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ABSTRACT
We propose a family of new evaluation measures, called
Markov Precision (MP), which exploits continuous-time and
discrete-time Markov chains in order to inject user mod-
els into precision. Continuous-time MP behaves like time-
calibrated measures, bringing the time spent by the user
into the evaluation of a system; discrete-time MP behaves
like traditional evaluation measures. Being part of the same
Markovian framework, the time-based and rank-based ver-
sions of MP produce values that are directly comparable.

We show that it is possible to re-create average precision
using specific user models and this helps in providing an ex-
planation of Average Precision (AP) in terms of user mod-
els more realistic than the ones currently used to justify it.
We also propose several alternative models that take into
account different possible behaviors in scanning a ranked
result list.

Finally, we conduct a thorough experimental evaluation of
MP on standard TREC collections in order to show that MP
is as reliable as other measures and we provide an example
of calibration of its time parameters based on click logs from
Yandex.

Categories and Subject Descriptors
H.3.4 [Information Search and Retrieval]: Systems and
Software—Performance evaluation (efficiency and effective-
ness)

General Terms
Experimentation, Measurement, Performance

Keywords
Evaluation; Markov Precision; User Model; Time

1. INTRODUCTION
Experimental evaluation has been central to Information

Retrieval (IR) since its beginning [15] and Cranfield is the
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predominant paradigm for carrying out system-oriented ex-
perimentation [11]. Over the decades, several measures have
been proposed to evaluate retrieval effectiveness.

AP [5] represents the “gold standard” measure in IR [35],
known to be stable [3] and informative [1], with a natural
top-heavy bias and an underlying theoretical basis as ap-
proximation of the area under the precision/recall curve.
Nevertheless, due to its dependence on the recall base, it as-
sumes a perfect knowledge of the relevance of each document
in the collection, which is an approximation when pooling
is adopted and not assessed documents are assumed to be
not relevant [14], and is even more exacerbated in the case
of large scale or dynamic collections [4, 35].

However, the strongest criticism to AP comes from the
absence of a convincing user model for it, a feature which
is deemed extremely important in order to make the inter-
pretation of a measure meaningful and to bridge the gap
between system-oriented and user-oriented studies [7, 21,
31]. In this respect, [22] argued that the model behind AP
is abstract, complex, and far from the real behavior of users
interacting with an IR system, especially when it comes to
its dependence on the recall base which is something actu-
ally unknown to real users. As a consequence, [25] proposed
a simple but moderately plausibile user model for AP, which
allows for a mix of different behaviors in the population of
users.

In this paper, we take up from the final considerations
of [25], at page 690: “this argument could provide the ba-
sis for a more elaborate model, by for example basing the
set of ps(n) on some more sophisticated view of stopping
behaviour”, where ps(n) is the probability that the user sat-
isfaction point is the document at rank n.

We propose a family of measures of retrieval effectiveness,
called Markov Precision (MP), where we exploit Markov
chains [23] to inject different user models into precision and
which does not depend on the recall base. We represent
each position in a ranked result list with a state in a Markov
chain and the different topologies and transition probabili-
ties among the states of the Markov chain allow us to model
the different and perhaps complex user behaviors and paths
in scanning a ranked result list. The invariant distribution
of the Markov chain provides us with the probability of the
user being in a given state/rank position in stationary con-
ditions and we use these probabilities to compute a weighted
average of precision at those rank positions.

The framework we propose is actually more general and it
is based on continuous-time Markov chains in order to take
into account also the time a user spends in visiting a sin-
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gle document. It is then possible to extract a discrete-time
Markov chain, when considering only the transitions among
rank positions and not the time spent in each document.
This gives us a two-fold opportunity: when we consider the
discrete-time Markov chain, we are basically reasoning as
traditional evaluation measures which assess the utility for
the user in scanning the ranked result list; when we consider
the continuous-time Markov chain,we also embed the infor-
mation about the time spent by the user in visiting a docu-
ment and we have a single measure including both aspects.
This represents a valuable contribution of the paper since,
up to now, rank and time have been two separate variables
according to which retrieval effectiveness is evaluated [31].

The Markov chain approach relies on some assumptions
– e.g. no long-term memory and exponentially distributed
holding times – which may seem oversimplifications of the
reality, e.g. a user who considers the whole history of visited
documents to decide whether to stop or not. However, other
measures, such as Rank-Biased Precision (RBP) [22] where
transitioning to the next document or stopping is a step-by-
step decision based just on the persistence parameter, are
memory-less in this sense. Moreover, a Markovian model is
simple enough to be easily dealt with while still being quite
powerful and this work intends to be a first step towards a
richer world of models that we will explore in the future.

We then propose some basic models for the transition ma-
trix of the Markov chain. Clearly, this is not intended to be
an exhaustive list of all the possible models but more of an
exemplification of how it is possible to plug different user
models into the framework. Still, these basic models pro-
vide a second valuable contribution of the paper. Indeed,
we will show how some of these models, when provided with
the same level of information about the recall base as AP,
actually are AP, thus giving an explanation of it in terms
of a slightly richer user model than the one of [25]. We will
also show how some of them are extremely highly correlated
to AP, thus suggesting how AP can be considered a very
good approximation of more complex user strategies. This
helps in shedding some light on why AP is the de-facto “gold
standard” in IR, even though it has been so often criticized.

Finally, we conduct a thorough experimental evaluation
of the MP measure both using standard Text REtrieval
Conference (TREC)1 collections and click-logs with assessed
queries made available by Yandex [29]. The results show
that MP is comparable to other measures for some desir-
able properties like robustness to pool downsampling while
the Yandex click-logs allow us to estimate the time spent by
the users on the documents and apply the continous-time
Markov chain.

