The FAST Annotation Service

Nicola Ferro

University of Padua, Italy
ferro@dei.unipd. it

Abstract. This paper presents the FAST annotation service, which is
able to add annotation functionalities to both digital libraries and the
Web by supporting annotations that range from content to metadata. It
discusses the annotation model adopted by FAST and its XML represen-
tation; the architecture of the annotation service; and how annotations
can be exploited to develop search and retrieval algorithms.

1 Introduction

Almost everybody is familiar with annotations and has his own intuitive idea
about what they are, drawn from personal experience and the habit of dealing
with some kind of annotation in every day life, which ranges from jottings for
the shopping to taking notes during a lecture or even adding a commentary
to a text. Therefore, annotations have been adopted in a variety of different
contexts, such as content enrichment, data curation, collaborative and learning
applications, and social networks, as well as in various information management
systems, such as the Web (semantic and not), digital libraries, and databases.

The Flexible Annotation Service Tool (FAST) covers many of the uses and
applications of annotations discussed above, since it is able to represent and
manage annotations which range from metadata to full content; its flexible and
modular architecture makes it suitable for annotating general Web resources as
well as digital objects managed by different digital library systems; the anno-
tation themselves can be complex multimedia compound objects, with varying
degree of visibility which ranges from private to shared and public annotations
and different access rights. The FAST annotation service has proven its flexibil-
ity and adaptability to different applicative contexts in many different ways. It
has been integrated into the DelosDLMS [3], the prototype of next generation
digital library system developed by DELGOS, the European network of excellence
on digital libraries. It has been used as architectural framework for the DiLAS
project [1]. Finally, a completely new and re-engineerd version of it has been
recently integrated into The European Library (TEL)! development portal; The
European Library is the portal which offers access to 48 national iibraries in
more than 20 languages and represents a first step towards the creation of the
European Digital Library.

! nttp://www.theeuropeanlibrary.org/

169

The paper is organised as follows: Section 2 presents the annotation model
supported by the FAST annotation service; Section 3 introduces the architecture
of FAST: Section 4 discusses our search and retrieval framework; finally, Section 5
draws some conclusions.

2 Annotation Model

FAST adopts and implements the formal model for annotations proposed in [2]
which has been also utilised in the reference model for digital libraries? de-
veloped by DELOS [4] and now carried on by DL.org?, the European coordi-
nation action on digital library interoperability, best practices and modelling
foundations. The formal model provided us with a sound basis for developing an
eXtensible Markup Language (XML) Schema? for FAST, which is available at
http://ims.dei.unipd.it/xml/fast-schema-instance and is shown in Fig-
ure 1.

According to this model, annotations are compound multimedia objects con-
stituted by different signs of annotation which materialize the annotation itself.
For example, we can have teztual signs, which contain the textual content of the
annotation, #mage signs, if the annotation is made up of images, and so on. In
turn, each sign is characterized by one or more meanings of annotation which
specify the semantics of the sign. Moreover, an annotation is uniquely identified
by an handle, has a scope which defines its visibility, and can be shared with
different groups of users.

The annotation element provides the basis for modelling annotations and
has the following attributes: identifier is a unique identifier for the annotation,
e.g. an Uniform Resource Identifier (URI); namespace is the namespace to which
the annotation belongs; mime-type is the Multipurpose Internet Mail Extensions
(MIME) media type of the annotation and specifies the kind of content of the
annotation; scope specifies wheter the annotation is private, shared, or public;
created and modified represent, respectively, the creation timestamp and the
last modification timestamp of the annotation.

The user element represents a user, who is the author of the annotation,
and it is characterized by the following attributes: identifier is the username
of the user; namespace is the namespace to which the user belongs; password is
the password of the user; full-name is the complete name of the user; e-mail is
the e-mail address of the user; and language and country are, respectively, the
language and country of the user; the groups elements specifies to which groups
the user belongs.

The group element represents a users group and it is characterized by the
following attributes: the identifier of the group, the namespace to which the
group belongs, and a description of the group; the users elements specifies
which users belong to the group.

