
A Visual Analytics Approach for What-If Analysis of
Information Retrieval Systems

Marco Angelini
University of Rome

Rome, Italy

Nicola Ferro
University of Padua

Padua, Italy

Giuseppe Santucci
University of Rome

Rome, Italy

Gianmaria Silvello
University of Padua

Padua, Italy

ABSTRACT
We present the innovative visual analytics approach of the
VATE2 system, which eases and makes more effective the
experimental evaluation process by introducing the what-if
analysis. The what-if analysis is aimed at estimating the
possible effects of a modification to an IR system to select
the most promising fixes before implementing them, thus
saving a considerable amount of effort.

VATE2 builds on an analytical framework which models
the behavior of the systems in order to make estimations,
and integrates this analytical framework into a visual part
which, via proper interaction and animations, receives input
and provides feedback to the user.

1. INTRODUCTION
Understanding and interpreting the results produced by

experimental evaluation is not a trivial task, which requires
a lot of manual effort due to the complex interactions among
the components of an Information Retrieval (IR) system.
Moreover, after such activity, the researcher needs to come
back to design and then implement the modifications that
the previous analysis suggested as possible solutions to the
identified problems. Afterwards, a new experimentation cy-
cle needs to be started to verify whether the introduced mod-
ifications actually give the expected improvement. There-
fore, the overall process of improving an IR system is ex-
tremely time and resource demanding and proceeds through
cycles where each new feature needs to be implemented and
experimented.

The goal of this paper is to introduce a new phase in
this cycle: we call it what-if analysis and it falls between
the experimental evaluation and the design and implemen-
tation of the identified modifications. What-if analysis aims
at estimating what the effects of a modification to the IR
system under examination could be before actually being
implemented.

What-if analysis exploits Visual Analytics (VA) techniques
to make researchers and developers: (i) interact with and ex-

ACM ISBN 123-XXX.

DOI: 10.XXX

plore the ranked result list produced by an IR system and
the achieved performances; (ii) hypothesize possible causes
of failure and their fixes; (iii) estimate the possible impact of
such fixes through a powerful analytical model of the system
behavior. This paper introduces the Visual Analytics Tool
for Experimental Evaluation (VATE2) prototype, which pro-
vides a proof-of-concept of how what-if- analysis works.

The paper is organized as follows: Section 2 summarizes
our previous work on VA for performance and failure anal-
ysis, which constitutes the starting point for developing the
what-if analysis; Section 3 gives an overview of the ana-
lytics framework defining the what-if analysis. Section 4
illustrates how the what-if analysis has been realized in the
VATE2 prototype and describes its main features. Finally,
Section 5 draws some conclusions.

2. PERFORMANCE AND FAILURE ANAL-
YSIS

In order to quantify the performances of an IR system,
we realized Visual Information Retrieval Tool for Upfront
Evaluation (VIRTUE) [1, 2] which adopts the Discounted
Cumulated Gain (DCG) family of measures [4] which allow
for graded relevance judgments and embed a model of the
user behavior while he scrolls down the result list which also
gives an account of its overall satisfaction.

We compare the result list produced by an experiment
with respect to an ideal ranking created starting from the
relevant documents in the ground-truth. In addition to what
is typically done, we compare the result list with respect to
an optimal one created with the same documents retrieved
by the IR system but with an optimal ranking, i.e. a permu-
tation of the results retrieved by the experiment aimed at
maximizing its performances by sorting the retrieved docu-
ments in decreasing order of relevance.

Looking at a performance curve, as the DCG curve is,
it is not always easy to spot what the critical regions in a
ranking are. Indeed, DCG is a not-decreasing monotonic
function which increases only when a relevant document is
found in the ranking. However, when DCG stays constant,
it is not immediately clear to understand whether this is
due to a failure of the system which is not retrieving rele-
vant documents while it would still be expected to do so, or
whether the system is performing properly since there would
be nothing to gain at that rank position.

To overcome this and similar issues, we introduce the
Relative Position (RP) indicator, which allows us to quan-
tify and explain what happens at each rank position and
its paired with a visual counterpart which eases the explo-

PRE-PRINT version of the paper accepted for publication at SIGIR 2016.

