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Abstract. We present and describe the NEsted SeTs for Object hi-
eRarchies (NESTOR) Model that allows us to model, manage, access
and exchange hierarchically structured resources. The NESTOR Model
is based on two set data models which can be put in relation with the
tree data structure. We present these models highlighting their properties
and the relationships with the tree.

We present a concrete use case based on archives that are fundamental
and challenging entities in the digital libraries panorama. Within the
archives we show how an archive can be represented through set data
models, and how their properties can be used in this context; in partic-
ular, we focus of the problem of finding the lowest common ancestor.

1 Introduction

In Digital Libraries objects are often organized in hierarchies to help in repre-
senting, managing or browsing them. For instance, the documents in an archive
are organized in a hierarchy divided into fonds, sub-fonds, series, sub-series and
so on. Representing, managing, preserving and sharing efficiently and effectively
the hierarchical structures is a key point for the development and the consolida-
tion of Digital Library technology and services.

In this paper we provide a further analysis of the NEsted SeTs for Object
hieRarchies (NESTOR) model which defines two set data models that we call:
the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-M)” [7].
These models are defined in the context of the ZFC (Zermelo-Fraenkel with the
axiom of Choice) axiomatic set theory [3], exploiting the advantages of the use
of sets in place of a tree structure. The foundational idea behind these set data
models is that an opportune set organization can maintain all the features of a
tree data structure with the addition of some new relevant functionalities. We
define these functionalities in terms of flexibility of the model, rapid selection
and isolation of easily specified subsets of data and extraction of only those data
necessary to satisfy specific needs.

In this work we focus on the operations that we can perform in these set data
models and we provide a use case in order to clarify the possible applications of
the models as well as of their operations. In particular, we focus on the archives
because they are one of the main organizations of interest for Digital Libraries;



they are a meaningful example of the need to support document management
and access. The fundamental characteristic of archives resides in their internal
hierarchical organization that constitutes a challenge for their representation,
managing and, exchange as well as for their manipulation and querying.

In the presentation of the NESTOR Model, we concentrate on the INS-M and
on how it can be used to model an archive and its resources. Furthermore, we
analyze how we can define the lowest common ancestor in a hierarchy modeled by
means of the INS-M. We highlight the problem of finding of the lowest common
ancestor because it is an intrinsically beautiful and widely studied problem as
well as a frequently performed operation in the archival context.

This paper is organized as follows: Section 2 introduces the background con-
cepts on which this work is based; we introduce the basic set-theoretical concepts
we are going to exploit and a brief definition of the tree data structure. Further-
more, we describe the basic principles of the archival practice and the standards
to model and describe an archive in a digital environment. Section 3 presents
the formal definition of the INS-M and proves the theorems defining how we
can map a tree in the INS-M and vice versa. Moreover, we introduce a propo-
sition showing the correlation between some operations in the tree and in the
INS-M. Section 4 details how it is possible to define the lowest common ancestor
in the INS-M. Section 5 presents a use case based on the archives where the
INS-M properties are exploited; in particular, we explain how the INS-M has
been adopted and exploited in the context of the SIAR (Sistema Informativo
Archivistico Regionale) project. Lastly, in Section 6 we draw some final remarks.

2 Background

2.1 Set Theory: Collections of Subsets

We assume the reader to be confident with the basics of set theory that we
cannot extensively treat here for space reasons [9]. The formal basis of this work
is based on the concept of “Collection of subsets” that we introduce starting
from the well-know concept of power set.

Let E be a set, we denote with P(E) the set containing all and only the
subsets of E, that is, a set A belongs to P(E) if and only if it belongs to E.
P(E) is called the power set of E. We understand that if E is a set, then there
exists a set (collection) P such that if A ⊆ E, then A ∈ P. The power set of a set
E contains all the subsets of E, thus any collection of sets C composed by some
subsets of E is a subcollection of the power set P(E), that is: C(E) ⊆ P(E). Let
us consider a set E and a collection of subsets C(E), we say that {H,K} ∈ C
are incomparable, say H||K, is H * K ∧K * H.

The following definition points out an important construction that we are
going to exploit extensively in this work which is the collection of proper sub-
sets/supersets.

