
An interval-like scale property for IR evaluation measures
Marco Ferrante

Dept. Mathematics

University of Padua, Italy

ferrante@math.unipd.it

Nicola Ferro

Dept. Information Engineering

University of Padua, Italy

ferro@dei.unipd.it

Silvia Pontarollo

Dept. Mathematics

University of Padua, Italy

spontaro@math.unipd.it

ABSTRACT
Evaluation measures play an important role in IR experimental

evaluation and their properties determine the kind of statistical

analyses we can conduct.

It has been previously shown that it is questionable that IR ef-

fectiveness measures are on an interval-scale and this implies that

computing means and variances is not a permissible operation.

In this paper, we investigate whether it is possible to relax a bit

the de�nition of interval scale, introducing the notion of interval-

like scale, and to what extent IR e�ectiveness measures comply

with this relaxed de�nition.
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KEYWORDS
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1 INTRODUCTION
Evaluation plays a central role in Information Retrieval (IR) and a

lot of a�ention is devoted to improving our evaluation method-

ologies and practices. For example, since many years, there is a

continued interest on how to properly apply statistical techniques

to the analysis of IR experimental data, e.g., on the appropriate use

of statistical testing [7, 13, 20, 23], on the normalization of measure

values for cross-collection comparison [27], or on moving towards

Bayesian inference [8, 21], just to name a few.

However, all these studies rely on some, o�en hidden and implicit,

assumptions on what IR e�ectiveness measures are. In particular,

measurement scales [15, 25] determine the operations that is admis-

sible to perform with measure values and, as a consequence, the

statistical analyses that can be applied. [25] identi�es four major

types of scales with increasing properties: (i) the nominal scale
consists of discrete unordered values, i.e. categories; (ii) the ordinal
scale introduces a natural order among the values; (iii) the inter-
val scale preserves the equality of intervals or di�erences; and (iv)

the ratio scale preserves the equality of ratios. Operations such as

computing the mean or the variance are possible just on interval

and ratio scales and they constitute the basis of many of the statis-

tical techniques mentioned above. However, are we sure that IR

e�ectiveness measures are on an interval scale? For example, [17]

points out that the assumption of Average Precision (AP) being on
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an interval scale is somehow arbitrary and, as a consequence, also

some of the descriptive statistics you compute about it.

�erefore, researchers started to study what IR e�ectiveness

measures are, not only from an empirical perspective, e.g., [4, 5, 19],

but also from a theoretical one, e.g., [1–3, 6, 10, 22, 26].

In this paper, we stem from the recent work of [11] and we

move a step forward in understanding when and to what extent IR

e�ectiveness measures are on an interval scale.

[11] investigated whether IR e�ectiveness measures are on an

interval scale in the perspective of the representational theory of
measurement [15], which is the measurement theory adopted in

both physical and social sciences. According to this framework, the

key point is to understand how real world objects, i.e., system runs

in our case, are related to each other since measure properties are

then derived from these relations. Moreover, it is important that

these relations among real world objects are intuitive and sensible

to “everybody” and that they can be commonly agreed on.

�erefore, [11] pointed out that the main issues in determining

the scale of IR e�ectiveness measures are: (i) to understand how

runs are empirically and intuitively ordered; (ii) to de�ne what

an interval of runs is; and, (iii) to determine how these intervals

are ordered. Once you se�led all these aspects, you can check

whether an e�ectiveness measure comply with them or not and thus

determine whether it is on an interval scale or not. In particular,

[11] found that under a strong top-heaviness notion of ordering

among runs, only Rank-Biased Precision (RBP) [16] with p = 1

2
is on

an interval scale while RBP for other values of p and other popular

measures – namely AP, Discounted Cumulated Gain (DCG) [14],

and Expected Reciprocal Rank (ERR) [9] – are not. Moreover, using

a weak top-heaviness notion of ordering among runs, [11] found

that all the previously mentioned IR e�ectiveness measures are not

on an interval scale.

