
The NESTOR Framework: How to Handle

Hierarchical Data Structures

Nicola Ferro and Gianmaria Silvello

Department of Information Engineering, University of Padua, Italy
{ferro,silvello}@dei.unipd.it

Abstract. In this paper we study the problem of representing, manag-
ing and exchanging hierarchically structured data in the context of a Dig-
ital Library (DL). We present the NEsted SeTs for Object hieRarchies
(NESTOR) framework defining two set data models that we call: the
“Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-
M)” based on the organization of nested sets which enable the represen-
tation of hierarchical data structures. We present the mapping between
the tree data structure to NS-M and to INS-M. Furthermore, we shall
show how these set data models can be used in conjunction with Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) adding
new functionalities to the protocol without any change to its basic func-
tioning. At the end we shall present how the couple OAI-PMH and the
set data models can be used to represent and exchange archival metadata
in a distributed environment.

1 Motivations

In Digital Library Systems (DLSs) objects are often organized in hierarchies to
help in representing, managing or browsing them. For instance, books in a library
can be classified by author and then by subject and then by publishing house.
Documents in an archive are organized in a hierarchy divided into fonds, sub-
fonds, series, sub-series and so on. In the same way the internal structure of an
object can be hierarchical; for example the structure of a book organized in chap-
ters, sections and subsections or a web page composed by nested elements such as
body, titles, subtitles, paragraphs and subparagraphs. One very important tool
extensively adopted to represent digital objects such as metadata, text documents
and multimedia contents — the eXtensible Markup Language (XML) — has an
intrinsically hierarchical structure.

Representing, managing, preserving and sharing efficiently and effectively the
hierarchical structures is a key point for the development and the consolidation
of DLS technology and services. In this paper we propose the NEsted SeTs for
Object hieRarchies (NESTOR)1 framework defining two set data models that we
call: the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-
M)”. These models are defined in the context of the ZFC (Zermelo-Fraenkel with
1 Nestor is a Greek myth [1]; a king of Pylos in Peloponnesus, who in old age led his

subjects to the Trojan War. His wisdom and eloquence were proverbial.

M. Agosti et al. (Eds.): ECDL 2009, LNCS 5714, pp. 215–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 N. Ferro and G. Silvello

the axiom of Choice) axiomatic set theory [7], exploiting the advantages of the
use of sets in place of a tree structure. The foundational idea behind these set
data models is that an opportune set organization can maintain all the features
of a tree data structure with the addition of some new relevant functionalities.
We define these functionalities in terms of flexibility of the model, rapid selection
and isolation of easily specified subsets of data and extraction of only those data
necessary to satisfy specific needs.

Furthermore, these set data models can work in conjunction with the Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [12] that is
the standard de-facto for metadata sharing between DLSs in distributed envi-
ronments. The extension of OAI-PMH with these set data models allows the
protocol to manage and exchange complex hierarchical data structure in a flexi-
ble way. The extension of OAI-PMH shall permit the exchange of data belonging
to a hierarchy with a variable granularity without losing the relationships with
the other data in the hierarchy. Furthermore, the OAI-set which is a constituent
part of the protocol will be used also to organize the data and not only to enable
the selective harvesting. A concrete use case is the archival data that are or-
ganized in a hierarchy which preserve the meaningful relationships between the
data. When an archival object is shared it has to preserve all the relationships
with the preservation context and with the other objects in the archive; since the
use of tree data structure in this context turns out to be problematic in terms
of accessibility and flexibility, we shall show that the use of the proposed data
models in conjunction with OAI-PMH overcomes many of these issues.

The paper is organized as follows: Section 2 briefly defines the tree data struc-
ture. Section 3 defines the two proposed set data models and presents the map-
ping functions between the tree data structure and the set data models. Section
4 describes how OAI-PMH can extend its functionalities by exploiting the NS-M
or the INS-M; moreover this section presents a use case in which the set data
models and OAI-PMH can be used together to exchange full expressive archival
metadata. Section 5 draws some conclusions.