Definition 1 Let C be a collection of sets and A ∈ C be a set. We define
S+(A) = {B ∈ C : B ⊂ A} to be the collection of proper subsets of A



in C. We define S−(A) = {B ∈ C : A ⊂ B} to be the collection of proper
supersets of A in C.

It is worthwhile for the rest of the work to introduce a formal definition of
“family of subsets”.

Definition 2 Let A be a set, I a non-empty set and C a collection of sets of A.
Then a function A : I → C is defined to be a family of subsets of A. We call I
the index set and we say that the collection C is indexed by I.

It is possible to use the extended notation {Ai}i∈I to indicate the family of
subsets A : I → C. The notation Ai ∈ {Ai}i∈I means that ∃ i ∈ I | A(i) = Ai.
In the rest of the work to indicate a family of subsets A : I → C we will use the
shorthand notation {AI}.

A frequently used concept is the one of subfamily: We indicate with {AJ}
the subfamily of {AI} defined as its restriction to J ⊆ I and we say that
{AJ} ⊆ {AI}.

2.2 The Tree Data Structure

The most common and diffuse way to represent a hierarchy is the tree data struc-
ture, which is one of the most important non-linear data structures in computer
science [11]. We define a tree as T (V,E) where V is the set of nodes and E the
set of edges connecting the nodes. V is composed by n nodes V = {v1, . . . , vn}
and E is composed by n−1 edges. If vi, vj ∈ V and if eij ∈ E then eij is the edge
connecting vi to vj , thus vi is the parent of vj . In this context it is convenient
to talk about inbound edges and outbound edges of a node.

Definition 3 Let T = (V,E) be a rooted tree and vi ∈ V be a node of the tree,
then we define its:

Inbound set to be E−(vi) = {vj ∈ V | ej,i ∈ E}.
Outbound set to be E+(vi) = {vj ∈ V | ei,j ∈ E}.
Inbound degree to be |E−(vi)|1.
Outbound degree to be |E+(vi)|.
We define with Γ+(vi) the set of all the descendants of vi in V (including vi

itself); vice versa Γ−(vi) is the set of all the ancestors of vi in V (including
vi ifself). We shall use the set Γ in the following of this work, so it is worth
underlining a couple of recurrent cases. Let vr ∈ V be the root of a tree T (V,E)
then Γ−(vr) = {vr} and Γ+(vr) = V .

Furthermore, by means of this newly described notation, we can formally
define the important concept of lowest common ancestor. The lowest common
ancestor of nodes vj and vk in a tree is the ancestor of vj and vk that is located
farthest from the root [2].

1 For all nodes vi ∈ V such that vi 6= vr where vr is the root, |E−(vi)| = 1.



Definition 4 Let T (V,E) be a tree and vj , vk ∈ V be two vertices. Then we
define vt to be the lowest common ancestor of vj and vk (lca(vj , vk) = vt) if:

vt ∈ Γ−(vj) ∩ Γ−(vk), and (2.1)

@vw ∈ V,w 6= t | (vw ∈ Γ−(vj) ∩ Γ−(vk)) ∧ (vw ∈ Γ+(vt)) (2.2)

The first condition imposes that vt = lca(vj , vk) must be a common ancestor
of vj and vk; the second condition says that cannot exist a vertex that is not vt

which is nearer than vt to both vj and vk.

2.3 Archives

An archive represents the trace of the activities of a physical or juridical person in
the course of their business which is preserved because of their continued value.
Archives have to keep the context in which their records have been created and
the network of relationships between them in order to preserve their informative
content and provide understandable and useful information over time [8].

The context and the relationships between the documents are preserved
thanks to the hierarchical organization of the documents inside the archive.
Indeed, an archive is divided by fonds and then by sub-fonds and then by se-
ries and then by sub-series and so on – see Figure 1a for an example; at every
level we can find documents belonging to a particular division of the archive
or documents describing the nature of the considered level of the archive (e.g.
a fond, a sub-fonds, etc.). The union of all these documents, the relationships
and the context information permits the full informational power of the archival
documents to be maintained. The archival documents are analyzed, organized,
and recorded by means of the archival descriptions [12] that have to reflect the
peculiarities of the archive [4].