Strong top-heaviness provides us with a total ordering among

runs and, as discussed above, there is at least one case of IR mea-

sure on an interval scale; however, the way in which strong top-

heaviness orders runs may give raise to disagreement or corner

cases. For example, strong top-heaviness ranks the run (1, 0, 0, 0)

with just one top relevant document before the run (0, 1, 1, 1) with

all relevant documents except for the �rst position; thus, there

might be disagreement on whether this is an appropriate ordering

for these runs. On the other hand, weak top-heaviness provides

us with a much more intuitive partial ordering based on two basic

operations – swapping two consecutive documents in a ranking

and replacing a not relevant document with a relevant one [10];

however, none of the IR evaluation measures is on interval-scale

using weak top-heaviness.

�e problem with IR e�ectiveness measures emerging from [11]

is two-fold: on the one side, both strong and weak top-heaviness

create equi-spaced intervals of runs, as expected by the de�nition
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of interval scale, but IR e�ectiveness measures do not respect this

equi-spacing; on the other side, both strong and weak top-heaviness

do not account enough for the importance and the e�ect of the

rank of a document in a run, since they both rely on the notion of

natural distance in a poset (partially ordered set) [24] which �a�ens

things too much, shrinking everything into a single number.

In this paper, we take a di�erent approach to the ordering of in-

tervals of runs, not based on single numbers, as the natural distance

of [11] does, but using vectors instead. �is new ordering is richer

and more expressive than that induced by the natural distances in

the strong and weak top-heaviness cases and allows us to introduce

the notion of interval-like scale, i.e., something richer than an ordi-

nal scale but a bit less powerful than an interval scale, since runs

are ordered, intervals of runs are ordered too but intervals may

not be equi-spaced. In particular, we �nd that, under reasonable

assumptions, DCG and RBP are on a interval-like scale while AP

and ERR are not.

�e paper is organized as follows: Section 2 recaps some basic

concepts about the representational theory of measurement and

posets; Section 3 deals with interval-like scales; �nally, Section 4

wraps up the discussion and outlooks some future work.

2 BACKGROUND
2.1 Representational �eory of Measurement
A relational structure [15, 18] is an ordered pair X =

〈
X ,RX

〉
of

a domain setX and a set of relations RX onX , where the relations in

RX may have di�erent arities, i.e. they can be unary, binary, ternary

relations and so on. Given two relational structures X and Y, a

homomorphismM : X→ Y from X to Y is a mapping M =
〈
M,MR

〉
where: (i) M is a function that maps X into M(X ) ⊆ Y , i.e. for each

element of the domain set there exists one corresponding image

element; (ii) MR is a function that mapsRX into MR (RX ) ⊆ RY such

that ∀r ∈ RX , r and MR (r ) have the same arity, i.e. for each relation

on the domain set there exists one (and it is usually, and o�en

implicitly, assumed: and only one) corresponding image relation;

(iii) ∀r ∈ RX ,∀xi ∈ X , if r (x1, . . . ,xn ) then MR (r )
(
M(x1), . . . ,

M(xn )
)
, i.e. if a relation holds for some elements of the domain set

then the image relation must hold for the image elements.

A relational structure E is called empirical if its domain set E
spans over the entities under consideration in the real world, i.e. the

system runs in our case; a relational structure S is called symbolic
if its domain set S spans over a given set of numbers. A measure-
ment (scale) is the homomorphism M =

〈
M,MR

〉
from the real

world to the symbolic world and a measure is the number assigned

to an entity by this mapping.

2.2 Measurement Scales
[11] relied on the notion of di�erence structure [15, 18] to introduce

a de�nition of interval among system runs in such a way that it

ensures the existence of an interval scale.

Given E, a weakly ordered empirical structure is a pair (E, �)
where, for every a,b, c ∈ E,

• a � b or b � a;

• a � b and b � c ⇒ a � c .

Given (E, �), we have to de�ne a di�erence ∆ab between two

elements a,b ∈ E, which is a kind of signed distance we exploit

to compare intervals. �en, we have to de�ne a weak order �d
between these ∆ab di�erences. We can proceed as follows: if two

elements a,b ∈ E are such that a ∼ b, i.e. a � b and b � a, then

the interval [a,b] is null and, consequently, we set ∆ab ∼d ∆ba ; if

a � b we agree upon choosing ∆aa ≺d ∆ab which, in turn implies

that ∆aa �d ∆ba .