The paper is organized as follows: Section 2 presents the
related works; Section 3 discusses other pertinent measures
to which MP will be compared; Section 4 fully introduces
MP; Section 5 reports the conducted experimental evalua-
tion of MP; and Section 6 draws some conclusion and pro-
vides an outlook for future work.

2. RELATED WORKS
Markov-based approaches have been previously exploited

in IR, for example: Markov chains have been used to gener-
ate query models [19], for query expansion [12, 20], and for
document ranking [13]. However, to the best of our knowl-

1http://trec.nist.gov/

edge, Markov chains have not been applied to the definition
of a fully-fledged measure for retrieval effectiveness.

[8] uses Markov chains to address the placement problem
in the case of two-dimensional results presentation: they
have to allocate images on a grid to maximize the expected
total utility of the user, according to some evaluation mea-
sure, and the Markov chain models how the user moves in
the grid. Their approach differs from ours since they are not
defining a measure of effectiveness which embeds a Markov
chain but they rather solve an optimization problem via a
Markov chain; moreover, they only use discrete-time Markov
chains and limit transitions only to adjacent states. What
we share is the idea that a Markov chain can be used to
model how a user scans a result list, mono dimensional in
our case, two-dimensional in their case.

When it comes to other evaluation measures, the focus of
the paper is on lab-style evaluation, search tasks with infor-
mational intents [2], and binary relevance. So, for example,
measures for novelty and diversity are out of the scope of
the present paper [10] as are measures for graded relevance
like Discounted Cumulated Gain (DCG) [16], Expected Re-
ciprocal Rank (ERR) [6], or Q-measure [26].

With regard to the time dimension brought in by the
continuous-time Markov chain, the most relevant work is
Time-Biased Gain (TBG) [30, 31]. We share the idea of
getting time into evaluation measures but we adopted a dif-
ferent approach. While TBG substitutes traditional evalua-
tion measures, MP provides a single framework for keeping
both aspects depending on which Markov chain you use.
With respect to the user model adopted in TBG, there are
some relevant differences: first, we use full Markov models
while [30] at page 2014 points out that “our model can be
viewed as a semi-Markov model”; then, TBG assumes a se-
quential scanning of the result lists where MP allows the
user to move and jump backward and forward in the results
list. What TBG addressed and is not in the scope of the
present work is how to calibrate the measure with respect
to time: [31] proposed a procedure to calibrate time with re-
spect to document length and [30] extended it to stochastic
simulation. In the present work, we provide a basic exam-
ple of calibration based on the estimation of average time
spent per document from click logs, just to show how the
parameters of the framework could be tuned. However, in
the future, nothing prevents us (or others) from investigat-
ing more advanced calibration strategies or applying those
proposed by [30, 31].

Previous work on click logs [17] has reported that, on av-
erage, users scan ranked list in a forward linear fashion while
MP allow users to move forward and backward in a ranked
list. As reported in Section 5.5, from Yandex logs, we found
that 21% of the users move backward in the ranked list, thus
supporting our assumption, even if more exploration on this
is left for future work. Moreover, U-measure [28] is a recent
proposal which shares with MP the idea of removing the
constraint of the linear scan but it does not adopt Markov
models and has also somewhat different goals, such as evalu-
ating complex tasks like multi-query sessions and diversified
IR.

When it comes to other ways of modelling user behaviour
into evaluation measures, [7] proposes relying on three com-
ponents: a browsing model, a model of document utility, and
a utility accumulation model. Even if we took up from [25],
MP can also be framed in the light of the work of [7]. Indeed,
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the Markovian model provides us with the browsing model,
precision account for the model of document utility, and the
weighted average of precision by the invariant distribution of
the Markov chain supplies the utility accumulation model.

Thus, evaluation measures of direct comparison, which
will be detailed in Section 3, are those built around the con-
cept of precision, namely AP, P@10, and Rprec [5]. RBP [22]
comes into play as a binary evaluation measure not depen-
dent on the recall base, even though it is not built around the
concept of precision despite its name. Finally, we are also
interested in Binary Preference (bpref) [4], just to have a
comparison point when testing MP with respect to reduced-
size pools. In this last respect, we are not interested in
infAP [35], since we are neither looking for an estimator
of AP nor investigating alternative strategies for pool down-
sampling. For the same reason, we are not interested here in
experimenting with respect to condensed-list measures [27].

3. OTHER EVALUATION MEASURES
Let us consider a ranked list of T documents in response

to a given topic, let dn be the document retrieved at posi-
tion n ≤ T whose relevance is denoted by an, equal to 1 if
the document is considered relevant and 0 otherwise. The
ranked list of documents is denoted with D = {di, i ≤ T}
and R = {ij : j = 1, . . . , T and aij = 1} is the set of
the ranks of the relevant documents, whose cardinality is
r = |R| and which indicate the total number of relevant re-
trieved documents by the system for the given topic. Let
RB be the recall base of the topic, i.e. the total number of
judged relevant documents for a given topic, and NRB the
total number of judged not relevant documents for a given
topic.

The precision at rank n is thus defined as

Prec(n) =
1

n

n∑
m=1

am (1)

which corresponds to the percentage or “density” of relevant
documents present among the first n, n included, in the
list. Note that Rprec is Prec(RB), which makes clear its
dependence on the recall base.

The recall at rank T is defined as

Rec(T ) =
r

RB
(2)

which corresponds to the fraction of relevant documents of
the specific run with respect to the total number of judged
relevant documents.

3.1 Average Precision (AP)
The original definition of Average Precision (AP) [5] is

the average over all RB judged relevant documents of the
precision at their ranks, considering zero the precision at the
not retrieved relevant documents:

AP =
1

RB

∑
i∈R

Prec(i) =
r

RB
· 1

r

∑
i∈R

Prec(i) (3)

where, in the last equation, the first operand is the recall
and the second one is the arithmetic mean of the precisions
at each relevant retrieved document. This formulation fur-
ther highlights the dependence of AP on the recall base and
the recall itself.

