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Abstract. We propose a general stochastic approach which defines rel-
evance as a set of binomial random variables where the expectation p
of each variable indicates the quantity of relevance for each relevance
grade. This represents the first step in the direction of modelling evalua-
tion measures as a transformation of random variables, turning them into
random evaluation measures. We show that a consequence of this new
approach is to remove the distinction between binary and multi-graded
measures and, at the same time, to deal with incomplete information,
providing a single unified framework for all these different aspects. We
experiment on TREC collections to show how these new random mea-
sures correlate to existing ones and which desirable properties, such as
robustness to pool downsampling and discriminative power, they have.

1 Introduction

Relevance judgements are at the core of Information Retrieval (IR) evaluation
since they determine and inform all the subsequent scoring and comparison of
IR systems. For this reason, over the years, a lot of effort has been put in their
creation and in ensuring their quality, see e.g. [7, 20], also in a crowd-sourcing
context [1].

We know that relevance assessment is a not deterministic process, as wit-
nessed by different studies on inter-assessor agreement [16, 17] and as exploited
by algorithms to merge relevance labels in a crowd-sourcing context [5]. However,
once relevance judgments have been created – either by traditional assessors or
with sophisticated algorithms merging labels from crowd-assessors – we seem to
forget their intrinsic randomness and we consider them as if they were deter-
ministic: for example, evaluation measures just handle the relevance judgment
associated with a document as exact.

In this paper, we move a step forward to account for the intrinsic randomness
in relevance judgements and we frame them into a general stochastic approach
where the judgement assigned to a document is a binomial random variable
whose expectation p indicates the quantity of relevance assigned to that docu-
ment.

We show how to apply the proposed framework to the definition of random
evaluation measures, i.e. IR evaluation measures able to incorporate the inherent



randomness in relevance judgements, and how this new approach not only elim-
inates the distinction between binary and multi-graded evaluation measures but
also deals with incomplete information, by providing us with a single unifying
vision which can be coherently applied to all the IR evaluation measures.

We apply our framework to two widely known measures, namely Average
Precision (AP) and Rank-Biased Precision (RBP) [10], in order to show the
generality of the proposed solution. We also conduct a systematic experimen-
tation using TREC collections which shows that these new random evaluation
measures are a coherent extension of their non-random counterparts and that
they have many desirable properties in terms of robustness to incomplete infor-
mation and sensitivity in discriminating among systems.

The paper is organized as follows: Section 2 discusses some related works;
Section 3 introduces our stochastic framework; Section 4 reports the evaluation
of the proposed approach; and, Section 5 draws some conclusions and outlooks
possible future works.

2 Related Work

To the best of our knowledge, this paper represents one of the first attempts
to explicitly model relevance judgements as a stochastic process with the spe-
cific goal to introduce random IR evaluation measures, benefiting from a single
unifying view on multi-graded measures and incomplete information.

One of the closest areas is dealing with incomplete information in relevance
judgments, i.e. how to account for unjudged documents [2, 11, 14, 18]. All these
works differ from our approach in that they focus on unjudged documents in
the pool and how to reliably estimate a proportion of relevant documents for
them. On the contrary, we model each single relevance judgement as a binomial
random variable and we derive a general stochastic framework where evaluation
measures account for randomness in the assessment of each retrieved document,
both judged and unjudged documents in the pool.

Finally, when it comes to multi-graded judgements, either we have evalua-
tion measures which are natively multi-graded, such as Normalized Discounted
Cumulated Gain (nDCG) [6] and Expected Reciprocal Rank (ERR) [3], or ex-
tensions from the binary to the multi-graded case, such as Graded Average
Precision (GAP) [12]. However, all these cases treat relevance judgements as
deterministic and the extensions from the binary to the multi-graded case are
typically ad-hoc, i.e., they work only for a specific measure, while our approach
is general and can be seamlessly applied to any IR evaluation measure.

3 Proposed Stochastic Model

3.1 Random Relevance

We stem from the notation proposed by [4] for defining the basic concepts of
topics, documents, ground-truth, run and judged run and we extend it to account
for random relevance instead of deterministic one.