Definition 1. Let E be a �nite (not empty) set of objects. Let �d be a

binary relation on E×E that satis�es, for each a,b, c,d,a′,b ′, c ′ ∈ E,

the following axioms:

i. �d is weak order ;
ii. if ∆ab �d ∆cd , then ∆dc �d ∆ba ;

iii. if ∆ab �d ∆a′b′ and ∆bc �d ∆b′c ′ then ∆ac �d ∆a′c ′ ;
iv. Solvability Condition: if ∆aa �d ∆cd �d ∆ab , then there

exists d ′,d ′′ ∈ E such that ∆ad ′ ∼d ∆cd ∼d ∆d ′′b .

�en (E, �d ) is a di�erence structure.

Particular a�ention has to be paid to the Solvability Condition
which ensures the existence of an equally spaced gradation be-

tween the elements of E, indispensable to construct an interval

scale measurement.

�e representation theorem for di�erence structures states:

Theorem 1. Let E be a �nite (not empty) set of objects and let
(E, �d ) be a di�erence structure. �en there exist a measurement scale
M : E → R such that for every a,b, c,d ∈ E

∆ab �d ∆cd ⇔ M(a) −M(b) ≤ M(c) −M(d) .

�is theorem ensures us that, if there is a di�erence structure

on the empirical set E, then there exists an interval scale M.

As anticipated in Section 1, we will introduce the notion of

interval-like scale which corresponds to removing the solvability

condition from the de�nition of di�erence structure and obtaining

a new partial ordering of the intervals of runs.

2.3 Posets
A partially ordered set P , poset for short, is a set with a partial order

� de�ned on it [24]. A partial order � is a binary relation over P
which is re�exive, antisymmetric and transitive. Given s, t ∈ P , we

say that s and t are comparable if s � t or t � s , otherwise they are

incomparable.
A closed interval is a subset of P de�ned as [s, t] B {u ∈ P : s �

u � t}, where s, t ∈ P and s � t . Moreover we say that t covers s
if s � t and [s, t] = {s, t}, that is there does not exist u ∈ P such

that s ≺ u ≺ t .
We can represent a �nite poset P by using the Hasse diagram

which is a graph where vertices are the elements of P , edges rep-

resent the covers relations, and if s ≺ t then s is below t in the

diagram.

A subset C of a poset P is a chain if any two elements of C are

comparable: a chain is a totally ordered subset of a poset. If C is a

�nite chain, the length of C , `(C), is de�ned by `(C) = |C | − 1. A

maximal chain of P is a chain that is not a proper subset of any

other chain of P .

If every maximal chain of P has the same length n, we say that

P is graded of rank n; in particular there exists a unique function
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ρ : P → {0, 1, . . . ,n}, called the rank function, such that ρ(s) = 0,

if s is a minimal element of P , and ρ(t) = ρ(s) + 1, if t covers s .
Finally, since any interval on a graded poset is graded, the length

of an interval [s, t] is given by `(s, t) B `([s, t]) = ρ(t)−ρ(s), also

called the natural distance.

3 INTERVAL-LIKE SCALES
3.1 Preliminary De�nitions
Given N , the length of the run, we de�ne the set of retrieved
documents as D(N ) = {(d1, . . . ,dN ) : di ∈ D,di , dj for any i ,
j}, i.e. the ranked list of retrieved documents without duplicates, and

the universe set of retrieved documents as D :=
⋃ |D |
N=1

D(N ).
A run rt , retrieving a ranked list of documents D(N ) in response

to a topic t ∈ T , is a function from T into D

t 7→ rt = (d1, . . . ,dN )

We denote by rt [j] the j-th element of the vector rt ,

i.e. rt [j] = dj .
We de�ne the universe set of judged documents as R :=⋃ |D |
N=1

RELN , where RELN is the set of the ranked lists of judged

retrieved documents with length �xed to N . Since in our case

REL = {0, 1}, RELN = {0, 1}N refers to the space of all N−length

vectors consisting of 0 and 1. As for the set-based case, we denote

by RBt the recall base, i.e. the total number of relevant documents

for a topic.