2 The Tree Data Structure

The most common and diffuse way to represent a hierarchy is the tree data struc-
ture, which is one of the most important non-linear data structures in computer
science [8]. We define a tree as T (V, E) where V is the set of nodes and E the
set of edges connecting the nodes. V is composed by n nodes V = {v1, . . . , vn}
and E is composed by n − 1 edges. If vi, vj ∈ V and if eij ∈ E then eij is
the edge connecting vi to vj , thus vi is the parent of vj . We indicate with
d−V (vi) the inbound degree of node vi ∈ V representing the number of its
inbound edges; d+

V (vi) is the outbound degree of vi ∈ V representing the
number of its outbound edges. vr ∈ V is defined to be the root of T (V, E) if
and only if d−V (vr) = 0; ∀vi ∈ V \ {vr}, d−V (vi) = 1. The set of all external
nodes is Vext = {vi : d+

V (vi) = 0} and the set of all the internal nodes is
Vint = {vi : d+

V (vi) > 0}.

The NESTOR Framework: How to Handle Hierarchical Data Structures 217

We define with Γ+
V (vi) the set of all the descendants of vi in V (including

vi ifself); vice versa Γ−
V (vi) is the set of all the ancestors of vi in V (including

vi ifself). We shall use the set Γ in the following of this work, so it is worth
underlining a couple of recurrent cases. Let vr ∈ V be the root of a tree T (V, E)
then Γ−

V (vr) = {vr} and Γ+
V (vr) = V . Furthermore, let vi an external node of

T (V, E), then Γ+
V (vi) = {vi}.

3 The Set Data Models

We propose two set data models called Nested Set Model (NS-M) and Inverse
Nested Set Model (INS-M) based on an organization of nested sets. The most
intuitive way to understand how these models work is to relate them to the
well-know tree data structure. Thus, we informally present the two data models
by means of examples of mapping between them and a sample tree.

The first model we present is the Nested Set Model (NS-M). The intuitive
graphic representation of a tree as an organization of nested sets was used in [8]
to show different ways to represent tree data structure and in [3] to explain
an alternative way to solve recursive queries over trees in SQL language. An
organization of sets in the NS-M is a collection of sets in which any pair of sets
is either disjoint or one contains the other. In Figure 1 we can see how a sample
tree is mapped into an organization of nested sets based on the NS-M.

 r

 x k

 y w s z

R

K

S

X

Y

W

Z

Fig. 1. The mapping between a tree data structure and the Nested Set Model

From Figure 1 we can see that each node of the tree is mapped into a set,
where child nodes become proper subsets of the set created from the parent node.
Every set is subset of at least of one set; the set corresponding to the tree root
is the only set without any supersets and every set in the hierarchy is subset
of the root set. The external nodes are sets with no subsets. The tree structure
is maintained thanks to the nested organization and the relationships between
the sets are expressed by the set inclusion order. Even the disjunction between
two sets brings information; indeed, the disjunction of two sets means that these
belong to two different branches of the same tree.

218 N. Ferro and G. Silvello

The second data model is the Inverse Nested Set Model (INS-M). We can
say that a tree is mapped into the INS-M transforming each node into a set,
where each parent node becomes a subset of the sets created from its children.
The set created from the tree’s root is the only set with no subsets and the root
set is a proper subset of all the sets in the hierarchy. The leaves are the sets with
no supersets and they are sets containing all the sets created from the nodes
composing tree path from a leaf to the root. An important aspect of INS-M is
that the intersection of every couple of sets obtained from two nodes is always a
set representing a node in the tree. The intersection of all the sets in the INS-M
is the set mapped from the root of the tree. Fig. 2 shows the organization of
nested sets created from the branch of a tree.

 r

 x k

 y w s z

R
X

Z

Fig. 2. How the branch of a tree can be mapped into the INS-Model

It is worthwhile for the rest of the work to define some basic concepts of set
theory: the family of subsets and the subfamily of subsets, with reference to [4]
for their treatment. However, we assume the reader is confident with the basic
concepts of ZFC axiomatic set theory, which we cannot extensively treat here
for space reasons.

Definition 1. Let A be a set, I a non-empty set and C a collection of subsets
of A. Then a bijective function A : I −→ C is a family of subsets of A. We call
I the index set and we say that the collection C is indexed by I.