2.4 Digital Archives and the NESTOR Model.

In the digital environment archival descriptions are encoded by the use of meta-
data; these need to be able to express and maintain the structure of the descrip-
tions and their relationships [8].

The standard format of metadata for representing the hierarchical structure
of the archive is the Encoded Archival Description (EAD) [13], which reflects the
archival structure and holds relations between entities in an archive. In addition,
EAD has a flexible structure, encourages archivists to use collective and mul-
tilevel description, and has a broad applicability. On the other hand, the EAD
permissive data model may undermine the very interoperability it is intended to
foster and it must meet stringent best practice guidelines to be shareable and
searchable [15]. Furthermore, an archive is described by means of a unique EAD
file and this may be problematic when we need to access and exchange archival
metadata with a variable granularity [5] by means of DL standard technolo-
gies like the Open Archives Initiative Protocol for Metadata Harvesting (OAI-
PMH)2 [16].
2 http://www.openarchives.org/



Several other modeling methodologies and metadata formats have been de-
veloped. Indeed, we may consider the “Tree-based Metadata” approach in which
archives are described by a collection of lightweight metadata – e.g. Dublin
Core Application Profiles3 – one for each archival resource, connected one to the
other by means of links to a third-party file – e.g. an external XML file – which
maintains the archival structure [14]; alternative instantiations of this approach
maintain the archival structure by means of an opportunely designed relational
database [15]. Another possibility is to represent the archival structure by means
of a collection of nested sets where each set represents an archival division and
contains the metadata describing the resources belonging to that division [5].
This modeling methodology is based on the NESTOR Model which relies on
two set data models called Nested Set Model (NS-M) and Inverse Nested Set
Model (INS-M) [1]. Both these set data models, formally defined in the context
of axiomatic set theory [10], can be used to model an archive by means of nested
sets [7]. An extensive analysis of the NESTOR Model and its applications in
the context of DL and archives can be found in [1]; in this paper we exploit the
functionalities of the INS-M and thus we focus our presentation on this model.

The most intuitive way of understanding how the INS-M works is to see how
a sample tree is mapped into an organization of nested sets based on the INS-
M. We can say that a tree is mapped into the INS-M transforming each node
into a set, where each parent node becomes a subset of the sets created from
its children. The set created from the tree’s root is the only set with no subsets
and the root set is a proper subset of all the sets in the hierarchy. The leaves are
the sets with no supersets and they are sets containing all the sets created from
the nodes composing tree path from a leaf to the root. We can represent in a
straightforward way the INS-M by means of the “DocBall representation” [17] –
see Figure 1b. It is worthwhile to understand how the DocBall is used because
the graphical tool we are going to present is based on this idea. The DocBall
is composed of a set of circular sectors arranged in concentric rings; each ring
represents a level of the hierarchy with the center representing the root. In a
ring, the circular sectors represent the nodes in the corresponding level. We use
the DocBall to represent the INS-M, thus for us each circular sector corresponds
to a set; for instance, referring to Figure 1b, it is possible to say that section
“Series C” is a direct superset of section “Sub-Fonds B”.

It has been shown [7] that an archive can be modeled by means of the INS-
M and than instantiated in such a way that allows the use of the OAI-PMH
architecture to enable a variable granularity access and exchange of the archival
metadata. Furthermore, in [5] it has been described a methodology to map an
EAD file into the NESTOR Model preserving the full informative power of the
metadata. Mapping an EAD file into the NESTOR Model means that we dispose
of a methodology that maps the EAD structure into the INS-M and a collection
of lightweight metadata containing the content information retained by EAD. In
this way the INS-M preserves the archival structure and the metadata belonging
to its sets preserve the content of archival descriptions [5]. In the same way, this

3 http://www.dublincore.org/
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Fig. 1. The structure of a sample archive represented by: (a) a tree; (b) a Doc-Ball.

methodology is adopted with the “Tree-based metadata” approach, where the
structure retained by an external XML file or by a relational database is mapped
into the INS-M [1]. Thus, the INS-M can be used as a means to map archival
metadata created by different systems in a common environment [5] as well as
it can be adopted to model and describe an archive from scratch [7,1].

