. So if the probability that a prefix is
completed by a suffix is high and the probability that the suffix completes the
prefix is high, then we can say that the corresponding split is likely to be the
right one.

Let us formalize the notion of mutual reinforcement in stemming. It is a fact
that Pr(xi, yj) = Pr(yj | xi) Pr(xi) and that Pr(xi, yj) = Pr(xi | yj) Pr(yj);

furthermore we have that Pr(xi) =
∑N

j=1 Pr(xi, yj) = Pr(xi | yj) Pr(yj) and

Pr(yj) =
∑N

i=1 Pr(xi, yj) = Pr(yj | xi) Pr(xi). These two latter equations high-
light a circular relationship between Pr(xi) and Pr(yj), which can be resolved
by adopting the following iterative approach:

{

Pr(t)(xi) =
∑N

j=1 Pr(xi | yj) Pr(t−1)(yj) i = 1, . . . , N

Pr(t)(yj) =
∑N

i=1 Pr(yj | xi) Pr(t)(xi) j = 1, . . . , N
(2)

where t = 1, 2, . . . is the iteration index and Pr(0)(y) is a vector of uniform
probabilities and the conditional probabilities Pr(xi | yj) and Pr(yj | xi) are
estimated by the reciprocal of the number of words which end by yj , and start
by xi respectively. The mutual reinforcement relationship is given by the fact that
Pr(t)(xi) is an average mean of the Pr(t−1)(yj)s, and Pr(t)(yj) is an average mean

of the Pr(t)(xi)s. Given this relationship, Pr(xi) increases as Pr(yj) increases, i.e.
the higher the probability that xi is chosen as stem, the higher the probability
that its potential suffixes are derivations and that xi is completed by its potential
suffixes. Similarly, the higher the probability that yi is chosen, the higher the
probability that its potential prefixes are stems and that yi completes its prefixes.

The stemmer is organized as a two-step algorithm:

– global step: at this step the stemmer considers the whole collection of words
and it tries to infer some basic linguistic knowledge from the collection, i.e.
the stemmer detects the best prefixes and suffixes of U , exploiting equations
(2). Note that this process is independent from the word that the stem has
looked for, but it considers the relationships among prefixes and suffixes of
the whole collection – this is the reason why this step is called “global”.

– local step: at this step the stemmer takes a given word as input and it
tries to determine the split which corresponds to a stem and a derivation,
using equation (1). The stemmer uses the linguistic knowledge inferred in
the global step, but it now operates within a local scope, because it considers
only the pairs which lead to the word and not the whole collection.

3 Experiments

To evaluate the proposed stemming algorithms a series of experiments were
conducted according to the Cranfield methodology, based on the usage of exper-

imental collections [5, 14]. An experimental collection is a triple C = (D, Q, J),
where D is a set of documents, called also collection of documents; Q is a set of
queries, called also topics; J is a set of relevance judgements, i.e. for each topic
q ∈ Q the documents d ∈ D, which are relevant to the query q, are determined.
The evaluation of two systems X and Y happens as follows: the document collec-
tion D is indexed by both systems X and Y ; each system searches the document
collection against topics Q and produces, for each topic q, an ordered list of
retrieved documents; finally the relevance judgements J allow us to check the
two ordered lists of retrieved document and compute the performances of IRS
X and Y .

A couple of measures are used for quantifying the performances of an IRS [14]:
recall which is the proportion of relevant documents which are retrieved; preci-

sion which is the proportion of retrieved documents that are relevant. Precision
and recall are set–based measures, that is they evaluate the quality of an un-
ordered set of retrieved documents. To evaluate ranked lists, precision and recall
can be computed for different values of an appropriate parameter: for example,
precision can be computed at standard recall levels or after that a given number
of documents has been retrieved, which is called precision at different document

cut–off values (DCV).

For the experiments reported in the following, we used the test data provided
by the Cross-Language Evaluation Forum9 (CLEF) [12], and specifically the
Italian CLEF collection for the 2001 and 2002 evaluation campaigns [1, 2].