2 http://www.delos. info/ReferenceModel/
3 http://www.dlorg.eu/
4 http://www.w3.org/XML/Schema

170

e
{identifier |

Lize groups -z Lorowp -%}‘J
LR s B

{signs = Bfsiond

{meaning &

Frefationship |

(=, digital-object

relate-to &-i==F{ anchor &

shatings &-=o{ftem ==

Fig. 1. XML Schema of the FAST annotation model.

The sign element has an unique identifier, a mime-type, and a language,
if its content is textual. The content element represents the actual content of
the sign of annotation, e.g. a piece of text or an image, according to its MIME
type. If the MIME type of the sign is textual, then content contains the textual
representation of the sign; otherwise, for binary MIME types, it contains their
Base64 encoding. The meanings elements contains the meanings of annotations
associated with the given sign.

The meaning element is characterised by a unique identifier, a namespace
and a description. A meaning can be in relationship with other meanings,
via the relating-meanings and related-meanings elements, that allow us to
define a graph of meanings where the relationship element describes the kind
of relationship between two meanings of annotation and organize them into some
kind of taxonomy.

171

The annotate element links the sign to the digital object that it annotates.
Note that, once we have annotated a digital object, the annotation itself can
be considered as a digital object eligible to be annotated to. Users can therefore
create not only sets of annotations concerning a digital object, but also threads of
annotations, i.e. annotations which reply to one another. The relate~to element
optionally associates a sign of annotation with the digital object it refers to.

In order to locate a specific part of the annotated or related digital object,
both the annotate and the relate-to elements make use of an anchor which
allows us to identify the part of the digital object which has to be annotated. It
has the following attributes: an unique identifier of the anchor; the pointer
attribute identifies a portion of the digital object, e.g. it could be an XPath®
expression when an XML document is annotated; offset selects a starting off-
set with respect to the portion identified by pointer, e.g. the initial character
within an XML element; extent specifies the spread of the anchor, e.g. the num-
ber of characters that are annotated within the portion identified by pointer
starting from offset; finally, mime-type indicates the specific MIME type of
the anchored part, since this could be different from the MIME type of the
whole digital object, and helps in the interpretation of the pointer, offset,
and extent attributes which depends on the actual MIME type of the anchored
part.

Finally, the sharings element allows an annotation to be shared by one or
more groups of users. It contains the permission element, which specifies the
privileges, e.g. read or modify, granted to a group sharing the annotation.

3 Avrchitecture

Figure 2 shows the architecture of the FAST annotation service. It consists of
three layers — data, application and interface logic layers — in order to achieve
a better modularity and to properly describe the behaviour of the service by
isolating specific functionalities at the proper layer. A set of interfaces defines the
behaviour of each component of FAST in abstract terms. Then, a set of abstract
classes partially implement the interfaces in order to define the actual behaviour
common to all of the implementations of each component. Finally, the actual
implementation is left to the concrete classes, inherited from the abstract ones,
thus giving FAST the additional possibility of fitting into different architectures.

The FAST annotation service is accessible to client applications by means
of a RESTful Web application [5] which offers several APIs build around the
following main resources:

— namespace: manages all the operations related to namespaces;

— annotation: manages all the operations related to annotations;

— meaning: manages all the operations related to meanings of annotation;
— group: manages all the operations related to groups of users;

— wuser: manages all the operations related to users;

5 http://www.w3.org/TR/xpath20/

172

TELplus DiLAS

DelosDLME w0y

Interface Logic |

Namespace

| CroationTasks

Applicaf bn Logic

Namespace |
DAO

Data Logic

] Patabases [[}
S and T
Indexes ll

Fig. 2. Architecture of the FAST annotation service.

— search: manages the search and retrieval of documents and annotations ac-
cording search framework described in the following section.

Some resources are publicly available, some others require authentication be-
fore being accessed, according to the basic HyperText Transfer Protocol (HTTP)
authentication scheme.

The logging infrastructure, which lays behind all the components of the FAST
annotation service, captures information such as the user name, the Internet
Protocol (IP) address of the connecting host, the action that has been invoked
by the user, the messages exchanged among the components of the system in
order to carry out the requested action, any error condition, and so on. Thus,
besides offering us a log of the system and user activities, it allows us to fine trace
the provenance of each piece of data from its entrance in the system to every
further processing on it. Moreover, as far as the FAST RESTful Web Application
is concerned, it captures also the HTTP logs and represents them according to
the W3C Extended Log File Format® .