As previously discussed, [25] proposed a simple, proba-
bilistic user model measure of effectiveness called Normal-
ized Cumulative Precision (NCP), which includes AP as a
particular case. The author assumes that any given user
will stop his search at a given document in the ranked list,
that we call its satisfaction point, according to a common
probability law.

Furthermore, he considers that a user will stop his search
only at relevant documents and that the probability that he
stops at any given relevant documents is fixed and indepen-
dent from the specific run he is considering, while it is 0
at any non relevant document. So, he defines a probability
distribution ps on the set of all the documents available for
a given topic.

Given a specific run and the set of its retrieved documents
D, the definition of the NCP is then the expectation (aver-
age) of the precision at the ranks of the retrieved, relevant
documents, accordingly to a distribution ps(·), i.e.

NCP (ps) = Eps [Prec(n)] =

+∞∑
n=1

ps(dn)Prec(n) .

It is easy to see that the above definition of AP is in this con-
text equal to the NCP measure when we choose the uniform
law pU over all the relevant documents for the topic

pU (dn) =

⎧⎪⎨⎪⎩
1

RB
if dn is relevant

0 otherwise

The previous user model is simple and it can be consid-
ered as a starting point for more sophisticated models, as
also suggested by [25] itself. As in the case of AP, the
assumption that the user knows the recall base of a given
topic is a weakness of this model. Furthermore, the proba-
bility that a user stops their search at a given document on
a specific run depends on a probability distribution defined
on the whole set of relevant documents available for a given
topic.

The choice of the uniform distribution to determine the
stopping point in a given search is itself of difficult inter-
pretation, since this means that any relevant document in a
ranked list of retrieved documents has the same probability.

We will see in the next section how, stepping from the in-
tuition behind NCP, we can define, thanks to simple Markov
chains, a more realistic user model, how AP can be still con-
sidered as a good approximation in many cases and how to
generalize AP to a whole new class of Markovian models.

3.2 Rank-Biased Precision (RBP)
Rank-Biased Precision (RBP) [22] assumes a user model

where the user starts from the top ranked document and
with probability p, called persistence, goes to the next doc-
ument or with probability 1 − p stops. RBP is defined as
follows:

RBP = (1 − p)
∑
i∈R

pi−1 (4)

It can be noted that, despite its name, RBP does not de-
pend on the notion of precision. Nevertheless, it represents
a measure for binary relevance which does not depend on
the recall base and thus gives a comparison point in this
last respect for MP.

599



3.3 Binary Preference (bpref)
Binary Preference (bpref) [4, 32] is a measure based on

binary preferences and it evaluates systems using only the
judged documents. It can be thought of as the inverse of the
fraction of judged irrelevant documents that are retrieved
before relevant ones:

bpref =
1

RB

∑
i∈R

(
1 − |j ranked higher than i|

min(RB,NRB)

)
(5)

where j is a member of the first RB not relevant retrieved
documents. bpref has proved to be quite robust in the case
of incomplete and imperfect relevance judgements. Here, for
us, it represents a comparison point when evaluating MP
with respect to reduced-size pools.

It can be noted how heavily bpref depends on the recall
base RB. This is not only a scale factor as in the case of AP
but it also determines the cardinality of the set from which
the not relevant documents j are taken. Moreover, it makes
use also of NRB, the total number of judged not relevant
documents, a kind of information which is hard to imagine
available to any real user. So, in a sense, it seems much more
a “pool-oriented” than a system-oriented measure since, for
determining its score, it uses much more information about
the pool than about the system under examination and this
could be an explanation of its robustness to the pool reduc-
tion.

4. A MARKOVIAN USER MODEL

4.1 General framework
We will assume that each user starts from a chosen doc-

ument in the ranked list and considers this document for a
random time, that is distributed according to a known pos-
itive random variable. Then they decides, according to a
probability law that we will specify in the sequel and inde-
pendent from the random time spent in the first document,
to move to another document in the list. Then, they con-
siders this new document for a random time and moves,
independently, to a third relevant document and so on.

After a random number of forward and backward move-
ments along the ranked list, the user will end their search
and we will evaluate the total utility provided by the sys-
tem to them by taking the average of the precision of the
judged relevant documents they has considered during their
search. According to this construction when we compute
this average, the precision of a document visited k times
will contribute to the mean with a k/n weight.

We mathematically model the user behavior in the frame-
work of the Markovian processes [23]. To fix the notation,
we will denote by X0, X1, X2, . . . the (random) sequence of
document ranks visited by the user and by T0, T1, T2 the
random times spent, respectively, visiting the first document
considered, the second one and so on. Therefore, X0 = i
means that the user starts from the first document at rank i
and T0 = t0 means that they spends t0 units of time visiting
this first document, then X1 = j means that they visits the
document at rank j as the second one, and so on.

First of all, we will assume that X0 is a random variable on
T = {1, 2, . . . , T} with a given distribution λ = (λ1, . . . , λT );
so for any i ∈ T , P[X0 = i] = λi. Then, we will assume that
the probability to pass from the document at rank i to the

document at rank j will only depend on the starting rank i
and not on the whole list of documents visited before.

This can be formalized as follows:

P[Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0] =

= P[Xn+1 = j|Xn = i] = pi,j

(6)

for any n ∈ N and i, j, i0, . . . , in−1 ∈ T .

d1 d2 d3 dT-1 dT

p1,2

p1,3

p1,T-1

p1,T

p2,3

p2,T-1

p2,T

pT,T-1

pT,3

pT,2pT,1

pT-1,3

pT-1,2pT-1,1

Figure 1: Structure of the Markov chain (Xn)n∈N.