We use the following notation {Ai}i∈I to indicate the family A; the notation
Ai ∈ {Ai}i∈I means that ∃ i ∈ I | A(i) = Ai. We call subfamily of {Ai}i∈I the
restriction of A to J ⊆ I and we denote this with {Bi}j∈J ⊆ {Ai}i∈I .

The NESTOR Framework: How to Handle Hierarchical Data Structures 219

Definition 2. Let A be a set and let {Ai}i∈I be a family. Then {Ai}i∈I is a
Nested Set family if:

A ∈ {Ai}i∈I , (3.1)
∅ /∈ {Ai}i∈I , (3.2)
∀Ah, Ak ∈ {Ai}i∈I , h �= k | Ah ∩ Ak �= ∅ ⇒ Ah ⊂ Ak ∨ Ak ⊂ Ah. (3.3)

Thus, we define a Nested Set family (NS-F) as a family where three conditions
must hold. The first condition (3.1) states that set A which contains all the sets
in the family must belong to the NS-F. The second condition states that the
empty-set does not belong to the NS-F and the last condition (3.3) states that
the intersection of every couple of distinct sets in the NS-F is not the empty-set
only if one set is a proper subset of the other one [6,2].

Theorem 1. Let T (V, E) be a tree and let Φ be a family where I = V and
∀vi ∈ V , Vvi = Γ+

V (vi). Then {Vvi}vi∈V is a Nested Set family.

Proof. Let vr ∈ V be the root of the tree then Vvr = Γ+
V (vr) = V and thus

V ∈ {Vvi}vi (condition 3.1). By definition of descendant set of a node, ∀vi ∈ V ,
|Vvi | = |Γ+

V (vi)| ≥ 1 and so ∅ /∈ {Vvi}vi∈V (condition 3.2).
Now, we prove condition 3.3. Let vh, vk ∈ V , h �= k such that Vvh

∩ Vvk
=

Γ+
V (vh) ∩ Γ+

V (vk) �= ∅, ab absurdo suppose that Γ+
V (vh) � Γ+

V (vk) ∧ Γ+
V (vk) �

Γ+
V (vk). This means that the descendants of vh share at least a node with the

descendants of vk but they do not belong to the same subtree. This means that
∃ vz ∈ V | d−V (vz) = 2 but then T (V, E) is not a tree. �

Example 1. Let T (V, E) be a tree where V = {v0, v1, v2, v3} and E = {e01, e02,
e23}, thus Γ+

V (v0) = {v0, v1, v2, v3}, Γ+
V (v1) = {v1}, Γ+

V (v2) = {v2, v3} and
Γ+

V (v3)={v3}. Let {Vvi}vi∈V be a family, where Vv0 ={v0, v1, v2, v3}, Vv1 = {v1},
Vv2 = {v2, v3} and Vv3 = {v3}. Then, from theorem 1 it follows that {Vvi}vi∈V

is a NS-F.

In the same way we can define the Inverse Nested Set Model (INS-M):

Definition 3. Let A be a set and let {Ai}i∈I be a family. Then {Ai}i∈I is an
Inverse Nested Set family if:

∅ /∈ {Ai}i∈I , (3.4)

∀{Bj}j∈J ⊆ {Ai}i∈I ⇒
⋂

j∈J

Bj ∈ {Ai}i∈I . (3.5)

Thus, we define an Inverse Nested Set family (INS-F) as a family where two
conditions must hold. The first condition (3.4) states that the empty-set does
not belong to the INS-F. The second condition states that the intersection of
every subfamily of the INS-F belongs to the INS-F itself.

Theorem 2. Let T (V, E) be a tree and let Ψ be a family where I = V and
∀vi ∈ V , Vvi = Γ−

V (vi). Then {Vvi}vi∈V is an Inverse Nested Set family.