The FAST annotation service has been developed by using the Java” pro-
gramming language, which ensures good portability of the system across differ-
ent platforms. We used the PostgreSQL® database management system for the
actual storage of the annotations and its full text extension for indexing and

5 http://www.w3.org/TR/WD-1logfile.htnl

" http://java.sun.com/
8 http://www.postgresql.org/

173

searching the full text components of an annotation. The Apache Tomcat® Web
container and the Restlet!? framework have been used for developing the FAST
RESTful Web Application.

4 'The FAST Search Framework

The problem of information access and retrieval by exploiting annotations com-
prises two different issues: the first concerns the search and retrieval of the an-
notations themselves; the second regards the search and retrieval of annotated
documents. The first case requires the design and development of algorithms able
to express complex queries which take into account both the different features of
the annotations and the context to which annotations belong. The second case
calls for algorithms able to estimate the relevance of annotated documents with
respect to a user information need on the basis of the annotations on them.

The presence of both structured and unstructured content within an anno-
tation calls for different types of search functionalities, since structured content
can be dealt with exact match searches while unstructured content can be dealt
with best match searches and they may need to be merged together in a query by
using boolean clauses. Nevertheless, boolean clauses are best suited for dealing
with exact match searches and they need to be somewhat extended to also deal
with best match searches. This is discussed in section 4.1.

The hypertext that connects documents to annotations calls for a search
strategy that takes it into consideration and allows us to modify the score of
annotations and/or documents according to the paths in the hypertext. For
example, we could consider that an annotation, retrieved in response to a user
query, is more relevant if it is part of a thread where other annotations have
also been retrieved in response to the same query rather than if it is part of a
thread where it is the only annotation that matches the query. This is discussed
in section 4.2.

4.1 Annotation Extended Boolean Retrieval

In order to be able to express queries that range from pure boolean queries to
pure vector-space queries, we make use of the the P-norm extended boolean
model proposed by [6], which is capable of dealing with and mixing both exact
and best match queries.

Consider a set of terms ¢4, g, ..., t, and let sim(a, ;) € [0, 1] be the similarity
score of term ¢; with respect to annotation a; sim(a, t;) = 0 if the term ¢; is not
present in the annotation a.

Let p > 1 be a real number indicating the degree of strictness of the boolean
operator. A generalized or-query is expressed as gor(p) = [t1 017ty 0r” - - - o1 1,];
a generalized and-query is expressed as Gana(p) = [f1 and”t;and” - --and”t,].

¥ http://tomcat.apache.org/
Y0 nttp://www.restlet.org/

174

The extended boolean similarity scores between an annotation and a query
are defined as:
sim(a, t1)? + sim(a, t2)? + - - - + sim(a, tn)” v
n
(1 — sim(a, t1))? + (1 = sim(a, t2))? +- -+ (1 = sim(a, t,))?
n

simy” (a,q) = {

sim?“d (a,q) =1— {

where t; indicates a generic term of the query ¢. Note that for not-queries you
have to substitute 1 — sim(a, ;) to sim(a, t;) as term weight.

By varying the value of p between 1 and oo, it is possible to obtain a query
processing intermediate between a pure vector-processing model (p = 1) and a
traditional boolean processing (p = 00), as discussed in [6] to which the reader
can refer for further details.

4.2 Annotation Hypertext-driven Retrieval

Consider the document-annotation hypertext Hg, = (DO, E) where DO is a
set of digital objects (either documents or annotations) and E is a set of edges
indicating that an annotation is annotating a digital object, as introduced in [2].