3 The Inverse Set Data Model and the Tree Data
Structure

Now, we can define the Inverse Nested Set Model (INS-M):

Definition 5 Let A be a set and let C be a collection. Then, C is an Inverse
Nested Set Collection if:

∃!B ∈ C | ∀K ∈ C, B ⊆ K, (3.1)
∀H,K,L ∈ C | H ⊆ K ∧H||L⇒ L ∩K = H ∩ L. (3.2)

Thus, we define an Inverse Nested Set Collection (INS-C) as a collection of
subsets where two conditions must hold. The first condition (3.1) states that C
must contain a bottom set, call it B, such that it is the common subset of all
the sets in the collection. The second condition (3.2) states that if we consider
two sets K and H such that H is a subset of K, then it cannot exist a set L
incomparable to H, such that the intersection between H and L is not the same
than the one between K and L.

Let us see a couple of examples regarding the set operations in the INS-M.

Example 1 Let C = {A,B,C} be a INS-C, where A = {a, b}, B = {a, b, c, d}
and C = {a, b, c, d, e}.

In this example B ⊆ C. Then, B ∪ C = {a, b, c, d, e} = C, B ∩ C =
{a, b, c, d} = B and C \B = {e} /∈ C.

Example 2 Let C = {A,B,C} be a INS-F, where A = {a, b}, B = {a, b, c, d}
and C = {a, b, e}.



In this example C||B. Then, B ∪ C = {a, b, c, d, e} /∈ C, B ∩ C = {a, b} =
A ∈ C and B \ C = {c, d} /∈ C.

We show how a tree can be mapped into a INS-C and vice versa. The following
theorem formalizes the intuitive explanation about the mapping of a tree into a
INS-C that we have given before. Basically, every couple of nodes vj and vk is
mapped into a couple of sets J and K. If there exists an edge between vj and
vk, say ej,k then the the set J created from vj is defined as a subset of the set
K created from vk. The mapping between a tree and an INS-C reverses the idea
described for the mapping of a tree into a NS-C; if a node is parent of another
node in a tree, this is mapped into a set which is a subset of the set created from
its child node. In Figure 2 we can see a tree mapped into the INS-M as defined
by the next theorem.

Theorem 1 Let T = (V,E) be a tree and let C be a collection of subsets where
∀vi ∈ V,∃!I = Γ−(vi). Then C is an INS-C.

Proof. In order to prove this theorem let us consider a family of subsets VV :
V → C where the set of nodes V is its index set of the family and ∀vi ∈ V ,
Vvi = Γ−(vi).

Let us prove condition 3.1 of Definition 5. Let vr ∈ V be the root of T .
VV (vr) = Vvr

= Γ−(vr) = {vr} ⇒ ∀vj ∈ V, Γ−(vr) ⊆ Γ−(vj)⇒ Vvr
⊆ Vvj

.
Let us prove condition 3.2 of Definition 5. Ab absurdo suppose that ∃Vvk

, Vvh
, Vvl

∈
VV | Vvh

⊆ Vvk
∧ Vvl

||Vvh
⇒ Vvl

∩ Vvk
6= Vvl

∩ Vvh
.

This means that ∃vh, vk, vl ∈ V | Γ−(vh) ⊆ Γ−(vk) ∧ Γ−(vl)||Γ−(vh) ⇒
Γ−(vl) ∩ Γ−(vk) 6= Γ−(vl) ∩ Γ−(vh). ∃vj ∈ V | vj ∈ (Γ−(vl) ∩ Γ−(vk)) ∧ vj /∈
(Γ−(vl) ∩ Γ−(vh))⇒ vh ∈ Γ−(vk) ∧ vj ∈ Γ−(vk) ∧ vj ∈ Γ−(vl) ∧ vj /∈ Γ−(vh).
This means that vk and vh must belong to the same branch of T ; we know that
vj ∈ Γ−(vl) ∧ vj ∈ Γ−(vk), thus vk and vl must have vj as a common ancestor
and vj /∈ Γ−(vh). This means that {vj , vk, vl} ∈ Γ+(vh) but Γ−(vl)||Γ−(vh)⇒
d−V (vl) > 1⇒ T is not a tree.�

Now we can see how an INS-M is mapped into a tree; the following theorem
shows that if we map every couple of sets Aj and Ak in an INS-F into a couple
of nodes vj and vk in a set of nodes V such that there exists an edge ej,k in a
set of edges E if and only if Aj is a direct subset of Ak then the graph defined
by the nodes in V connected by the edges in E is a tree.