10.XXX


ration of the performances across the ranking, immediately
grasping the most critical areas. RP quantifies the effect of
misplacing relevant documents with respect to the ideal case,
i.e. it accounts for how far a document is from its ideal po-
sition. RP eases the interpretation of the DCG curve since,
for example, a constant value of DCG implies a negative
value of RP, if this is due to a failure of the system which
is not retrieving relevant documents while it would still be
expected to do so, or a zero value of RP, if the system is
performing properly since there would be nothing to gain at
that rank position.

The RP indicator is paired with a visual counterpart that
makes it even easier to quickly spot and inspect critical areas
of the ranking. A bar is added on the left of the visualization
where each rank position is represented with a box and, by
using appropriate color coding to distinguish between zero,
positive and negative values and shading to represent the
intensity, each box represents the values of RP.

For example, in this way, looking at the bar and its colors,
the developer can immediately identify not relevant docu-
ments which have been ranked in the positions of relevant
ones. Then, the visualization allows them to inspect those
documents and compare them with the topic at hand in or-
der to make hypotheses about the causes of a failure.

3. WHAT-IF ANALYSIS
Suppose now that a query is about personal computa-

tion devices while a document talks about personal com-

puting devices. If a system suffers from under-stemming,
computation and computing may not be properly stemmed
to comput. In this case, the previous document may be
ranked lower because it matches the query only partially.

By performing failure analysis, the developer hypothesizes
that the problem is the stemmer which does not conflate
computing to comput. At the same time, the developer hy-
pothesizes that if s/he fixes the failure, a given relevant doc-
ument would be ranked higher than in the current system.
What the visualization of Figure 2 offers to the developer
is: (i) the possibility of dragging and dropping the target
document in the estimated position of the rank; (ii) the es-
timation of which other documents would be affected by the
movement of the target document and how the overall rank-
ing would be modified; (iii) the computation of the system
performances according to the new ranking. Indeed, if the
stemmer is fixed, not only the target document identified
by the developer would be affected by this modification but
also other documents which, for example, contain the term
computable and which were not examined by or known to
the developer. Therefore, moving a single target document
would actually cause the movement and repositioning of a
whole set of documents that share features impacted by the
same modification which will affect the target document se-
lected by the developer. These complex interactions between
documents may generate modifications on the ranking that
go well beyond what the developer imagined when moving
the single target document and which are definitely hard for
her/him to guess. Thus, the contribution of the visualization
and analytical engine of Figure 2 is to automatically point
out to the developer all these complex interactions and how
they affect the overall ranking.

In order to carry out the scenario just envisioned, VATE2

needs: (i) to understand which documents would be affected
by the movement of a target document indicated by the

(a) Constant Movement Strategy. (b) Similarity-based Movement Strategy.

Lt

d1

doc sim

d2

d3

rel
1
1
0

d4

d5

d6

d7

d8

d9

2

d10 2

1

0
0

0

0

0.94

0.78
0.80

0.70

0.60
0.64

0.59
0.50
0.45
0.42

doc sim

d4

d6

d8

d10

1
0.80
0.70
0.65

Cd6

�
=

3

d1

doc

d2

d3

d4

d5

d6

d7

d8

d9

d10

L
0
t

cluster to
be moved

Lt

d1

doc sim

d2

d3

rel
1
1
0

d4

d5

d6

d7

d8

d9

2

d10 2

1

0
0

0

0

0.94

0.78
0.80

0.70

0.60
0.64

0.59
0.50
0.45
0.42

�
=

3

d1

doc

d2

d3

d4

d5

d6

d7

d8

d9

d10

L
0
t

doc sim

d4

d6

d8

d10

1
0.80
0.70
0.65

Cd6

posd6
=

⇠
6 ⇤

⇣
1� 6� 3

6
⇤ 1

⌘⇡
= 3

posd4
=

l
4 ⇤

⇣
1� 0.5 ⇤ 0.65

⌘m
= 3

posd8
=

l
8 ⇤

⇣
1� 0.5 ⇤ 0.8

⌘m
= 4

posd10
=

l
10 ⇤

⇣
1� 0.5 ⇤ 0.7

⌘m
= 7

Figure 1: Document movement.

developer; and (ii) to adopt a strategy for simulating what
the movement of the documents in the ranked list could be.
Both of these items require a quite complex analytical model
and computations. The complete description of the engine
employed in VATE2 is described in [3].