Let us consider a set of documents D and a set of topics T . Let (REL, �)
be a totally ordered set of relevance degrees, where we assume the existence of
a minimum that we call the non-relevant relevance degree nr = min(REL). We
assume that REL is a finite set. Moreover, given m ∈ N such that |REL| = m+1,
we denote its strictly ordered elements as rel0 ≺ · · · ≺ relm, where rel0 = nr.

For each pair (t, d) ∈ T ×D, the ground-truth GT is a map which assigns
a relevance degree rel ∈ REL to a document d with respect to a topic t. The
recall base is the map RB from T into N defined as the total number of relevant
documents for a given topic t 7→ RBt =

∣∣{d ∈ D : GT (t, d) � nr}
∣∣.

Given a run rt = (d1, . . . , dN ) of length N , let r̂t[i] be the relevance assigned
to the document di for the topic t, i.e. r̂t[i] = GT (t, di).

Given a positive integer N, the length of the run, we define the set of re-
trieved documents as D(N) = {(d1, . . . , dN ) : di ∈ D, di 6= dj for any i 6= j},
i.e. the ranked list of retrieved documents without duplicates, and the universe

set of retrieved documents as D :=
⋃|D|

N=1D(N).

The already existing binary (when m = 1) and multi-graded (m > 1) evalua-
tion measures usually map each relevance degree into an integer number. For ex-
ample, if REL = {nr, r}, then AP assigns the value 0 to every non-relevant doc-
ument while 1 is used for the relevant ones. Similarly, if REL = {nr, pr, r, hr},
nDCG [6] assigns an integer number to each relevance degree, e.g. 0, 5, 10 and
15, consistently with the ordering among the relevance degrees. If it is very nat-
ural to assign 0 to a non-relevant document and 1 to a relevant one, being this
latter value just any possible positive number different from zero that simply in-
dicates the “presence” of some relevance, the situation is not so clear in the case
of multi-graded relevance. For example, if 5 is the value assigned to a partially
relevant (pr) document and 10 is the one for a relevant document (r), this does
not necessary mean that relevant documents are twice as relevant as partially
relevant ones, even though their contribution to some measures, e.g. nDCG, is
actually doubled.

Could there exist a right or at least a common way to assign integers to
different degrees of relevance? For example, [9] proposed magnitude estimation
as a way to let users to estimate relevance on their own scale and raised the
question whether a single view of relevance is actually appropriate to describe a
population of users. The answer to this question is not easy and in the present
paper, to account for a population of users, we consider the relevance of each
document as a random number chosen between {0, 1}, where again 0 means
completely “non-relevant” and 1 means “fully relevant”.

Therefore, we describe the relevance of a document via a binomial random
variable B(1, p) with parameters 1 and p, where p roughly defines the quantity
of relevance of that document. Recall that such a binomial random variable is
a function from Ω, i.e. a suitable sample space, into {0, 1} and it is equal to 1
with probability p and 0 with probability 1− p.

In accordance with this construction, we redefine the ground-truth as follows:
for each pair (t, di) ∈ T × D, the random Ground-truth RGT , also called
random relevance, is a binomial random variable of parameters (1, pt,di

), where



pt,di
is the parameter associated to the document di with respect to a topic t.

pt,di
= 0 corresponds to a document completely not relevant and pt,di

= 1 to a
fully relevant document. For simplicity, in the sequel we will write pt,i instead of
pt,di . Moreover, we replace the deterministic recall base RBt defined before with

R̂Bt, the expected total relevance present in D, i.e. R̂Bt =
∑

d∈D E
[
RGT (t, d)

]
whose true value will be most of the times just estimated.

Let R be the set
⋃|D|

N=1{0, 1}N ; a random judged run is the function r̂t
from Ω × T × D into R, which assigns a random relevance to each retrieved
document in the ranked list

(ω, t, rt) 7→ r̂t(ω) =
(
RGT (t, d1)(ω), . . . , RGT (t, dN )(ω)

)
.