Theorem 2 Let C be a INS-C, V be a set of nodes and E be a set of edges
where ∀vj ∈ V,∃!J ∈ C ∧ ∀ej,k ∈ E,∃!J,K ∈ C | J ⊆ K. Then T = (V,E) is a
tree.

Proof. We have to prove that (∃! vr ∈ V | |E−(vr)| = 0) ∧ (∀vj ∈ V, j 6=
r, |E−(vj)| = 1). Ab absurdo suppose that ∃vr, vk ∈ V | (|E−(vr)| = 0 ∧
|E−(vk) = 0)| ∨ ∃vj ∈ V | |E−(vj)| > 1.

If ∃vr, vk ∈ V | |E−(vr)| = 0∧|E−(vk)| = 0⇒ ∃J,K ∈ C | S−(J)∩S−(K) =
∅ ⇒ @B ∈ C | B ⊆ J ∧B ⊆ K ⇒ C is not an INS-C.

If ∃vj ∈ V | |E−(vj)| > 1 ⇒ ∃J,K,L ∈ C | K ⊆ J ∧ L ⊆ J ∧K ∩ L = ∅ ⇒
L ∩K = ∅ 6= L ∩ J = L⇒ C is not an INS-C.�
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Fig. 2. A tree mapped into the INS-M.

The following proposition shows that the set-theoretic operations defined in
the INS-M find a correspondent property in the tree.

Proposition 3 Let T = (V,E) be a tree, C be a INS-F mapped from T , J,K,L ∈
C be three sets and vj , vk, vL ∈ V be the three correspondent nodes in T . Then:

J ∪K = K ⇔ vk ∈ Γ+(vj) (3.3)

J ∩K = J ⇔ vj ∈ Γ−(vk) (3.4)

J ∩K = L⇔ vl ∈ Γ−(vk) ∩ Γ−(vj) (3.5)

Proof. Property 3.3. Let us prove (⇒). Ab absurdo suppose that J ∪K = K ⇒
vk /∈ Γ+(vj). This means that J /∈ S+(K)⇒ J * K ⇒ J ∪K 6= K.

Let us prove (⇐). Ab absurdo suppose that vk ∈ Γ+(vj) ⇒ J ∪ K 6= K.
J ∪K 6= K ⇒ J * K ⇒ Γ−(vj) * Γ−(vk)⇒ vk /∈ Γ+(vj).

Property 3.4. The proof of this property is symmetric to the proof of Prop-
erty 3.3.

Property 3.5. Let us prove (⇒). Ab absurdo suppose that J ∩K = L ⇒
vl /∈ Γ−(vk) ∩ Γ−(vj). This implies that L * J ∧ L * K ⇒ L /∈ S+(J) ∧ L /∈
S+(K)⇒ J ∩K 6= L

Let us prove (⇐). Ab absurdo suppose that vl ∈ Γ−(vk)∩Γ−(vj)⇒ J∩K 6=
L. This means that L * J ∧ L * K ⇒ Γ−(vl) * Γ−(vk) ∧ Γ−(vl) * Γ−(vj)⇒
vl /∈ Γ−(vk) ∧ vl /∈ Γ−(vj)⇒ vl /∈ Γ−(vk) ∩ Γ−(vj).�

Property 3.3 shows that if the union of two sets {J,K} ∈ C returns J it means
that vj ∈ V is a descendant of vk ∈ V ; this property is a direct consequence of
the definition of INS-F. Property 3.4 shows that if the intersection of two sets
{J,K} ∈ C returns J , it means that vj ∈ V is an ancestor of vk ∈ V .