220 N. Ferro and G. Silvello

Proof. By definition of the set of the ancestors of a node, ∀vi ∈ V , |Vvi | =
|Γ−

V (vi)| ≥ 1 and so ∅ /∈ {Vvi}vi∈V (condition 3.4).
Let {Bvj}vj∈J be a subfamily of {Vvi}vi∈V . We prove condition 3.5 by in-

duction on the cardinality of J . |J | = 1 is the base case and it means that
every subfamily {Bvj}vj∈J ⊆ {Vvi}vi∈V is composed only by one set Bv1 whose
intersection is the set itself and belongs to the family {Vvi}vi∈V by definition.

For |J | = n−1 we assume that ∃ vn−1 ∈ V | ⋂
vj∈J Bvj = Bvn−1 ∈ {Vvi}vi∈V ;

equivalently we can say that ∃ vn−1 ∈ V | ⋂
vj∈J Γ−

V (vj) = Γ−
V (vn−1), thus,

Γ−
V (vn−1) is a set of nodes that is composed of common ancestors of the n − 1

considered nodes.
For |J | = n, we have to show that ∃ vt ∈ V | ∀ vn ∈ J, Bvn−1 ∩ Bvn = Bvt ∈

{Vvi}vi∈V . This is equivalent to show that ∃ vt ∈ V | ∀ vn ∈ J, Γ−
V (vn−1) ∩

Γ−
V (vn) = Γ−

V (vt).
Ab absurdo suppose that ∃ vn ∈ J | ∀ vt ∈ V, Γ−

V (vn−1) ∩ Γ−
V (vn) �= Γ−

V (vt).
This would mean that vn has no ancestors in J and, consequently, in V ; at
the same time, this would mean that vn is an ancestor of no node in J and,
consequently, in V . But this means that V is the set of nodes of a forest and not
of a tree. �

Example 2. Let T (V, E) be a tree where V = {v0, v1, v2, v3} and
E = {e01, e02, e23}, thus Γ−

V (v0) = {v0}, Γ−
V (v1) = {v0, v1}, Γ−

V (v2) = {v0, v2}
and Γ−

V (v3) = {v0, v2, v3}. Let {Vvi}vi∈V be a family where Vv0 = {v0}, Vv1 =
{v0, v1}, Vv2 = {v1, v2} and Vv3 = {v0, v2, v3}.Then, from theorem 2 it follows
that {Vvi}vi∈V is a INS-F.

4 Set-Theoretic Extensions of OAI-PMH

The defined set data models can be exploited to improve the data exchange
between DLSs in a distributed environment. In this context the standard de-
facto for metadata exchange between DLSs is the couple OAI-PMH and XML.
The main reason is the flexibility of both the protocol and the XML that fos-
ter interoperability between DLSs managing different kinds of metadata coming
from different kinds of cultural organizations. It is worthwhile to describe the
functioning of OAI-PMH to understand how it can take advantage of the NS-M
and INS-M and how it can be extended to cope with the exchange of hierar-
chical structures. OAI-PMH is so widely diffuse in the field of DL that we can
assume the reader is familiar with its underlying functioning. The main feature
of OAI-PMH we exploit is selective harvesting; this is based on the concept of
OAI-set, which enables logical data partitioning by defining groups of records. Se-
lective harvesting is the procedure that permits the harvesting only of metadata
owned by a specified OAI-set. In OAI-PMH a set is defined by three compo-
nents: setSpec which is mandatory and a unique identifier for the set within the
repository, setName which is a mandatory short human-readable string naming
the set, and setDesc which may hold community-specific XML-encoded data
about the set.

The NESTOR Framework: How to Handle Hierarchical Data Structures 221

OAI-set organization may be hierarchical, where hierarchy is expressed in the
setSpec field by the use of a colon [:] separated list indicating the path from
the root of the set hierarchy to the respective node. For example if we define an
OAI-set whose setSpec is “A”, its subset “B” would have “A:B” as setSpec.
In this case “B” is a proper subset of “A”: B ⊂ A. When a repository defines
a set organization it must include set membership information in the headers
of the records returned to the harvester requests. Harvesting from a set which
has sub-sets will cause the repository to return the records in the specified set
and recursively to return the records from all the sub-sets. In our example, if we
harvest set A, we also obtain the records in sub-set B [13].