We call judged run the function r̂t from T × D into R, which

assigns a relevance degree to each retrieved document in the ranked

list

(t , rt ) 7→ r̂t =
(
GT (t ,d1), . . . ,GT (t ,dN )

)
We denote by r̂t [j] the j-th element of the vector r̂t , i.e. r̂t [j] =
GT (t ,dj ).

As for the set-based case, we can simplify the notation omi�ing

the dependence on topics, r̂ B
(
r̂ [1], . . . , r̂ [N ]

)
, RB, and so on.

3.2 Ordering between Intervals
Let us start recalling the ordering between runs adopted in this

paper and based on the following two monotonicity-like properties

proposed by [10]:

• Replacement A measure of retrieval e�ectiveness should

not decrease when replacing a document with another one

in the same rank position with higher degree of relevance.

• Swap If we swap a less relevant document with a more

relevant one in a lower rank position, the measure should

not decrease.

�ese two properties lead to the following partial ordering among

system runs

r̂ � ŝ ⇔
k∑
j=1

r̂ [j] ≤
k∑
j=1

ŝ[j] ∀k ∈ {1, . . . ,N } . (1)

�is ordering considers a run bigger than another one when, for

each rank position, it has more relevant documents than the other

one up to that rank.

�is is the same ordering of runs used by [11] in the weak top-

heaviness case but, di�erently from [11], we now introduce a di�er-

ent notion of length of an interval, not based on the natural distance

which, as discussed in Section 1, has the drawback of �a�ening

everything into a single number.

To de�ne the length of an interval we adopt the following strat-

egy: given r̂ , ŝ ∈ RELN with r̂ � ŝ , we count how many replace-

ments in the last position and how many forward single-step swaps

at each depth are necessary to go from r̂ to ŝ following a maximal

chain in RELN . In order to do this, it is useful to de�ne the cu-

mulative sums of a vector v = (v[1], . . . ,v[N ]), denoted using the

capital le�er as V = (V [1], . . . ,V [N ]), where V [j] =
∑j
i=1

v[i].
Let us start with a simple example.

Example. Consider the two judged runs in REL4

r̂ = (0, 1, 1, 0) ,

0̂ = (0, 0, 0, 0) .

Since 0̂ ≺ r̂ , in order to construct a chain from 0̂ to r̂ with the

two basic operators (replacement in last position and single-step

forward swap) we get

0̂ = (0, 0, 0, 0) ,

0̂1 = (0, 0, 0, 1) ,

0̂2 = (0, 0, 1, 0) ,

0̂4 = (0, 1, 0, 0) ,

0̂5 = (0, 1, 0, 1) ,

0̂6 = (0, 1, 1, 0) = r̂ .

We have made two replacement in the fourth position, one swap

in the second position and two in the third one. Recall that with

swap at depth i we mean that a forward swap from position i − 1

to position i was done. We can count how many of these basic

operations in each position are needed to go from 0̂ to r̂ just taking

the cumulative sums of r̂ . Indeed we get

R̂ = (0, 1, 2, 2) ,

and each entry k < D of R̂, R̂[k], counts the number of swaps made

in position k , while R̂[N ] counts the number of replacement, i.e.

the total mass of r̂ , to go from 0̂ to r̂ .

More generally, given two vectors r̂ , ŝ ∈ RELN , with r̂ ≺ ŝ ,
in order to collect the number of basic operations made at each

position to go from r̂ to ŝ , we can compute this vector of length N
�rst between 0̂ and r̂ and between 0̂ and ŝ , namely R̂ and Ŝ , and

then subtract the two vectors. Precisely Ŝ − R̂ leads to a new vector

of length N , where each entry k equals the number of swaps or

replacements (if k = N ) needed to go from r̂ to ŝ .

Example. In order to be�er understand this mechanism, let us

consider a second example. Consider the two judged runs in REL4

r̂ = (0, 1, 0, 0) ,

ŝ = (1, 0, 1, 0) .