Document clustering is exploited in VATE2 in order to un-
derstand which documents would be affected by the move-
ment of a target document indicated by the developer, using
a variation of the cluster hypothesis [5] that we could call
the failure hypothesis: “closely associated documents tend to
be affected by the same failures”, stating the common intu-
ition that a given failure will affect documents with common
features (in our example all the documents where the term
computing appears), and, consequently, that a fix for that
failure will have an effect on the documents sharing those
common features.

The movement of the document and the related document
cluster happens according to two alternative strategies. The
first is a straightforward algorithm that moves the docu-
ments in the cluster by the same amount of positions as the
document dragged and dropped by the developer, as shown
in Figure 1.(a). The second is a slightly more sophisticated
algorithm that takes into consideration the similarity of the
documents in the cluster to the document selected by the
developer and then moves the documents in the cluster by
an amount of positions proportional to their similarity to the
document dragged and dropped by the developer, as shown
in Figure 1.(b).

Once the new ranked list has been produced by using a
clustering and movement strategy, the performances of this
new ranked list are computed and the corresponding new
line is shown to the developer so that s/he can assess whether
the hypothesized modification may be beneficial or not. In
the former case VATE2 turns on a green light to indicate
to the developer that s/he should go on with the fix of the
system, otherwise it turns on a red light meaning that the
fix may be useless or worsen the system.

4. THE VATE2 PROTOTYPE
The prototype of VATE2 is available online1 and Figure 2

shows its main characteristics. The system is structured in
three main parts:

(i) Experimental collection information (A): this
component is placed on the left side and it allows the devel-

1http://ims-ws.dei.unipd.it/vate ui/

http://ims-ws.dei.unipd.it/vate_ui/


(A) (B) (C)

Figure 2: General overview of the VATE2 system.

(a) (b) 

Figure 3: (a) selection of a document and highlight of its cluster; (b) the ranked list and the DCG curve after
the movement.



oper to inspect and interact with the information regarding
the experimental collection. More in detail, it is divided into
three sub-components. The first is the “Experiment Selec-
tion” where the developer can select the experimental collec-
tion, the experiment to analyze and the evaluation measure
and its parameters. The second sub-component is the“Topic
Information” composed of the structured description of the
topic and the topic selection grid. The third sub-component
is the “Document Information” reporting the content of the
document under analysis.

(ii) Ranked list exploration (B): this component is
placed on the center and shows a visual representation of the
ranked list. More in detail, the documents are represented
as rectangles ordered by rank from top to bottom where the
color indicates the RP value; green rectangles indicate well-
placed documents, blue rectangles indicate the documents
placed below their ideal position and red rectangles indicate
the documents placed above their ideal position. The inten-
sity of the color encodes the severity of the misplacement,
the more intense the worse the misplacement.

(iii) Performance view (C): this component is placed
on the right side and shows the performance curves of the
selected experiment. The yellow curve is the ideal one, the
magenta curve is the optimal one and the cyan curve is the
experiment one. The developer can analyze the trend of the
experiment by comparing the behavior of its curve with the
ideal and optimal ranking by spotting the possible areas of
improvement. Note that for simplicity we talk about “per-
formances”, even though we are considering the effectiveness
of the evaluated systems.