In OAI-PMH it is possible to define an OAI-set organization based on the
NS-M or INS-M. This means that we can treat the OAI-sets as a Nested Set
Family (NS-F) or as an Inverse Nested Set Family (INS-F). The inclusion order
between the OAI-sets is given by its identifier which is a <setspec> value. This
<setspec> value is also added in the header of every record belonging to an
OAI-set. In the following we describe how it is possible to create a Nested Set
family of OAI-Set and afterward how the same thing can be done with an Inverse
Nested Set family.

Let O be a Nested Set family and let I be the set of the <setspec> values
where i ∈ I = {s0 : s1 : . . . : sj} means that ∃ Oj ∈ {Oi}i∈I | Oj ⊂ . . . ⊂
O1 ⊂ O0. Every Oi ∈ {Oi}i∈I is an OAI-set uniquely identified by a <setspec>
value in I. The <setspec> values for the Ok ∈ {Oi}i∈I are settled in such a way
to maintain the inclusion order between the sets. If an Ok has no superset its
setspec value is composed only by a single value (<setspec>sk</setspec>).
Instead if a set Oh has supersets, e.g. Oa and Ob where Ob ⊂ Oa, its setspec
value must be the combination of the name of its supersets and itself separated
by the colon [:] (e.g. <setspec>sa : sb : sh</setspec>). Furthermore, let R =
{r0, . . . , rn} be a set of records, then each ri ∈ Oj must contain the setspec of
Oj in its header.

Throughout {Oi}i∈I it is possible to represent a hierarchical data structure,
such as a tree, in OAI-PMH providing a granularity access to the items in the
hierarchy and at the same time enabling the exchange of a single part of the
hierarchy with the possibility of reconstructing the whole hierarchy whenever it
is necessary. The next section presents a concrete use case of the NS-F mapping
a tree data structure enabling its representation and exchange by means of OAI-
PMH; a visual idea of this procedure can be seen in Fig. 4.

In the same way we can apply the INS-M to OAI-PMH; Let U be an Inverse
Nested Set family and let J be the set of the <setspec> values where j ∈
J = {s0 : s1 : . . . : sk} means that ∃ Uk ∈ {Uj}j∈J = Uk ⊂ . . . ⊂ U1 ⊂
U0. In {Uj}j∈J differently that in {Oi}i∈I the following case may happen: Let
Ui, Uk, Uw ∈ {Uj}j∈J then it is possible that Uw ⊂ Ui and Uw ⊂ Uk but either
Ui � Uk and Uk � Ui. If we consider {Uj}j∈J composed only of Ui, Uk and
Uw, the identifier of Ui is <setspec>si</setspec> and the identifier of Uk is
<setspec>sk</setspec>. Instead, the identifier of Uw must be <setspec>si :
sw</setspec> and <setspec>sk : sw</setspec> at the same time; this means

222 N. Ferro and G. Silvello

 r

 x k y

 s

OAI-PMH

INS-F

NS-F
These three
OAI-sets
contain the
same records

O

U

<setspec>sr</setspec>
<setspec>sr : sk</setspec>
<setspec>sr : sk : ss</setspec>
<setspec>sr : sy</setspec>
<setspec>sr : sx</setspec>

<setspec>sx : sr</setspec>

<setspec>sx</setspec>

<setspec>ss : sk : sr</setspec>
<setspec>ss : sk</setspec>

<setspec>ss</setspec>

<setspec>sy : sr</setspec>

<setspec>sy</setspec>

Fig. 3. The setspec values of the OAI-sets belonging to the NS-F {Oi}i∈I and the
INS-F {Uj}j∈J obtained from a sample tree

that in {Uj}j∈J there are two distinct OAI-sets, one identified by <setspec>si :
sw</setspec> and the other identified by <setspec>sk : sw</setspec>. This is
due to the fact that the intersection between OAI-sets in OAI-PMH is not defined
set-theoretically; indeed, the only way to get an intersection of two OAI-sets is
enumerating the records. This means that we can know if an OAI-record belongs
to two or more sets just by seeing whether there are two or more <setspec>
entries in the header of the record. In this case the records belonging to Uw will
contain two <setspec> entries in their header: <setspec>si : sw</setspec> and
<setspec>sk : sw</setspec>; note that only the <setspec> value is duplicated
and not the records themselves.