In order to construct a chain from r̂ to ŝ with the two basic operators

(replacement in last position and single-step forward swap) we get

r̂ = (0, 1, 0, 0) ,

v̂ = (1, 0, 0, 0) ,

ŵ = (1, 0, 0, 1) ,

ŝ = (1, 0, 1, 0) .
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We have made a swap in the �rst and third position and a replace-

ment in the fourth position, that we can collect in a vector as

t = (1, 0, 1, 1) . (2)

On the other hand it is easy to compute R̂ = (0, 1, 1, 1) and Ŝ =
(1, 1, 2, 2). �erefore

Ŝ − R̂ = (1, 0, 1, 1) = t ,

as we wanted to show.

Let us consider a second, more complicated, example.

Example. Consider the two judged runs

r̂ = (1, 0, 0, 0, 0, 1, 1, 0, 1, 0) ,

ŝ = (1, 1, 0, 0, 1, 0, 1, 0, 0, 1) .

Clearly r̂ � ŝ . Moreover

Ŝ = (1, 2, 2, 2, 3, 3, 4, 4, 4, 5) ,

R̂ = (1, 1, 1, 1, 1, 2, 3, 3, 4, 4).

�us

Ŝ − R̂ = (0, 1, 1, 1, 2, 1, 1, 1, 0, 1).

Let t = Ŝ − R̂. For any i < 10, t[i] tells us how many swaps one

needs to do at depth i to make the smallest run coincide with the

biggest one. Moreover, if the total number of relevant relevance-

degrees is not equal for both, as in this example, the last entry of

t , t[N ], is exactly the number or replacements on r̂ one needs to

make, and coincide with

∑
i ŝ(i) −

∑
i r̂ (i).

Given an interval [r̂ , ŝ], if we take the cumulative sums of t =
Ŝ − R̂ we obtain the vector T of the cumulative sums of t that

counts, for every i ≤ N , the total number of swaps (or replacements,

if i = N ) made from depth 1 to i between the endpoints of the

given interval. �e vector T can be seen as a new and generalized

de�nition of the length of the interval [r̂ , ŝ], which replaces the

natural distance used by [11].

According to this new distance, we say that the interval [r̂1, ŝ1]

is smaller than or equal to the interval [r̂2, ŝ2] if, for the vectors T1

and T2 of their cumulative sums, it holds that T1[i] ≤ T2[i] for any

i ≤ n. It is worth noticing that, if we take as de�nition of length

any convex linear combination of the values (T [i], . . . ,T [n]), the

intervals comparable for the previous ordering remain comparable.

Other intervals become comparable for any �xed linear combina-

tion, but it is not possible to say in advance they are ordered in the

same way by any two of these combinations.

We are now able to de�ne a di�erence in this se�ing:

Definition 2. Given r̂ , ŝ ∈ RELN , with r̂ � ŝ , the di�erence ®∆ŝ r̂
is a vector of length N such that

®∆ŝ r̂ [i] B
i∑
j=1

(i − j + 1)
(
ŝ[j] − r̂ [j]

)
,

for all i ∈ {1, . . . ,N }.

It can be easily proved that ®∆ŝ r̂ is exactly the vector T de-

�ned above. Indeed, by construction, given r̂ , ŝ ∈ RELN with

r̂ � ŝ , t[j] =
∑j
n=1
(ŝ[n] − r̂ [n]). �erefore T [i] =

∑i
j=1

t[j] =∑i
j=1

∑j
n=1
(ŝ[n] − r̂ [n]) =

∑i
j=1
(i − j + 1)

(
ŝ[j] − r̂ [j]

)
.

Moreover, when computing the di�erence vector ®∆ · · between

two comparable runs r̂ , ŝ , in this work we write ®∆ŝ r̂ whenever r̂ � ŝ :

if we instead consider ®∆r̂ ŝ , then we are counting the backward

swaps from ŝ to r̂ and ®∆r̂ ŝ [i] ≤ 0 for all i ∈ {1, . . . ,N }.