3.2 Random Evaluation Measures

Generally speaking, a random evaluation measure is an application

M : Ω × T ×D → R+

obtained by the composition of the random judged run with the map

µ : R → R+

giving M = µ
(
RGT (t, d1)(ω), . . . , RGT (t, dN )(ω)

)
.

To show how to apply the proposed approach, we provide the definition of
the random version of two well-known evaluation measures, namely RBP and
AP.

Random Rank Biased Precision (RRBP) of parameter q ∈ (0, 1) is
defined as

RBP [r̂t(ω)] = (1− q)
N∑

n=1

qn−1r̂t[n](ω) .

where q denotes the persistence of the user in scanning the results list.
Random Average Precision (RAP) is defined as

AP [r̂t(ω)] =
1

R̂Bt

N∑
n=1

(
1

n

n∑
m=1

r̂t[m](ω)

)
r̂t[n](ω) .

To compare different systems, we need to define an ordering among runs of
documents. Since the relevance is now stochastic, the ordering of the systems
has to be defined in terms of the laws of the random relevances of the documents
retrieved in the runs.

Definition 1. Given a topic t, two runs of documents rt and st and a random
evaluation measure M(·, t)(ω), we define a weak order on R as

rt � st ⇔ E[M(rt, t)(ω)] ≤ E[M(st, t)(ω)] .



Therefore let us now take into account the expectations of the random ver-
sions of RBP and AP. We assume the random relevances of different documents
to be independent random variables.

We define the expected Rank Biased Precision (eRRBP) as the expec-
tation of RBP when computed over runs with random relevance degrees. Since
RBP is a linear combination of independent random variables, the computation
of its mean is quite simple, giving rise to the following expression:

E
[
RBP [r̂t(ω)]

]
= (1− q)

N∑
n=1

qn−1pt,n . (1)

Similarly, expected Random Average Precision (eRAP) is the expec-
tation of AP, whose computation is slightly more complicated, since we here
have the sum of partial sums of the same random variables. The mean is:

E
[
AP [r̂t(ω)]

]
=

1

R̂Bt

N∑
n=1

1

n

(
1 +

n−1∑
m=1

pt,m

)
pt,n , (2)

where we have made use of the fact that all the moments of a B(1, pt,k) random
variable are equal to pt,k.

Summing up, the proposed random measures decouple the problem of de-
termining the presence of relevance from that of indicating the amount of rele-
vance. Indeed, the former is represented by the output of the binomial random
variables, either 0 in case of absence of relevance or 1 in case of presence of
relevance; the latter is represented instead by the parameter p of the binomial
random variables, which accounts for the amount of relevance. In this way, the
same mechanism for indicating the presence and amount of relevance is used for
both the binary and multi-graded case, thus eliminating the distinction between
them. Furthermore, these random measures allow us to “seed” some relevance
also for the not relevant documents by setting the parameter p slightly greater
than 0 in that case. This is especially useful in the case of unjudged documents
and incomplete information, since it allows us to somehow capture what we
might call the “dark relevance” present in the document’s universe. For these
reasons, we can say that the proposed random measures are able to seamlessly
describe both multi-graded and incomplete information.

4 Experiments

We focus on the following existing evaluation measures to compare ours against:
nDCG [6] and ERR [3] as examples of natively multi-graded evaluation mea-
sures; GAP [12] as an example of extension of AP to graded judgments; and
Graded Rank-Biased Precision (gRBP) [15] as an example of use of RBP [10]
with graded judgements; Binary Preference (bpref) [2] and Inferred Average Pre-
cision (infAP) [18] as examples of binary measures for incomplete information.



We used the following collections: TREC Terabyte track T14 using the GOV2

collection with 50 topics, deep pools at depth 100, and graded relevance judg-
ments – i.e., not relevant, relevant and highly relevant; 58 runs were submit-
ted, retrieving 1,000 documents for each topic; TREC Web track T21 using the
ClueWeb09 collection with 50 topics, shallow pools using depths 20 and 30, and
graded relevance judgments – i.e., junk, not relevant, relevant, highly relevant,
key and nav; we considered junk and not relevant as a single not relevant level
and key and nav as a single key level; 27 runs were submitted, retrieving 10,000
documents for each topic.