In Figure 3 we can see how a sample tree can be represented in OAI-PMH ex-
ploiting the OAI-sets organization. In the upper part we reported the <setspec>
values of the OAI-sets organized in a NS-F {Oi}i∈I , instead in the lower part
we reported the <setspec> values of the OAI-sets organized in INS-F {Uj}j∈J .

With this view of OAI-PMH we can set a hierarchical structure of items as a
well-defined nested set organization that maintains the relationships between the
items just as a tree data structure does and moreover we can exploit the flexibility
of the sets exchanging a specific subset while maintaining the integrity of the data.
Indeed, in the header of the items there is the set membership information which,
if necessary, enables the reconstruction of the hierarchy or part of it. Throughout
the NS-M and INS-M it is possible to handle hierarchical structures in OAI-PMH
simply by exploiting the inner functionalities of the protocol; indeed, no change of
OAI-PMH is required to cope with the presented set data models.

The choice between NS-M and INS-M is based on the application context:
NS-M fosters the reconstruction of the lower levels of a hierarchy starting from
a node, vice versa INS-M fosters the reconstruction of the upper levels. This
difference between the models should become clearer if we consider a relevant
example of how OAI-PMH and the presented set data models can be successfully
used to overcome well-known problems in data exchange.

The NESTOR Framework: How to Handle Hierarchical Data Structures 223

4.1 The Set Data Models and OAI-PMH Applied to the Archives

This subsection describes how we can exchange archival metadata in a dis-
tributed environment and it is a continuation of the work presented in [5]. A
brief introduction regarding the archive peculiarities is worthwhile for a bet-
ter understanding of the proposed solutions. An archive is a complex cultural
organization which is not simply constituted by a series of objects that have
been accumulated and filed with the passing of time. Archives have to keep the
context in which their documents have been created and the network of rela-
tionships among them in order to preserve their informative content and provide
understandable and useful information over time. The context and the relation-
ships between the documents are preserved thanks to the strongly hierarchical
organization of the documents inside the archive. Indeed, an archive is divided
by fonds and then by sub-fonds and then by series and then by sub-series and
so on; at every level we can find documents belonging to a particular division
of the archive or documents describing the nature of the considered level of the
archive (e.g. a fond, a sub-fonds, etc.). The union of all these documents, the
relationships and the context information permits the full informational power
of the archival documents to be maintained.

In the digital environment an archive and its components are described by the
use of metadata; these need to be able to express and maintain such structure
and relationships. The standard format of metadata for representing the complex
hierarchical structure of the archive is Encoded Archival Description (EAD) [9],
which reflects the archival structure and holds relations between documents in
the archive. On the other hand to maintain all this information an EAD file turns
out to be a very large XML file with a deep hierarchical internal structure. Thus,
accessing, searching and sharing individual items in the EAD might be difficult
without taking into consideration the whole hierarchy. On the other hand, users
are often interested in the information described at the item level, which is
typically buried very deeply in the hierarchy and might be difficult to reach [11].
These issues can be overcome by describing the hierarchical organization of an
archive as a family of sets in the NS-M, where the documents belonging to a
specific division of the archive become metadata belonging to a specific set.

In Fig. 4 we can see two approaches to representing the archival organization
and documents. The first approach is the EAD-like one in which the whole
archive is mapped inside a unique XML file which is potentially very large and
deeply hierarchical. All information about fonds, sub-fonds or series as well as the
documents belonging to a specific archival division are mapped into several XML
elements in the same XML file. With this approach we cannot exchange precise
metadata through OAI-PMH, rather we have to exchange the whole archive. At
the same time it is not possible to access a specific piece of information without
accessing the whole hierarchy [10].

The second approach is based on the NS-M. The archival hierarchy is mapped
into a family Φ that for theorem 1 is a NS-F. In Φ the documents are represented
as items belonging to the opportune set. In this way the context information and
the relationships between the documents are preserved thanks to the nested set

224 N. Ferro and G. Silvello

Fonds

Sub-Fonds

Sub-Fonds Serie

Serie

Serie

documents

documents

documents

<eadheader>
 [...]
<eadheader>
<archdesc level=”fonds”>
 [...]