Thanks to the condition (6) and fixing a starting distribu-
tion λ, the random variables (Xn)n∈N define a time homoge-
nous discrete time Markov Chain, shown in Figure 1, with
state space T , initial distribution λ and transition matrix
P = (pi,j)i,j∈T (Markov(λ,P) in the sequel).

To obtain a continuous-time Markov Chain, we have to
assume that the holding times Tn have all exponential dis-
tribution, i.e.

P[Tn ≤ t] =

⎧⎨⎩ 0 t < 0

1 − exp(−μt) t ≥ 0

Furthermore, conditioned on the fact that Xn = i, the law
of Tn will be exponential with parameter μi, where μi is a
positive real number that may depend on the specific state
i of the chain the user is visiting at that time.

When our interest is only on the jump chain (Xn)n∈N,
i.e. when we are interested in extracting the corresponding
discrete-time Markov chain to act as a traditional evaluation
measure, we simply assume that all these variables are expo-
nential with parameter μ = 1. When we are also interested
in the time dimension, we have to provide a calibration for
these exponential variables. We report a very simple exam-
ple in Section 5 using click logs from Yandex.

The reason for choosing such a model will be immediately
clear. Let us assume hereafter that the matrix P will be
irreducible. This means that we can move in a finite number
of steps from any document to any other document with
positive probability. Thanks to (6) and the multiplication
rule, the probability to pass in n steps from the document

i to the document j is equal to p
(n)
i,j , the (i, j) entry of the

matrix Pn and the irreducibility means that given any pair

(i, j) there exists n > 0 such that p
(n)
i,j > 0. Furthermore, the

probability distribution of any random variable Xn, which
denotes the rank of the document visited after n movements,
is completely determined by λ and P , since

P[Xn = j] = (λPn)j .

Given such a model, we assume that a user will visit a num-
ber n of documents in the list and then they will stop their
search. In order to measure their satisfaction, we will eval-
uate the average of the precision of the ranks of the judged
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relevant documents visited by the user during their search
as

1

n

n−1∑
k=0

Prec(Yk) .

where (Yn)n∈N denotes the sub-chain of (Xn)n∈N that con-
siders just the visits to the judged relevant documents at
ranks R, and shown in Figure 2.

d1 d2 d3 dT-1 dT

p1,2

p1,T

p2,T

pT,2pT,1

Figure 2: Structure of the sub-Markov chain (Yn)n∈N

(relevant documents are shown in grey; not relevant
ones in white).

Note that this sub-chain has in general a transition ma-

trix different form P . The new transition matrix P̃ can be
computed easily from P by solving a linear system as de-

tailed in [23] and discussed in Section 4.3.1. Note that P̃
computed in this way somehow “absorbs” and takes into ac-
count also the probabilities of passing through not relevant
documents (which are basically redistributed over the rele-
vant ones) and makes it different from the transition matrix
that you would have obtained by using only the relevant
documents since the beginning.

Clearly the previous quantity is of little use if evaluated
at an unknown finite step n. However, the Ergodic The-
orem of the theory of the Markov processes is perfect for
approximating this quantity:

Theorem 1. Let P̃ be irreducible, λ be any distribution

and R finite. If (Yn)n≥0 is Markov(λ,P̃ ), then for any func-
tion f : R → R we have

P

[
1

n

n−1∑
k=0

f(Yk) → f as n → ∞
]

= 1

where f =
∑

i∈R πif(i) and π is the invariant distribution

of P̃ .

The importance of this class of theorems is clear: almost
surely and independently of the initial distribution λ, we
can approximate, for n large, the average over the time by
the (much simpler) average over the states of the Markov
chain. Indeed, under the previous assumptions it is possible

to prove that the matrix P̃ admits a unique invariant distri-
bution, i.e a probability distribution π such that if (Yn)n≥0

is Markov(π,P̃ ), then for any n

P[Yn = j] = πj .

Moreover, the invariant distribution in this case is the unique

left eigenvector of the eigenvalue 1 of the matrix P̃ , i.e. the
unique solution of the linear equation

π = πP̃ .

Remark 1. Under additional hypotheses, it can be pro-
ved that the invariant distribution itself is the limit of any

row of the matrix P̃n, as n → ∞, useful result in order to
evaluate in practice the invariant distribution. The conver-
gence is generally very fast and for n = 10 we already have
a reasonable approximation of the true value of π. This jus-
tifies the use of MP to approximate the mean precision of
the usually few documents visited by a user.

We can now define a new family of user oriented retrieval
effectiveness measures, called Markov Precision (MP), which
depends on the specific user model and the invariant distri-
bution derived.

Definition 1. Given a ranked list of retrieved documents,
defined by R the ranks of its judged relevant documents and
defined a Markov (λ,P) user model, the Markov Precision
metric will be defined as

MP =
∑
i∈R

πiPrec(i).

where Prec(n) represent the Precision at n and π the (unique)
invariant distribution of the Markov chain (Yn)n∈N.

MP is defined without knowing the recall base RB of a
given topic, but just the ranks of the judged relevant doc-
uments in a given run for this topic. As pointed out, for
example in [22], the need to know the value of RB repre-
sents a weakness in AP that is overcome here.

In order to include the time dimension and thanks to the
Ergodic Theorem for the continuous time Markov chains, we
can replicate the previous computations and define a new
measure

MPcont =
∑
i∈R

π̃iPrec(i).

where π̃i = πi(μi)
−1

∑
j∈R πj(μj)−1 , π denotes again the (unique)

distribution of the Markov chain (Yn)n∈N and μi is the pa-
rameter of the holding time in state i. To use this alternative
measure, we have to provide a calibration for the coefficients
μi and we will compare MP with MPcont in a very simple
example in Section 5 using click logs from Yandex.