Since here ®∆ · · is no more a scalar but a vector, we have to de�ne

the partial order among intervals of runs �d as follow:

Definition 3. Given [r̂ , ŝ], [û, v̂] ⊆ RELN ,

®∆v̂û �d ®∆ŝ r̂

if and only if

®∆v̂û [i] ≤ ®∆ŝ r̂ [i], ∀i ∈ {1, . . . ,N }.
Example. With respect to the previous example, where t = Ŝ − R̂ =

(0, 1, 1, 1, 2, 1, 1, 1, 0, 1), the vector ®∆ŝ r̂ is given by

®∆ŝ r̂ = T = (0, 1, 2, 3, 5, 6, 7, 8, 8, 9).

Let now û, v̂ ∈ {0, 1}10
be as follows

û = (1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ,

v̂ = (1, 0, 1, 1, 1, 0, 1, 0, 0, 0) .

Clearly û � v̂ and

®∆v̂û = (0, 0, 1, 2, 4, 5, 6, 6, 6, 6) .

�us we can conclude that the di�erence between ŝ and r̂ is greater

than the di�erence between v̂ and û.

Note that the last entry of ®∆ · · always equals the natural distance

as de�ned in Section 2.3 and used by [11]. Indeed, given two compa-

rable runs r̂ , ŝ ∈ RELN , with r̂ � ŝ , ®∆ŝ r̂ [N ] counts the total number

of forward swaps of length one and/or replacements done from

r̂ to match ŝ . Since swaps of length one and replacements in the

last positions are elementary operations as observed above, then

®∆ŝ r̂ [N ] is just counting the length of every maximal chain in [r̂ , ŝ],
i.e., exactly the natural distance.

�is de�nition of di�erence vector solves some of the problems

encountered with the di�erence de�ned using the natural distance,

as the following example shows.

Example. Let r̂ , ŝ, û, v̂ be de�ned as follows:

r̂ = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

ŝ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

û = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ,

v̂ = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) ,

where r̂ � ŝ and û � v̂ .
As already discussed, the natural distance induces a di�erence

between runs that does not keep track or the rank. In this case, the

natural distance would that both the pairs r̂ , ŝ, and û, v̂, have both

di�erence equal to 1, even if these two pair di�ers a lot in terms of

where di�erences actually happen in the ranking.

Instead, ®∆ · · shows a bigger di�erence between r̂ and ŝ compared

to the other two runs, because their di�erences happen in higher

and more important rank positions:

®∆ŝ r̂ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

®∆v̂û = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1) ,

and ®∆ŝ r̂ [i] ≥ ®∆v̂û [i] for every i ∈ {1, . . . , 10}.
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�erefore, this new and more expressive di�erence matches

be�er with the intuition that the higher the rank position at which

it happens, the more important the same di�erence between two

runs.

�e vector ®∆ · · is thus useful to compare, when possible, intervals

on RELN , paying the necessary a�ention on the ranking. As a

consequence, a measure that satisfy these relations among intervals,

although not interval scale, could be viewed as something more

powerful than a measure on ordinal scale. Indeed, when the above

di�erences between intervals are comparable, one direction of i�
on �eorem 1 is still satis�ed.

�erefore we can say that a measure M of retrieval e�ectiveness

is interval-like if, given a distance (potentially vector) ∆ · ·, an

ordering �d between distances, and given r̂ , ŝ, û, v̂ ∈ RELN , the

following relation holds:

∆ŝ r̂ �d ∆v̂û ⇒ M(ŝ) −M(r̂ ) ≤ M(v̂) −M(û).

�e next section is discusses whether some well-known IR mea-

sures are interval-like with respect to the di�erence introduced in

De�nition 2.

3.3 Interval-like Scale Measures
We tested some measures of retrieval e�ectiveness – namely AP,

RBPp , ERR, DCG – on intervals with comparable di�erences ac-

cording to the above de�nition.

ERR shows the strongest discordance with our de�nition of

di�erence, since o�en it does not respect the relations between

intervals induced by ®∆ · ·, as the next example shows.