Property 3.5 points out an interesting result: if the intersection of two sets
J,K ∈ C returns a third set L ∈ C, then this set corresponds to a common
ancestor vl of the nodes vj and vk.



4 The Lowest Common Ancestor in the INS-M

An important operation performed in the tree data structure is to determine
the lowest common ancestor (lca) of two nodes. As a first thing let us define the
lowest common ancestor in an INS-C.

Definition 6 Let C be an INS-C, and J,K,L ∈ C be three sets. L = J ∩K is
defined to be the lowest common ancestor between J and K, say lcaC(J,K) =
L.

The relationship between the lca in a tree and in an INS-C can be easily
determined by exploiting Theorem 1 which shows how to map a tree into an
INS-C. Indeed, in the INS-M, the children of a node in a tree correspond to the
supersets of the set mapped from that node in the INS-C mapped from the tree.

Proposition 4 Let T = (V,E) be a tree, vj , vk, vl ∈ V be three nodes, C be a
INS-F mapped from T and J,K,L ∈ C be three sets. Then:

vl = lcaV (vj , vk)⇔ L = lcaC(J,K). (4.1)

Proof. Let us prove (⇒). Ab absurdo suppose that vl = lcaV (vj , vk) ⇒ L 6=
J ∩K. This implies that L * J ∨L * K ∨ (L * J ∧L * K)⇒ L /∈ S+(J)∨L /∈
S+(K) ∨ (L /∈ S+(J) ∧ L /∈ S+(K)) ⇒ vl /∈ Γ−(vj) ∨ vl /∈ Γ−(vk) ∨ (vl /∈
Γ−(vj) ∧ vl /∈ Γ−(vk))⇒ vl 6= lcaV (vj , vk).

Let us prove (⇐). Ab absurdo suppose that L = J ∩K ⇒ vl 6= lcaV (vj , vk).
This means that (vl /∈ (Γ−(vj)∩Γ−(vk)))∨ (∃vw ∈ V, vw 6= vl | (vw ∈ (Γ−(vj)∩
Γ−(vk))) ∧ (vw ∈ Γ+(vl))).

If vl /∈ (Γ−(vj)∩Γ−(vk))⇒ L /∈ ((S+(J)∪J)∩ (S+(K)∪K))⇒ J ∩K 6= L.
If ∃vm ∈ V, vm 6= vl | (vm ∈ Γ−(vj) ∩ Γ−(vk)) ∧ (vm ∈ Γ+(vl)) ⇒ vl ∈

Γ−(vm)⇒ L ⊂M ⇒ (M ⊆ J∩K)∧(L ⊆ J∩K)∧(M ∈ S−(L)⇒ J∩K = M .�

This proposition shows that if we map a tree into a correspondent INS-C
also the nodes of the tree are mapped into sets in the collection and thus the
lca between two nodes is mapped into the lca between the correspondent sets.
Furthermore, we can see that the lca between two sets in the INS-M can be
determined by the intersection of the considered sets.

Example 3 Let T = (V,E) be a tree, and let C the INS-C mapped from T . In
order to clearly understand the correspondence between the nodes of the tree and
the sets of the collection, let us consider the family of subsets VV : V → C. If
we consider the nodes v7 and v11 the lcaV (v7, v11) = v5 because the path v7Pv1
intersected with the path v11Pv1 returns two nodes: v1 and v5; v1 is the root and
by definition its depth is 0, instead v5 has depth 1 thus, it is the lowest common
ancestor between v7 and v11.

We consider the sets Vv7 and Vv11 in VV represented in Figure 2; we can see
that Vv1 is a common subset of both Vv7 and Vv11 as well as Vv5 . But Vv1 ⊂ Vv5 .
Furthermore, Vv7 ∩ Vv11 = Vv5 which correspond to the node v5 ∈ V of the tree.

From this example we can see the correspondence between lcaV (v7, v11) in T
and lcaV(Vv7 , Vv11) in VV .



5 Use Case: Modeling an Archive through the INS-M

The tree data structure is adequate to represent the structure of an archive
because it properly represents the hierarchical relationships between the archival
divisions – see Figure 1a; on the other hand, in a tree it is not straightforward to
represent the documents belonging to each archival division. We can say that the
tree can represent the structural aspects of an archive but it needs to be somehow
extended in order to represent also the content – i.e. the archival resources.