4.2 Average Precision
In order to define a simple Markovian user model, whose

MP value will be AP, let us consider the following transition
probabilities among the documents in a given ranked list:

P[Xn+1 = j|Xn = i] = 1
T−1 (7)

for any i, j ∈ T , i �= j, and where, again, T denotes the
cardinality of the set T .

In this model we assume that a user moves from a docu-
ment to another document with a fixed, constant probability,
the value of which depends on the total number of relevant
documents present in the specific run.

Since the invariant distribution is
(

1
T
, 1
T
, . . . , 1

T

)
we obtain

that

MP =
1

T

∑
i∈R

Prec(i)

which is equal to AP once multiplied by T
RB

. Note that if
we create the Markov chain starting directly from the rele-
vant documents R we have to multiply MP by Rec(T ) as in
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equation 3. In this way, we explain AP with a slightly richer
user model, where the user can move forward and backward
among any document and is not forced to visit only the rel-
evant ones. It is also clear from the equation above that MP
is not AP unless you provide it with the same amount of in-
formation AP knows about the recall base, namely rescaling
MP by the recall base.

Looking at this the other way around, this instantiation
of MP (without the rescaling) can be considered a kind of
AP where the artificial knowledge of the recall base has been
removed and so, it tells us how AP might look like if you
remove the dependency on the recall base and insert an ex-
plicit user model. This consideration will turn out to be
useful in the experimental part when we will find other user
models, highly correlated to AP, which may give a richer
explanation of it.

Moreover, the previous constant invariant distribution is
common to many others user models. For example, if the
transition matrix is irreducible and symmetric or even just
bistochastic, meaning that the sum of the entries on each
column is equal to 1, the invariant distribution is again the
above constant vector. In this sense, if the validity of the
present Markovian user model is accepted, it shows once
more why AP has become a reference point, since it repre-
sents a good approximation for a wide class of models that
we can define.

4.3 Other models
We will analyze three possible choices:

• state space choice: the Markov chain (Xn)n∈N is on the
whole set T , indicated with AD (all documents model),
or on the set R, indicated with OR (only relevant doc-
uments model);

• connectedness: the nonzero transition probabilities are
among all the documents, indicated with GL (global
model), or only among adjacent documents, indicated
with LO (local model);

• transition probabilities: the transition probabilities are
proportional to the inverse of the distance, indicated
with ID (inverse distance model), or to the inverse of
the logarithm of the distance, indicated with LID (log-
arithmic inverse distance model).

We will obtain eight models that we will call after the
possible three choices. So, for example, MP GL AD ID is
an effectiveness measure with transition probabilities among
all the retrieved documents, based on a model on the whole
set T , and with transition probabilities proportional to the
inverse of the distance of the documents in the ranked list
and so on for the other combinations of the parameters.

4.3.1 State space choice
In the AD case, we consider the whole Markov chain (Xn)n∈N

on the whole set T with a given initial distribution λ and
a transition matrix P = (pi,j)i,j∈T and then we derive the
subchain (Yn)n∈N on the set R. In order to obtain the in-
variant distribution of the subchain, we will have to derive

its transition matrix P̃ . It can be proved (see [23]) that this
matrix can be defined as follows

p̃i,j = hj
i for i, j ∈ R

Table 1: Main features of the adopted data sets.
Topics Runs Min. Rel Avg. Rel Max. Rel

TREC 7 50 103 7 93.48 361
TREC 8 50 129 6 94.56 347
TREC 10 50 97 2 67.26 372
TREC 14 50 74 9 131.22 376

where the vector (hj
i , i ∈ T ) is the minimal non-negative

solution to the linear system

hj
i = pi,j +

∑
k �=R

pikh
j
k . (8)

So, once this linear system is solved, we obtain the transition

matrix P̃ needed to compute the Markov Precision for the
given model.

In the OR model, we create the Markov Chain (Xn)n∈N

directly on the set R.

4.3.2 Connectedness
In the GL model, we assume that the transition proba-

bilities pi,j > 0 for any choice of i �= j. In this case we
will assume that there will be a positive, even if very small,
probability to pass from any document in the ranked list
to any other. For example, the previous model for Average
precision is a GL model

By contrast, in LO we will assume that there exist tran-
sition probabilities only among adjacent nodes. This is the
same kind of logic behind RBP, even though RBP allows
only for forward transitions, and is similar to the strategy
of [8] for the two-dimensional placement problem.

4.3.3 Transition probabilities
In the ID model, we assume that the probability to pass

from one document to another one in the ranked list is pro-
portional to the inverse of the relative distance of these two
documents:

α(i, j) =

⎧⎨⎩
1

|i−j|+1
if i �= j

0 if i = j
(9)

Denoting by (s1, . . . , sm) the states of the Markov chain, we
thus have the following transition probabilities:

psi,sj =
α(si, sj)∑

k

α(si, sk)
(10)

It is immediately clear that the probabilities (10) define an
irreducible transition matrix P of a discrete time Markov
Chain on the state space and therefore we can define Markov
precision for this model.

In the LID model, we smooth the distance by using the
base 10 logarithm so that that transition probabilities do
not decrease not too fast. The choice of the base 10 for the
logarithm is due to a typical Web scenario focused on the
page of the first 10 results.

5. EVALUATION

5.1 Experimental Setup
In order to assess MP and compare it to the other per-

tinent evaluation measures (AP, P@10, Rprec, RBP, and
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Table 2: Kendall τ correlation between AP and
the other comparison measures using complete judg-
ments (high correlations marked with *).