Experimental Settings We measured the performances of an IRS where only
the stemming algorithm has been changed for different runs, all other things
being equal. This way, all the changes in the system performances are just im-
putable to the stemming process. The analysis was carried out computing the av-
erage precision (A-P) over the 11 standard recall levels (0%, 10%, 20%, . . . , 100%
of relevant documents) and the precision computed at 10, 20, 30 DCV (P@10,
P@20, P@30) [15]. The last figures allow us to carry out a more user-oriented
analysis: indeed it can be an interesting finding that end users can obtain rele-
vant documents after having retrieved 10 or 20 documents instead of after 50%

9 http://www.clef-campaign.org/

2001 2002
A-P A-P

NoStem 0.3387 0.3528
Porter 0.3757 0.3785
SPLIT 0.3684 0.3682

Table 1. Global comparison among runs.

2001 2002
A-P P@10 P@20 P@30 A-P P@10 P@20 P@30

Porter vs NoStem = > > = = = = =
SPLIT vs NoStem = > > = = = = >

SPLIT vs Porter = = = = = = = =

Table 2. Statistical analysis among runs.

retrieved documents [8]. All the effectiveness measures were computed using the
standard evaluation software package trec eval

10.
We tested two algorithms: our algorithm based on the probabilistic model,

called Stemming Program for Language Independent Tasks (SPLIT), and Porter’s
stemming algorithm [13], which is a widely used stemming algorithm based on
linguistic knowledge; we used the Italian version of Porter’s stemmer11.

Experimental Results A global evaluation was carried out by averaging the
results of all the queries of the test collection. The results, which are reported in
Table 1, suggested the hypothesis that the IR system performed well when using
SPLIT as well as Porter’s stemming algorithms. To validate this hypothesis, the
queries were modelled as statistical units and the Wilcoxon test was applied
to check the statistical significance of the results [9]. The null hypothesis H0

means that two compared algorithms yield the same level of precision, and H1

is the opposite of H0. Table 2 reports the results of this analysis where the
symbol “=” means that two algorithms were equivalent, and “>” (“<”) means
that an algorithm was superior (inferior) to the other; all the statements have
been statistically tested for a level of significance α = 0.05. For the Average-
Precision figure we cannot reject the null hypothesis, that the two stemming
algorithms performed equally to no-stemming; on the other hand, for both P@10
and P@20 figures of the 2001 runs both SPLIT and Porter’s stemming algorithms
performed better than no-stemming. This is an important result because the use
of stemming makes the system more user-friendly and it can be applied without
loss of performances or even with an improvement in some cases. Furthermore,
recalling the importance of the P@10 and P@20 figures from an user-oriented
standpoint, the two stemming algorithms were able to improve the performances

10 ftp://ftp.cs.cornell.edu/pub/smart/
11 http://www.snowball.tartarus.org/

for the highly ranked documents, which are scanned first by an end-user. Table 2
compares also the SPLIT algorithm with the Porter’s algorithm: for all the
effectiveness measures and test collections, we cannot reject the null hypothesis,
that Porter’s and SPLIT algorithms equally perform. Thus we found that our
statistical algorithm can be as effective as the Porter’s one.

Summing up, the SPLIT algorithm does not worsen or even enhances the
performances of the system with respect to no-stemming and thus it gives the
user an intuitive method to expand the query terms with all the word variants. If
compared with an algorithm based on a-priori linguistic knowledge, it performs
as effectively as Porter’s stemming algorithm.

4 Summary and Future Work

The probabilistic model proposed in this paper describes the mutual reinforce-
ment relationship between stems and derivations, which is the basis for auto-
matically generate stemmers. The experiments confirmed the hypothesis that a
stemmer built on the notion of mutual reinforcement relationship is as effective
as one built on hand-coded linguistic rules used for the tested language. In ad-
dition to Italian several other experiments were conducted within CLEF 2003
using other languages [6], such as English, German, Dutch, Spanish, French. For
all the languages tested, the proposed stemmer produced equally good results
as those produced by Porter’s stemmer.

The research work presented in this paper unfolded new problems to resolve
and leads to further investigation. For example, the notion of mutual reinforce-
ment relationship could be generalized from two components, i.e. a stem and a
derivation, to n components. This way the probabilistic model could be applied
to the decompounding problem, that is splitting word-compounds made by two
morphemes or more – very frequent for germanic languages – in order to improve
retrieval effectiveness [4].

Acknowledgments

The authors thank Maristella Agosti, Giorgio Di Nunzio, Nicola Orio, and Luca
Pretto for the invaluable discussions and suggestions. The research has been
partially supported by the Enhanced Content Delivery12 (ECD) national project.
The authors wish to thank the anonymous reviewers for their useful comments,
which will be taken into account also for future developments of the work.