The developer can interactively select the topic to be an-
alyzed in the topic selection grid and the ranked list and the
performance curves are updated accordingly to the selected
topic for the given experiment. The user can select the effec-
tiveness measure to be used among: Cumulated Gain (CG),
DCG, Normalized Cumulated Gain (nCG) and Normalized
Discounted Cumulated Gain (nDCG). The ranked list can
be dynamically inspected by hovering the mouse over the
documents: for each inspected document, the system shows
its content on the left in the “Document information” area
and marks with a circle the position of the document on the
curves in the “Performance view”. Moreover, the developer
can interact with the “Performance view” by hovering the
mouse over the curves which, by means of a tooltip, reports
information about the document and the performance score.
When a point in the DCG curve is selected, VATE2 high-
lights the rectangle of the corresponding document in the
ranked list giving a different perspective to the developer
who can have a visual indication about the misplacement of
the document thanks to the color of the rectangle.

Concerning what-if analysis, as shown in Figure 3.(a),
once the developer selects a document, the system displaces
on the right the rectangles corresponding to the documents
in its similarity cluster and reports their identifiers also on
the right. Moreover, a vertical yellow bar highlights the ideal
interval in which the selected document should be placed. In
Figure 3 ∆ quantifies the movement of a document in terms
of the number of positions it has been moved.

Once the developer selects a document, s/he can drag it
to a new position in the ranked list; afterwards, the docu-
ment along with its similarity cluster is moved in the new
positions. This action is visually shown to the developer and
it is represented with an animated movement of the corre-

sponding rectangles to the new positions.
The effect of a movement is shown in Figure 3.(b). We

can see an effect on the ranked list which is now split in two
parts: on the left there is the old ranked list while on the
right there is the new ranked list produced after the move-
ment. In this way the developer can visually compare the
effects of the movement and see what other documents have
been affected by it. The effect of the movement can be also
assessed in the “Performance view” where the new experi-
ment curve (solid stroke) can be compared with the old one
(dashed stroke). By analyzing both the ranked list and the
performance curves the developer can understand whether
their hypothesis about the fix leads to an improvement or
deterioration in the performances.

All these operations can be iterated as many times as the
developer needs to validate possible alternative fixes of the
system.

From the design point-of-view, the adopted solutions re-
flect the way in which the system is typically used by ex-
perts. The “Performance view” part is as big as possible to
allow experts a comfortable analysis of the system perfor-
mances, which is the starting point of every investigation,
and calls for handy tools for spotting each change in the
DCG curve. Then, the interaction over the performance
curve coordinated with the ranked list bar on the left facil-
itates developers in understanding the critical areas in the
ranking, while the dynamic presentation of document con-
tent on the bottom left with respect to topic content on the
top left supports the identification of possible failure causes.

5. FINAL REMARKS
In this paper we introduced the idea of what-if analysis

as a new phase in experimental evaluation and we devel-
oped the VATE2 prototype which demonstrates what what-
if analysis is and how it works.

The identification of which documents are affected by a
modification and the estimation of how the movement of
one of them will cause the others to move is an extremely
challenging problem. So, future work will concentrate on
refining the techniques we have adopted to this end.

6. REFERENCES
[1] M. Angelini, N. Ferro, G. Santucci, and G. Silvello. A

Visual Interactive Environment for Making Sense of
Experimental Data. In Proc. 36th European Conference
on IR Research (ECIR 2014), pages 767–770. LNCS
8416, Springer, 2014.

[2] M. Angelini, N. Ferro, G. Santucci, and G. Silvello.
VIRTUE: A visual tool for information retrieval
performance evaluation and failure analysis. Journal of
Vis. Lang. & Comp. (JVLC), 25(4):394–413, 2014.

[3] N. Ferro and G. Silvello. What-If Analysis: A Visual
Analytics Approach to Information Retrieval
Evaluation. In Proc. 7th Italian Information Retrieval
Workshop (IIR 2016). CEUR Workshop Proc.
(CEUR-WS.org), 2016.

[4] K. Järvelin and J. Kekäläinen. Cumulated Gain-Based
Evaluation of IR Techniques. ACM Trans. on Inf. Sys.
(TOIS), 20(4):422–446, October 2002.

[5] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, England, 2nd edition, 1979.


	Introduction
	Performance and Failure Analysis
	What-if Analysis
	The VATE2 Prototype
	Final Remarks
	References