For nDCG we use a log base b = 10 and gains 0, 5, 10, and 15 for not relevant,
relevant, highly relevant, and key documents, respectively. For ERR we instead
use 0, 1, 2 and 3 as gains. For RBP we set the persistence parameter q to 0.8,
which works well for both deep and shallow pools as pointed out by [10].

Although our approach provides a very fine-grained level of detail in defining
the random relevance up to each (topic, document) pair, e.g. by using magnitude
estimation techniques [9], in the following evaluation we let the parameter pt,d to
be fixed for each relevance degree to a value pk, independently from the document
at hand, since this is the way in which all the IR measures we compare against
work and this is the information available in the pools of the used collections. We
can view each pk as how much an assessor is confident that every given document
with relevance degree equal to relk is actually relevant. The different values of
the parameters pk are reported in the caption of the figures which display the
experimental results later on.

To ease the reproducibility of the experiments, the code for running them is
available at: https://bitbucket.org/frrncl/ecir2018.

4.1 RQ1: Relation to Other Evaluation Measures

Figures 1 report the outcomes of the correlation analysis on T14 and T21, respec-
tively, using both Kendall’s τ correlation [8] and τap correlation [19]. Each row
represents an alternative configuration of the parameters ranging from hard to
lenient in the sense that, for example in the case of three relevance degrees, GAP
with threshold probabilities [0.00, 1.00] corresponds to AP when you perform a
hard mapping to binary relevance, i.e. only the top relevance degree is consid-
ered relevant; on the other hand, GAP with threshold probabilities [1.00, 0.00]
corresponds to AP when you perform a lenient mapping to binary relevance, i.e.
every relevance degree above not relevant is considered relevant.

For each set of parameters (hard, medium, lenient), we explore two options
for eRAP and eRRBP. Option 1 makes eRAP to behave as close as possible
to GAP by constraining the eRAP probabilities à la GAP: for example, in the
case of three relevance degrees if the GAP threshold probabilities are [g1, g2] we
constraint the eRAP probabilities to [0, g1, g1+g2]. Option 2 lets eRAP to behave
in its intended way of use with more freedom in the choice of the probabilities,
still being in the hard, medium or lenient cases.

Note that nDCG, ERR, and gRBP are always the same in all the three cases,
i.e. hard, medium and lenient case, since they do not depend on different ways



nDCG ERR bpref infAP GAPa eRAPa1 eRAPa2 gRBP eRRBPa1 eRRBPa2

nDCG
⌧ 1.0000 0.4955 0.8475 0.9105 0.8947 0.8645 0.8488 0.6213 0.5197 0.4955
⌧AP 1.0000 0.3472 0.7732 0.8742 0.8346 0.7931 0.8120 0.4978 0.3758 0.3450

ERR
⌧ – 1.0000 0.5269 0.5463 0.5499 0.5342 0.4434 0.7580 0.7556 0.7435
⌧AP – 1.0000 0.3738 0.3767 0.3895 0.3867 0.3416 0.6084 0.6073 0.5927

bpref
⌧ – – 1.0000 0.8959 0.8923 0.8355 0.7762 0.6673 0.5632 0.5366
⌧AP – – 1.0000 0.8351 0.8538 0.7797 0.7418 0.5321 0.4148 0.3904

infAP
⌧ – – – 1.0000 0.9673 0.8887 0.8028 0.6818 0.5656 0.5414
⌧AP – – – 1.0000 0.9387 0.8423 0.7852 0.5357 0.3985 0.3735

GAPa
⌧ – – – – 1.0000 0.9189 0.8137 0.6806 0.5862 0.5620
⌧AP – – – – 1.0000 0.8925 0.8179 0.5330 0.4261 0.4001

eRAPa1
⌧ – – – – – 1.0000 0.8294 0.6673 0.6068 0.5850
⌧AP – – – – – 1.0000 0.8315 0.5280 0.4568 0.4291

eRAPa2
⌧ – – – – – – 1.0000 0.5547 0.4773 0.4580
⌧AP – – – – – – 1.0000 0.4511 0.3622 0.3390

gRBP
⌧ – – – – – – – 1.0000 0.8330 0.8016
⌧AP – – – – – – – 1.0000 0.7410 0.7019

eRRBPa1
⌧ – – – – – – – – 1.0000 0.9685
⌧AP – – – – – – – – 1.0000 0.9429

eRRBPa2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure 1 for T14

and Figure 2 for T21.