Example. Let us consider the following four runs r̂ , ŝ, û, v̂ ∈ {0, 1}10
:

r̂ = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0) ,

ŝ = (0, 0, 0, 0, 0, 1, 0, 1, 1, 0) ,

û = (1, 1, 0, 1, 0, 1, 1, 0, 1, 1) ,

v̂ = (1, 1, 1, 0, 0, 1, 1, 0, 1, 1) .

Clearly r̂ � ŝ � û � v̂ . It seems fair to think that r̂ and ŝ give rise

to a smaller interval compared to [û, v̂] – note that the endpoints of

both intervals di�er by a swap of length one, but made in di�erent

positions. Moreover it is easy to prove that ®∆ŝ r̂ [i] ≤ ®∆v̂û [i] ∀i . But

while the measures RBPp , AP and DCG agree with the previous

statement, ERR does not, since ERR(ŝ)−ERR(r̂ ) > ERR(v̂)−ERR(û).

Another measure that does not always respect the relations

between distances is AP.

Example. Let us consider the following runs r̂ , ŝ, û ∈ {0, 1}10
:

r̂ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

ŝ = (0, 1, 0, 0, 1, 0, 0, 0, 0, 1) ,

û = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1) .

Clearly r̂ � ŝ and ŝ � û. �e readers can agree to consider the

interval [r̂ , ŝ] strictly bigger than [ŝ, û], since from û to ŝ we have

lost only two relevant documents, while from ŝ to r̂ the information

lost seems to be higher. Moreover ®∆ŝ r̂ [i] ≥ ®∆ûŝ [i] ∀i, with strict

inequality for some i . However while the measures RBPp , ERR and

DCG agree with this relation between the two intervals, AP does

not, since AP(ŝ) −AP(r̂ ) < AP(û) −AP(ŝ).

Instead, RBPp and DCG show a greater agreement with the in-

equalities between intervals induced by ®∆ · ·, even if sometimes they

do not respect these relations: this happens when the endpoints of

an interval do not have an equal number of relevant documents.

Example. Let us consider r̂ , ŝ, û ∈ {0, 1}10
:

r̂ = (0, 0, 1, 0, 1, 1, 0, 0, 1, 0) ,

ŝ = (0, 1, 0, 1, 0, 1, 1, 1, 1, 0) ,

û = (1, 1, 0, 1, 1, 1, 0, 1, 0, 0) .

Clearly r̂ � ŝ � û and one can prove that

®∆ŝ r̂ = (0, 1, 1, 2, 2, 2, 3, 5, 7, 9) ,

®∆ûŝ = (1, 2, 3, 4, 6, 8, 9, 10, 10, 10) ,

that is ®∆ŝ r̂ [i] ≤ ®∆ûŝ [i] ∀i, with strict inequality for some i .While

û and ŝ has the same number of relevant documents, r̂ has two

relevant documents less than ŝ . In particular DCG(ŝ) − DCG(r̂ ) >
DCG(û)−DCG(ŝ) and, forp > 0.85, RBPp (ŝ)−RBPp (r̂ ) > RBPp (û)−
RBPp (ŝ), against the inequality given by the di�erence vectors.

�erefore, we can say that RBPp and DCG are interval-like with

respect to the di�erence introduced in De�nition 2 and consider-

ing only intervals where the endpoints have an equal number of

relevant documents. While AP and ERR are not even interval-like
since the relations between intervals o�en fail to be complied with.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we conducted a formal study to propose a new and

more expressive way of providing an empirical ordering of intervals

of runs in order to determine how close IR e�ectiveness measure

are to be on an interval scale. Indeed, previous work [10, 11] has

shown that they are on an ordinal scale, under some conditions,

but not on an interval scale. We have introduced the notion of

interval-like scale, a kind of interval scale which admits intervals

to not be equi-spaced, and we have shown that both DCG and RBP

are on this scale, under reasonable conditions, while AP and ERR

are not.

Future work will concern an empirical investigation of the dif-

ferent theoretical properties of evaluation measures we have found

in order to determine the impact and severity of not complying

with them when you compute descriptive statistics, like mean and

variance, and when you conduct statistical signi�cance tests.
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