<did> [...] </did>
 <dsc label="Fonds">

 [...]
 <c01 label="Sub-fondsA">

[...]
 </c01>

 <c01 label="Sub-fondsB">
 [...]
 <c02 label="SerieA">

 [...]
</c02>

 <c02 label="SerieB">
 [...]

 </c02>
 <c02 label="SerieC">

 [...]
 </c02>
 </c01>
 </dsc>
</archdesc>

Hierarchical structure of the archive

Tree structure of a unique metadata
encoding the archive and the archival

documents

Fonds

Sub-Fonds

Sub-Fonds

Serie
Serie

Serie

Documents

The Nested Set Model of the archive: the
sets maintain the structure and the

documents are items belonging to the sets

The Nested Set Model applied to OAI-PMH
organization. (Here is reported the XML

code of only one sample metadata)

<setspec>0001</setspec>
<setname>Fonds</setname>

<setspec>0001:0001</setspec>
<setname>Sub-FondsA</setname>

<setspec>0001:0002</setspec>
<setname>Sub-FondsB</setname>

<setspec>0001:0002:0001</setspec>
<setname>SerieA</setname>

<setspec>0001:0002:0002</setspec>
<setname>SerieB</setname>

<setspec>0001:0002:0003</setspec>
<setname>SerieC</setname>

<record><header><identifier>idDocA</
identifier><datestamp>2009-03-18</
datestamp><setSpec>0001</setSpec></
header><metadata>[...]
</metadata></record>

S
et

 D
at

a
M

od
el

 A
pp

ro
ac

h

T
h

e
 w

h
o

le
 a

rc
h

iv
e

 i
s

 e
x

c
h

a
n

g
e

d
 b

y
 O

A
I-

P
M

H
 a

s
 a

 u
n

iq
u

e
 X

M
L

fi
le

O
A

I-
S

e
ts

O
A

I
re

c
o

rd
s

Fig. 4. The hierarchical structure of an archive mapped into a metadata with a tree
data structure, the alternative mapping in the NS-M and in OAI-PMH

organization and at the same time they are not bound to a rigid structure.
Then, Φ is represented in OAI-PMH throughout the family {Oi}i∈I of OAI-sets
obtained setting of the <setspec> values as described in the previous subsec-
tion. For instance, the set obtained from the root has a “0001” identifier, the set
mapped from the children of the root are identified by “0001:0001”, “0001:0002”
and so on. Thus, from the identifier of an OAI-set we can reconstruct the hier-
archy through the ancestors to the root. By means of OAI-PMH it is possible to
exchange a specific part of the archive while at the same time maintaining the
relationships with the other parts of it. The NS-M fosters the reconstruction of
the lower levels of a hierarchy; thus, with the couple NS-M and OAI-PMH ap-
plied to the archive, if a harvester asks for an OAI-set representing for instance
a sub-fond it recursively obtains all the OAI-subsets and items in the subtree
rooted in the selected sub-fonds.

The NESTOR Framework: How to Handle Hierarchical Data Structures 225

This approach can also be applied with the INS-M mapping the archival hier-
archy into a INS-F {Uj}J∈J following the procedure illustrated in the previous
section. In this case there is a big difference in the harvesting procedure; indeed,
if a harvester asks for an OAI-set representing for instance an archival series it
recursively obtains all the OAI-subsets and records in the path from the archival
series to the principal fond that is the root of the archival tree. The choice be-
tween a NS-M or INS-M should be done on the basis of the application context.
In the archival context the application of the INS-M would be more significant
than the NS-M. Indeed, often the information required by a user stored in the
external nodes of the archival tree [11]. If we represent the archival tree by means
of the INS-F, when a harvester requires an external node of the tree it will re-
ceive all the archival information contained in the nodes up to the root of the
tree. This means that a Service Provider can offer a potential user the required
information stored in the external node and also all the information stored in
its ancestors nodes. This information is very useful for inferring the context of
an archival metadata which is contained in the required external node; indeed,
the ancestor nodes represent and contain the information related to the series,
sub-fonds and fonds in which the archival metadata are classified. The INS-M
fosters the reconstruction of the upper levels of a hierarchy that in the archival
case often contain contextual information which permit the relationships of the
archival documents to be inferred with the other documents in the archive and
with the production and preservation environment.