(a)
nDCG ERR bpref infAP GAPc eRAPc1 eRAPc2 gRBP eRRBPc1 eRRBPc2

nDCG
⌧ 1.0000 0.4955 0.8475 0.9105 0.9068 0.9020 0.8959 0.6213 0.6213 0.6225
⌧AP 1.0000 0.3472 0.7732 0.8742 0.8602 0.8541 0.8830 0.4978 0.4978 0.4984

ERR
⌧ – 1.0000 0.5269 0.5463 0.5499 0.5499 0.4543 0.7580 0.7580 0.7592
⌧AP – 1.0000 0.3738 0.3767 0.3831 0.3940 0.3453 0.6084 0.6084 0.6091

bpref
⌧ – – 1.0000 0.8959 0.9020 0.8875 0.8137 0.6673 0.6673 0.6661
⌧AP – – 1.0000 0.8351 0.8527 0.8383 0.7818 0.5321 0.5321 0.5315

infAP
⌧ – – – 1.0000 0.9891 0.9649 0.8475 0.6818 0.6818 0.6830
⌧AP – – – 1.0000 0.9711 0.9435 0.8602 0.5357 0.5357 0.5363

GAPc
⌧ – – – – 1.0000 0.9734 0.8488 0.6830 0.6830 0.6842
⌧AP – – – – 1.0000 0.9683 0.8633 0.5373 0.5373 0.5379

eRAPc1
⌧ – – – – – 1.0000 0.8439 0.6806 0.6806 0.6818
⌧AP – – – – – 1.0000 0.8580 0.5384 0.5384 0.5390

eRAPc2
⌧ – – – – – – 1.0000 0.5729 0.5729 0.5741
⌧AP – – – – – – 1.0000 0.4837 0.4837 0.4844

gRBP
⌧ – – – – – – – 1.0000 1.0000 0.9988
⌧AP – – – – – – – 1.0000 1.0000 0.9994

eRRBPc1
⌧ – – – – – – – – 1.0000 0.9988
⌧AP – – – – – – – – 1.0000 0.9994

eRRBPc2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure 1 for T14

and Figure 2 for T21.

(c)
nDCG ERR bpref infAP GAPe eRAPe1 eRAPe2 gRBP eRRBPe1 eRRBPe2

nDCG
⌧ 1.0000 0.4955 0.8475 0.9105 0.9117 0.9105 0.9105 0.6213 0.6394 0.6407
⌧AP 1.0000 0.3472 0.7732 0.8742 0.8746 0.8625 0.9062 0.4978 0.5054 0.5063

ERR
⌧ – 1.0000 0.5269 0.5463 0.5499 0.5511 0.4446 0.7580 0.7302 0.7290
⌧AP – 1.0000 0.3738 0.3767 0.3811 0.3866 0.3269 0.6084 0.5688 0.5652

bpref
⌧ – – 1.0000 0.8959 0.8996 0.9032 0.8209 0.6673 0.6878 0.6866
⌧AP – – 1.0000 0.8351 0.8411 0.8556 0.7801 0.5321 0.5585 0.5587

infAP
⌧ – – – 1.0000 0.9964 0.9879 0.8645 0.6818 0.6999 0.7011
⌧AP – – – 1.0000 0.9941 0.9693 0.8833 0.5357 0.5435 0.5435