AP P@10 Rprec bpref RBP
TREC 7 1.000 0.8018 0.9261* 0.9275 0.7886
TREC 8 1.000 0.8264 0.9219* 0.9361* 0.8090
TREC 10 1.000 0.7551 0.8730 0.8896 0.7401
TREC 14 1.000 0.7295 0.9377 0.8394 0.7229

bpref), we conducted a correlation analysis and we studied
its robustness to pool downsampling. As far as RBP is con-
cerned, we set p = 0.8, which indicates a medium persistence
of the user.

We used the following data sets: TREC 7 Ad Hoc, TREC
8 Ad Hoc, TREC 10 Web, and TREC 14 Robust, whose fea-
tures are summarized in Table 1. We used all the topics and
all the runs that retrieved at least one document per topic.
In the case of collections with graded relevance assessment
(TREC 10 and 14), we mapped them to binary relevance
with a lenient strategy, i.e. both relevant and highly rele-
vant documents have been mapped to relevant ones.

As far as pool downsampling is concerned, we used the
same strategy of [4]: it basically creates separate random
lists of relevant/not relevant documents and select a given
fraction R% of them, ensuring that at least 1 relevant and
10 not relevant documents are in the pool. We used R% =
[90, 70, 50, 30, 10].

As far as the calibration of time is concerned, we used
click logs made available by Yandex [29] in the context of
the Relevance Prediction Challenge2. The logs consist of
340,796,067 records with 30,717,251 unique queries, retriev-
ing 10 URLs each. We used the training set where there
are 5,191 assessed queries which correspond to 30,741,907
records and we selected those queries which appear at least
in 100 sessions each to calibrate the time.

The full source code of the software used to conduct the
experiments is available for download3 in order to ease com-
parison and verification of the results.

5.2 Correlation Analysis
Table 2 reports the Kendall τ correlation [18] between AP

and the other comparison measures, using complete judge-
ments, for all the collections. Previous work [33, 34] con-
sidered correlations greater than 0.9 as equivalent rankings
and correlations less than 0.8 as rankings containing notice-
able differences. Table 2 is consistent with previous findings,
with a high correlation between AP, Rprec, and bpref and
lower correlation values for P@10 and RBP.

Table 3 reports the Kendall τ correlation between the dif-
ferent models for MP, discussed in Section 4.3 and whose
notation (GL/LO, AD/OR, ID/LID) is used here as well,
and the performance measures of direct comparison, for all
the considered collections4. For each variant of MP, the ta-
ble reports its actual value and also a second row labelled
with the suffix @Rec(T ) to indicate a rescaled version of

2http://imat-relpred.yandex.ru/en/
3http://matters.dei.unipd.it/
4The fact that the values for the LO AD ID and
LO AD LID models are the same is not due to a copy&paste
error but to the fact that the two chains, in the local model,
are the same apart from a constant and so they produce
equal rankings.

MP by recall. Indeed, this is the same operation needed to
make MP equal to AP in the case of the model with con-
stant transition probabilities discussed in Section 4.2 and
corresponds to providing MP with the same level of infor-
mation about the recall base that also AP uses. This has a
twofold purpose: (i) to determine if there are other models
beyond the ones of Section 4.2 which can give us an addi-
tional interpretation of AP; (ii) to get a general feeling of
what is the impact of injecting information about the recall
into an evaluation measure. In the table, we have marked
high correlations, those above 0.90, with a star and we have
marked extremely high correlations, those above 0.97, with
two stars.

As a general trend MP tends not to have high correlations
with the other evaluation measures, indicating that it takes a
different angle from them. This can be accounted for by the
effect of the user model explicitly embedded in MP which,
for example, allows the user to move forward and backward
in the result list while other measures allow only for sequen-
tial scans. On the other hand, the proposed models keep it
not too far away from the other measures, especially those
around precision (AP, P@10, Rprec), since the correlation
never drops below 0.70. This is coherent with the fact that
both MP and the other measures (AP, P@10, Rprec) are all
around the concept of precision and so they have a common
denominator.

Moreover, it can be noted that MP tends to be more cor-
related with P@10 and then with Rprec and AP. This is
consistent with the fact that MP does not depend on the
recall base, as P@10 does, while Rprec implicitly and AP
explicitly depend on it.

Finally, the results show a moderate correlation with bpref
and a slightly lower one with RBP, whose only common
denominator is to not depend on the recall base.

Whit regard to @Rec(T ), we can note how they greatly
boost the correlation with AP in almost all cases, often mov-
ing MP from low to high correlations, and, in turn, increase
the correlation with Rprec and bpref (more correlated by
themselves to AP) with respect to the one with RBP which
tends to decrease.

In particular, there are some cases, like MP GL AD LID
or MP LO AD ID, where it jumps between 0.97 and 1.00.
We consider this a case in which MP is providing us with
an alternative interpretation of AP, in the sense discussed
in Section 4.2. For example, MP GL AD LID provided with
information about recall tells us that we can look at AP as a
measure that also models a user who can move backward and
forward among all the documents in the list and who prefers
smaller jumps to bigger ones. The fact that we have found
a few models so highly correlated with AP suggests that AP
has become a gold standard also because it represents some
articulated user models.

5.3 Effect of Incompleteness on Absolute
Performances

Figure 3 shows the effect of reducing the pool size on the
absolute average performances, over all the topics and runs.
For space reasons, we do not report figures for all the possible
combinations reported in Table 3 but just some to give the
reader an idea of the behavior of MP; the considerations
made here are however valid also for the not reported figures.

It can be noted how MP shows consistent behavior over
all the collections and for various models: its absolute aver-
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Table 3: Kendall τ correlation between different instantiations of MP and the other comparison measures
using complete judgments (high correlations marked with *; extremely high correlations marked with **).