The hypertext similarity score between an annotation and a query is
defined as:

a—1 1 Z sim(ag, q) + sim™ (ay,)
a |succ(a)l 2

1
sim™(a, g) = —sim(a, g) +
(8%

ap €succ(a)

where sim(a,) € [0, 1] is a generic similarity function between an annotation and
a query, succ(a) is a function that returns the set of successors of an annotation
a; and «a is a real number called the annotation thread damping factor. We
consider that sim(a;,q) = 0 for those annotations that do not match the query.

sim™(a, q) computes the weighted average between sim(a, q), the similarity
score of an annotation with respect to a query, and the similarity scores which
come from the thread to which the annotation belongs. In particular, the thread
similarity scores are given by the average between the similarity scores of the
successors of a and the hypertext similarity scores of the successors of a; in
other words, the hypertext similarity score recursively averages the similarity
scores of the annotations that belong to the same thread of the given annotation
a. Furthermore, simgf(a, q) penalizes similarity scores which come from lengthy
paths, because for a path P = ag...ak the similarity score sim(ag, q) of ay is
weighted 2% .

By varying the value of a between 0 and oo, it is possible to obtain a query
processing intermediate between a traditional information retrieval model (a =
1), when sim”*(a, ¢) = sim(a, ¢) and only the similarity between the annotation
and the query is taken into account, and a pure hypertext driven retrieval model

. LRt
(o = 00), when simﬁc“;(a, q) = NT}W > b”n(a’””QHSHHO"(a’“’Q) and only the
arEsucc(a)

thread to which the annotation belongs is taken into account.

175

e

Finally, the hypertext-driven retrieval model allows us to compute a similarity
score also for the documents that have been annotated, so that it is possible to
search and retrieve documents in response to a user query by means of their
annotations. The similarity score by annotation between the document and
a query is defined as:

1
i G d — .. ht
blma(vQ) 1SUCC<CZ>| EZ() Sl (a7Q)

Basically, the similarity score by annotation of a document averages the hy-
pertext similarity scores of the annotations that are annotating the document.

5 Conclusions

We have discussed the design and development of the FAST annotation service,
by describing its annotation model and architecture. In addition, we have in-
troduced a general framework which allows us to develop annotation retrieval
algorithms based on a combination of extended boolean retrieval operators and
hypertext driven information retrieval.

Acknowledgements

The work reported has been partially supported by the TELplus Targeted Project
for digital libraries, as part of the eContentplus Program of the European Com-
mission (Contract ECP-2006-DILI-510003).

References

1. M. Agosti, H. Albrechtsen, N. Ferro, 1. Frommholz, P. Hansen, N. Orio, E. Panizzi,
A. M. Pejtersen, and U. Thiel. DIiLAS: a Digital Library Annotation Service. In
J.-F. Boujut, editor, Proc. International Workshop on Annotation for Collaboration
~ Methods, Tools, and Practices (IWAC 2005), pages 91-101. CNRS - Programme
société de 'information, 2005.

2. M. Agosti and N. Ferro. A Formal Model of Annotations of Digital Content. ACM
Transactions on Information Systems (TOIS), 26(1):3:1-3:57, 2008.

3. M. Agosti and N. Ferro. Adding Advanced Annotation Functionalities to an Exist-
ing Digital Library. In A. D’Atri, M. De Marco, and N. Casalino, editors, Interdis-
ciplinary Aspects of Information Systems Studies, pages 279-286. Physica-Verlag,
Heidelberg, Germany, 2008.

4. L. Candela, D. Castelli, N. Ferro, Y. Ioannidis, G. Koutrika, C. Meghini, P. Pagano,
S. Ross, D. Soergel, M. Agosti, M. Dobreva, V. Katifori, and H. Schuldt. The DE-
LOS Digital Library Reference Model. Foundations for Digital Libraries. ISTI-CNR
at Gruppo ALI, Pisa, Italy, http://www.delos.info/files/pdf/ReferenceModel/
DELOS_DLReferenceModel_0.98.pdf, December 2007.

5. R.T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology (TOIT), 2(2):115-150, 2002.

6. G. Salton, E. A. Fox, and H. Wu. Extended Boolean Information Retrieval. Com-
munications of the ACM (CACM), 26(11):1022-1036, November 1983.

176

	20090903123339134
	20090903123355255
	20090903123403968
	20090903123419806
	20090903123430543
	20090903123443321
	20090903123453616
	20090903123506970