References

[1] M. Agosti, M. Bacchin, N. Ferro, and M. Melucci. Improving the Automatic
Retrieval of Text Documents. In C. Peters, M. Braschler, J.Gonzalo, M. Kluck
(eds.) Advances in Cross-Language Information Retrieval, Third Workshop of the
Cross-Language Evaluation Forum, CLEF 2002. Rome, Italy, September 19-20,
2002. Revised Papers, pages 279–290. Lecture Notes in Computer Science (LNCS)
2785, Springer-Verlag, Germany, 2003.

12 http://www-ecd.cnuce.cnr.it/

[2] M. Bacchin, N. Ferro, and M. Melucci. The Effectiveness of a Graph-based Algo-
rithm for Stemming. In E. P. Lim, S. Foo, C. S. G. Khoo, H. Chen, E. A. Fox,
S. R. Urs, and C. Thanos (eds.) Digital Libraries: People, Knowledge, and Tech-
nology. Proceedings of 5th International Conference on Asian Digital Libraries
(ICADL 2002), Singapore, December 11-14, 2002, pages 117–128. Lecture Notes
in Computer Science (LNCS) 2555, Springer-Verlag, Germany, 2002.

[3] M. Bacchin, N. Ferro, and M. Melucci. A Probabilistic Model for Stemmer Gen-
eration. Information Processing & Management, Elsevier (in print).

[4] M. Braschler and B. Ripplinger. Stemming and Decompounding for German
Text Retrieval. In F. Sebastiani (ed.) Proceedings of the European Conference on
Information Retrieval Research (ECIR), Pisa, Italy, April 14-16, 2003, pages 177–
192. Lecture Notes in Computer Science (LNCS) 2633, Springer-Verlag, Germany,
2003.

[5] C. W. Cleverdon. The Cranfield Tests on Index Languages Devices. In
K. Spack Jones and P. Willett, editors, Readings in Information Retrieval, pages
47–60. Morgan Kaufmann Publisher, Inc., San Francisco, California, USA, 1997.

[6] G. Di Nunzio, N. Ferro, M. Melucci, and N. Orio. Experiments to Evaluate Proba-
bilistic Models for Automatic Stemmer Generation and Query Word Translation.
In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck (eds.) Evaluation of Cross-
Language Information Retrieval Systems, Fourth Workshop of the Cross-Language
Evaluation Forum, CLEF 2003. Trondheim, Norway, August 21-22, 2003. Revised
Papers. Lecture Notes in Computer Science (LNCS), Springer-Verlag, Germany,
(in print).

[7] W.B. Frakes. Stemming algorithms. In Information Retrieval: Data Structures
and Algorithms. W.B. Frakes and R. Baeza-Yates, Eds. Prentice Hall, Englewood
Cliffs, NJ, chapter 8, 1992.

[8] D. Harman. How Effective is Suffixing? Journal of the American Society for
Information Science, 42(1):7–15, Wiley, 1991.

[9] D.A. Hull. Using Statistical Testing in the Evaluation of Retrieval Experiments. In
Proceedings of the ACM International Conference on Research and Development
in Information Retrieval (SIGIR), pages 329–338, Pittsburgh, PA, USA, ACM
Press, 1993.

[10] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632, September 1999.

[11] R. Lempel and A. Soffer. PicASHOW: Pictorial Authority Search by Hyperlinks
On the Web, ACM Transactions on Information Systems, 20(1):1–24, ACM Press,
January 2002.

[12] C. Peters and M. Braschler. Cross-Language System Evaluation: the CLEF Cam-
paigns. Journal of the American Society for Information Science and Technology,
52(12):1067–1072, Wiley, 2001.

[13] M.F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.
Reprinted in K. Sparck Jones, and P. Willet, Readings in Information Retrieval,
Morgan Kaufmann, 1997,

[14] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, USA, 1983.

[15] E. Voorhees and D. Harman. Overview of the Sixth Text Retrieval Conference
(TREC-6). Information Processing & Management, 36(1):335, Elsevier, 2000.
Special Issue on the Sixth Text Retrieval Conference (TREC-6).

[16] J. Xu and W.B. Croft. Corpus-based stemming using cooccurrence of word vari-
ants, ACM Transactions on Information Systems, 16(1):61–81, ACM Press, Jan-
uary 1998.