TREC 7 TREC 8
AP P@10 Rprec bpref RBP AP P@10 Rprec bpref RBP

MP GL AD ID 0.7381 0.7522 0.7703 0.7827 0.7490 0.8997 0.8510 0.9074* 0.9222* 0.8382
MP GL AD ID@Rec(T ) 0.9823** 0.7916 0.9243* 0.9322* 0.7799 0.9815** 0.8128 0.9217* 0.9299* 0.7938
MP GL AD LID 0.7378 0.7638 0.7712 0.7802 0.7632 0.8912 0.8641 0.9033* 0.9173* 0.8551
MP GL AD LID@Rec(T ) 0.9954** 0.7994 0.9252* 0.9277* 0.7858 0.9953** 0.8221 0.9209* 0.9337* 0.8041
MP GL OR ID 0.7322 0.8311 0.7797 0.7689 0.7689 0.8162 0.9081* 0.8349 0.8402 0.9152*
MP GL OR ID@Rec(T ) 0.9117* 0.8316 0.8937 0.8848 0.8243 0.9208* 0.8756 0.9024* 0.9145* 0.8637
MP GL OR LID 0.7379 0.7853 0.7782 0.7788 0.7858 0.8664 0.8884 0.8853 0.8947 0.8858
MP GL OR LID@Rec(T ) 0.9726** 0.8158 0.9238* 0.9232* 0.8029 0.9722** 0.8477 0.9281* 0.9390* 0.8324
MP LO AD ID 0.7435 0.7706 0.7706 0.7874 0.7685 0.8931 0.8642 0.9011* 0.9174* 0.8537
MP LO AD ID@Rec(T ) 0.9946** 0.7994 0.9225* 0.9265* 0.7858 0.9953** 0.8248 0.9219* 0.9343* 0.8066
MP LO AD ID 0.7435 0.7706 0.7706 0.7874 0.7685 0.8931 0.8642 0.9011* 0.9174* 0.8537
MP LO AD ID@Rec(T ) 0.9946** 0.7994 0.9225* 0.9265* 0.7858 0.9953** 0.8248 0.9219* 0.9343* 0.8066
MP LO OR ID 0.7271 0.8229 0.7754 0.7634 0.8393 0.8138 0.9013* 0.8305 0.8354 0.9176*
MP LO OR ID@Rec(T ) 0.9130* 0.8283 0.8958 0.8853 0.8211 0.9195* 0.9195* 0.8714 0.8987 0.9127*
MP LO OR LID 0.7386 0.8065 0.7826 0.7787 0.8058 0.8534 0.8982 0.8708 0.8810 0.8995
MP LO OR LID@Rec(T ) 0.9552* 0.8278 0.9166* 0.9142* 0.8164 0.9506* 0.8623 0.9186* 0.9319* 0.8466

TREC 10 TREC 14
AP P@10 Rprec bpref RBP AP P@10 Rprec bpref RBP

MP GL AD ID 0.7264 0.7832 0.7727 0.7611 0.8013 0.8351 0.8078 0.8566 0.7778 0.7980
MP GL AD ID@Rec(T ) 0.9726** 0.7340 0.8631 0.8771 0.8771 0.9896** 0.7221 0.9333* 0.8360 0.7140
MP GL AD LID 0.7125 0.7971 0.7633 0.7494 0.8187 0.8294 0.8185 0.8501 0.7751 0.8071
MP GL AD LID@Rec(T ) 0.9941** 0.7512 0.8707 0.8878 0.7360 0.9977** 0.7303 0.9385 0.8397 0.8397
MP GL OR ID 0.7034 0.8269 0.7663 0.7470 0.8590 0.7968 0.8461 0.8206 0.7677 0.8302
MP GL OR ID@Rec(T ) 0.9117* 0.8316 0.8937 0.8848 0.8243 0.9601* 0.7526 0.9327* 0.8650 0.7444
MP GL OR LID 0.7052 0.8077 0.7672 0.7466 0.8396 0.8140 0.8291 0.8348 0.7716 0.8155
MP GL OR LID@Rec(T ) 0.9738** 0.7575 0.8740 0.8916 0.7448 0.9924** 0.7375 0.9398* 0.8432 0.7293
MP LO AD ID 0.7240 0.7969 0.7703 0.7614 0.8159 0.8297 0.8180 0.8504 0.7783 0.8089
MP LO AD ID@Rec(T ) 0.9742** 0.7376 0.8654 0.8802 0.7218 0.9970** 0.7295 0.9363* 0.8405 0.7214
MP LO AD ID 0.7240 0.7969 0.7703 0.7614 0.8159 0.8297 0.8180 0.8504 0.7783 0.8089
MP LO AD ID@Rec(T ) 0.9742** 0.7376 0.8654 0.8802 0.7218 0.9970** 0.7295 0.9363* 0.8405 0.7214
MP LO OR ID 0.7035 0.8300 0.7646 0.7449 0.8618 0.7997 0.8348 0.8234 0.7714 0.8220
MP LO OR ID@Rec(T ) 0.9326* 0.7726 0.8767 0.8960 0.7618 0.9674* 0.7429* 0.9348* 0.8597 0.7377
MP LO OR LID 0.7114 0.8172 0.7676 0.7533 0.8472 0.8084 0.8324 0.8306 0.7689 0.8180
MP LO OR LID@Rec(T ) 0.9579* 0.7601 0.8747 0.8949 0.7477 0.9877** 0.7372 0.9381* 0.8489 0.7306

age values decrease as the pool reduction rate increases in a
manner similare to AP and Rprec. Consistently with previ-
ous results, P@10 and RBP exhibit a more marked decrease
while bpref tends to stay constant. This positive property
of bpref is an indicator that it is not very sensible or it
does not fully exploit the additional information which is
provided when the pool increases.