One of the main features of the NESTOR Model is the possibility to express
both the hierarchical structure by means of the nested sets and the content by
means of the elements belonging to the sets. By means of the NESTOR Model,
the archival divisions are represented as nested sets and the hierarchical rela-
tionships are retained by their inclusion order. On the other hand, the archival
resources are represented as elements belonging to the sets – please see Figure
1b. The INS-M allows us to straightforwardly represent an archive; from the
Theorem 1, we know that a tree can be mapped into a INS-F and thus we know
that its expressive power is preserved by the INS-M. In this case we can see
that the INS-M allows us to define a further level of expressiveness respect to
the tree. Furthermore, the INS-M is well-suited for the archival practice; indeed,
the idea of “set” shapes the concept of archival division which is a “container”
comprising distinct elements that have some properties in common.

The use of the INS-M to model the archives enables their resources to be
accessed and shared with a variable granularity in a distributed environment [1].
This is eased by the straightforward integration of the INS-M with the standard
de-facto for metadata exchange in distributed environment which is the OAI-
PMH [7]. A consequence of the possibility of instantiate the representation of the
archives by means of INS-M into OAI-PMH is the further integration of archives
in the digital library systems. For these reasons we chose to adopt the NESTOR
Model a basic brick of the SIAR (Sistema Informativo Archivistico Regionale)
system. [6].

The SIAR is a project supported by the Italian Veneto Region which aim is
to design and develop a Digital Archive System. The main goal of the SIAR is
to develop a system for managing and sharing archive metadata in a distributed
environment. Furthermore, another SIAR objective is to develop an information
system able to create, manage, access, share and provide advanced services on
archival metadata. The design and development of the SIAR system rely on
the NESTOR Model; indeed, the INS-M is adopted to model and represent the
archives and the archival resources. In this work we do not present the system
in details but we focus on the use of the INS-M to perform frequently requested
operations on the archives that in particular regard the manipulation and the
querying of the archival structure and of the archival resources.

In this context we focus on the querying of the archival structure and re-
sources; in particular, we have seen that the relationships between the archival
documents are as important as the documents themselves, thus it is necessary
to easily exploit these relationships to infer information from the documents.
One on the most important operation is to define the correlation between two



or more documents in the archive. The archivists have to be able to understand
why two or more documents belong to the same archive and which is the doc-
ument or the archival division that put them in relation. We can see that this
operation can be modeled as a lowest common ancestor problem; indeed, two
or more documents are in relation thanks to a common ancestor that connect
them.

By means of the INS-M in the SIAR system we can infer the context of two
archival documents without navigating the whole archival hierarchy. In fact, by
means of the INS-M when we need to find out the common archival division
which contains two or more archival documents we just need to intersect the
sets containing the selected documents. The intersection of these sets returns
one of their common superset; thanks to Proposition 3 we know it belongs to
the INS-C representing the archive and thanks to Proposition 4 we know it is the
lowest common ancestor. This property gives us a way to calculate the lowest
common ancestor between two elements in a hierarchy – i.e. two documents in
an archive – without taking into account the whole hierarchy but just the sets at
which these elements belong. The lowest common ancestor represents a relevant
case where we exploit the relationships between the tree data structure and the
INS-M and the ratio between the operations in a tree and the operations in
a INS-C mapped from it. Moreover, the formal basis we defined provides us
with the necessary consistency to manipulate and query the archival resources
modeled in the INS-M as well as we would do in the tree data structure. This
fact allows us to be consistent with the other data models and systems adopted
to handle the archives and archival resources.

6 Final Remarks

In this paper we presented the NESTOR Model focusing on the Inverse Nested
Set Model and its properties detailing its formal definition and the relationships
with the tree data structure. In particular, we define the problem of calculating
the lowest common ancestor in the INS-M comparing it with the same problem
in the tree. We presented a concrete use case based on the archive showing
how it is possible to model an archive throughout the INS-M and to apply the
presented properties to query the archival resources. The use case is described
in the context of the SIAR project.
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