5 Conclusions

We have discussed the relevance of the hierarchical structures in computer sci-
ence with a specific examination of the DLSs. We have presented the tree data
structure and highlighted the more relevant aspects to our treatment of hier-
archical structures. We have also presented the NESTOR framework defining
two set-theoretical data models called Nested Set Model and Inverse Nested Set
Model as alternatives of the tree data structure. Furthermore, we have shown
how a tree can be mapped in one model or the other. These models maintain
the peculiarities of the tree with the flexibility and accessibility of sets. We have
shown how the protocol OAI-PMH can be extended by exploiting the NS-M or
the INS-M. Lastly we have presented a significant application of the presented set
data models in conjunction with OAI-PMH represented by the archives. Indeed,
we have shown how the hierarchical archive organization can be represented
and exchanged in OAI-PMH and thus between different DLSs in a distributed
environment.

Acknowledgments

The authors wish to thank Maristella Agosti for her support and collaboration
to bring forth this work. The work reported has been supported by a grant from
the Italian Veneto Region. The study is also partially supported by the TELplus

226 N. Ferro and G. Silvello

Targeted Project for Digital Libraries, as part of the eContentplus Program of
the European Commission (Contract ECP-2006-DILI- 510003).

References

1. Collins Dictionary of The English Language. William Collins Sons & Co.Ltd (1979)
2. Anderson, K.W., Hall, D.W.: Sets, Sequences, and Mappings: The Basic Concepts

of Analysis. John Wiley & Sons, Inc., New York (1963)
3. Celko, J.: Joe Celko’s SQL for Smarties: Advanced SQL Programming. Morgan

Kaufmann, San Francisco (2000)
4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-

bridge University Press, Cambridge (2002)
5. Ferro, N., Silvello, G.: A Methodology for Sharing Archival Descriptive Metadata

in a Distributed Environment. In: Christensen-Dalsgaard, B., Castelli, D., Am-
mitzbøll Jurik, B., Lippincott, J. (eds.) ECDL 2008. LNCS, vol. 5173, pp. 268–279.
Springer, Heidelberg (2008)

6. Halmos, P.R.: Naive Set Theory. D. Van Nostrand Company, Inc., New York (1960)
7. Jech, T.: Set Theory - The Third Millenium Edition. Springer, Heidelberg (2003)
8. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Addison Wesley,

Reading (1997)
9. Pitti, D.V.: Encoded Archival Description. An Introduction and Overview. D-Lib

Magazine 5(11) (1999)
10. Prom, C.J., Rishel, C.A., Schwartz, S.W., Fox, K.J.: A Unified Platform for

Archival Description and Access. In: Rasmussen, E.M., Larson, R.R., Toms, E.,
Sugimoto, S. (eds.) Proc. 7th ACM/IEEE Joint Conference on Digital Libraries
(JCDL 2007), pp. 157–166. ACM Press, New York (2007)

11. Shreeves, S.L., Kaczmarek, J.S., Cole, T.W.: Harvesting Cultural Heritage Meta-
data Using the OAI Protocol. Library Hi Tech. 21(2), 159–169 (2003)

12. Van de Sompel, H., Lagoze, C., Nelson, M., Warner, S.: Implementation Guidelines
for the Open Archive Initiative Protocol for Metadata Harvesting. Technical report,
Open Archive Initiative (2002)

13. Van de Sompel, H., Lagoze, C., Nelson, M., Warner, S.: Implementation Guidelines
for the Open Archive Initiative Protocol for Metadata Harvesting - Guidelines for
Harvester Implementers. Technical report, Open Archive Initiative, p. 6 (2002)

	The NESTOR Framework: How to Handle Hierarchical Data Structures
	Motivations
	The Tree Data Structure
	The Set Data Models
	Set-Theoretic Extensions of OAI-PMH
	The Set Data Models and OAI-PMH Applied to the Archives

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