5.4 Effect of Incompleteness on Rank Corre-
lation

Figure 4 shows the effect of reducing the pool size on the
Kendall τ correlation between each measure on the full pool
and the pool at a given reduction rate. The results shown
are consistent with previous findings as far as the measures
of direct comparison are concerned, showing that bpref is
almost always the more robust measure to pool reduction.
It is indeed plausible that, keeping bpref the absolute aver-
age performances almost constant, also the ranking of the
systems does not change much.

As far as MP is concerned, we can note that global models
[GL], shown in the case of TREC 7, 8 and 10, tend to per-
form comparably to AP and, when provided with the same
information about the recall base, which both AP and bpref
exploit, they consistently improve their performances and,
in the case of TREC 8, they outperform AP and perform
closely to bpref. This is an interesting result since, unlike

bpref, the absolute average performances of MP vary at dif-
ferent pool reduction rates, indicating that MP is able to
exploit the variable amount of information available at dif-
ferent pool reduction rates, still not affecting too much the
overall ranking of the systems.

The global models [GL] on only relevant documents [OR]
behave consistently with the global ones on all documents
[AD], shown in the case of TREC 7 and TREC 10, even if they
are a little bit more resilient to the pool reduction. This is
consistent with the fact that they use less information than
the AD ones and so they are less sensitive to the pool size.
The TREC 7 also shows the effect of using the inverse of the
distance [ID] or the log of the inverse of the distance [LID],
which provides more robustness to pool reduction.

When it comes to local models [LO], these tend to behave
comparably to the global ones in the case of all documents
[AD], as can be noted in the case of TREC 8, while they
are more affected by the pool reduction in the case of only
relevant documents [OR], as can be noted in the case of TREC
14.

5.5 Time Calibration
On the basis of the click logs, 21% of the observed tran-

sitions are backward, a fact that validates our assumption
that a user moves forward and backward along the ranked
list.
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Figure 3: Pool reduction rate (x axis) vs. performance averaged over topics and runs (y axis)
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Figure 4: Pool reduction rate (x axis) vs. Kendall’s rank correlation (y axis)

To compare the discrete-time version of MP with the con-
tinuous-time one, we have considered 3 runs with 5 relevant
documents and estimated the parameters of the exponen-
tial holding times by the inverse of the sample mean of the
time spent by the users visiting these states, multiplied by
(n− 1)/n. We used the GL AD ID model and the values of
discrete-time MP and continuous-time MP are reported in
Table 4.

Note that the precisions at each fixed rank n of the first,
second and third runs are decreasing and as one expects
MP of the three runs is decreasing. However, since the (es-
timated) holding times of the first documents in the first
run are very low, continuos-time MP is smaller for the first
run. This clearly shows that the use of continuous-time MP
depends heavily on the calibration of the holding times.

6. CONCLUSIONS AND FUTURE WORK
We introduced a new family of measures, called MP, which

exploit Markov chains in order to inject different user mod-
els and time into precision and which is not dependent on
the recall base. This permitted us to overcome some of the
traditional criticisms of AP (lack of a clear user model, de-
pendence on the recall base) while still offering a measure
which is AP when provided with the same amount of infor-
mation about the recall base that AP exploits. Moreover,
MP goes beyond almost all the evaluation measures allowing
for non sequential scanning of the result lists.

We have proposed some basic user interaction models and
validated their properties, in terms of correlation to other
measures and robustness to pool reduction, thus showing it
is as reliable as them. We have also found that some of these
models have an extremely high correlation with AP and this
can help in providing alternative interpretations of AP in the
light of more complex user models and in explaining why AP
is a “gold standard” in IR.

MP also bridges the gap between“rank-oriented”and“time-
oriented” measures, providing a single unified framework
where both viewpoints can co-exist and allowing for direct

comparison among the values of the“rank-oriented”(discrete-
time Markov chain) and “time-oriented” (continuous-time
Markov chain) versions. We have also provided an example
of how time can be calibrated using click logs from Yandex.

Future works concern the investigation of alternative user
models able to account also for the number of relevant/not
relevant documents visited so far – a kind of information
which is actually available to a real user – by employing a
multidimensional Markov chains to not violate the memory-
less assumption. A further interesting option would also be
to investigate whether click model-based IR measures [9] can
be represented via the Markov chain and thus embedded in
MP, i.e. whether the transition probabilities of the Markov
chain can be learned directly from click-logs, thus leveraging
models fully induced by user behaviour.

Another area of interest concerns how to calibrate time
into MP: work on click model-based measures can shed some
light in this respect and the techniques proposed by [30, 31]
for calibrating time with respect to document length can link
MP not only to click logs but also to document collections.

An interesting question for the future is whether MP could
fit search tasks other than informational ones, such as fact,
entity, or attributes focused searches or whether it could also
work with other kinds of test collections, such as nugget-
based ones [24].

Finally, the robustness of MP could be further investi-
gated, for example evaluating how it performs on condensed-
lists [27].
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Table 4: Estimated parameters of the exponential holding times for three runs and values of the discrete-time
and continuous-time MP.

Run µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 disc MP cont MP
(1,1,1,1,0,0,0,1,0,0) 0.2000 0.0357 0.2000 0.0400 0.0056 0.0005 0.0035 0.0017 0.0034 0.0024 0.9205 0.6603
(1,1,1,0,1,0,0,0,1,0) 0.0177 0.0047 0.0037 0.0015 0.0041 0.0031 0.0057 0.0022 0.0061 0.0045 0.8668 0.8710
(1,1,0,1,1,0,0,0,0,1) 0.0056 0.0051 0.0062 0.0031 0.0046 0.0025 0.005 0.0022 0.007 0.005 0.8120 0.8001
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