GAPe
⌧ – – – – 1.0000 0.9915 0.8657 0.6830 0.7011 0.7024
⌧AP – – – – 1.0000 0.9751 0.8836 0.5373 0.5455 0.5456

eRAPe1
⌧ – – – – – 1.0000 0.8645 0.6842 0.7024 0.7036
⌧AP – – – – – 1.0000 0.8673 0.5423 0.5523 0.5524

eRAPe2
⌧ – – – – – – 1.0000 0.5729 0.5910 0.5923
⌧AP – – – – – – 1.0000 0.4789 0.4877 0.4878

gRBP
⌧ – – – – – – – 1.0000 0.9528 0.9468
⌧AP – – – – – – – 1.0000 0.9170 0.9072

eRRBPe1
⌧ – – – – – – – – 1.0000 0.9940
⌧AP – – – – – – – – 1.0000 0.9896

eRRBPe2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure ?? for T14

and Figure ?? for T21.

(e)
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nDCG ERR bpref infAP GAPb eRAPb1 eRAPb2 gRBP eRRBPb1 eRRBPb2

nDCG
⌧ 1.0000 0.1282 0.8519 0.8348 0.7778 0.7151 0.5783 0.4359 0.4131 0.4017
⌧AP 1.0000 0.1627 0.7721 0.8063 0.7676 0.7015 0.6108 0.3663 0.3391 0.3255

ERR
⌧ – 1.0000 0.1852 0.2251 0.2593 0.3561 -0.0427 0.6125 0.6125 0.6239
⌧AP – 1.0000 0.1891 0.2790 0.3081 0.3838 0.0321 0.5883 0.5607 0.5803

bpref
⌧ – – 1.0000 0.8462 0.7664 0.7151 0.6581 0.4929 0.4587 0.4473
⌧AP – – 1.0000 0.8324 0.7128 0.6796 0.7151 0.4097 0.3755 0.3634

infAP
⌧ – – – 1.0000 0.9202 0.8348 0.5385 0.5328 0.4986 0.4872
⌧AP – – – 1.0000 0.8816 0.8024 0.6012 0.4466 0.3985 0.3885

GAPb
⌧ – – – – 1.0000 0.9031 0.4587 0.5897 0.5670 0.5556
⌧AP – – – – 1.0000 0.8767 0.4919 0.4918 0.4664 0.4593

eRAPb1
⌧ – – – – – 1.0000 0.4074 0.6866 0.6524 0.6410
⌧AP – – – – – 1.0000 0.4608 0.5845 0.5395 0.5315

eRAPb2
⌧ – – – – – – 1.0000 0.2536 0.1966 0.1852
⌧AP – – – – – – 1.0000 0.2774 0.2061 0.1943

gRBP
⌧ – – – – – – – 1.0000 0.9316 0.9202
⌧AP – – – – – – – 1.0000 0.9263 0.9109

eRRBPb1
⌧ – – – – – – – – 1.0000 0.9886
⌧AP – – – – – – – – 1.0000 0.9817

eRRBPb2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure 1 for T14

and Figure 2 for T21.

(b)
nDCG ERR bpref infAP GAPd eRAPd1 eRAPd2 gRBP eRRBPd1 eRRBPd2

nDCG
⌧ 1.0000 0.1282 0.8519 0.8348 0.7892 0.7778 0.5954 0.4359 0.4302 0.4359
⌧AP 1.0000 0.1627 0.7721 0.8063 0.7875 0.7567 0.6236 0.3663 0.3606 0.3679

ERR
⌧ – 1.0000 0.1852 0.2251 0.2365 0.2934 -0.0370 0.6125 0.6068 0.6011
⌧AP – 1.0000 0.1891 0.2790 0.2864 0.3351 0.0381 0.5883 0.5844 0.5661

bpref
⌧ – – 1.0000 0.8462 0.7778 0.7778 0.6752 0.4929 0.4872 0.4929
⌧AP – – 1.0000 0.8324 0.7366 0.7335 0.7347 0.4097 0.4049 0.4130

infAP
⌧ – – – 1.0000 0.9316 0.8974 0.5556 0.5328 0.5271 0.5328
⌧AP – – – 1.0000 0.9045 0.8671 0.6152 0.4466 0.4386 0.4460

GAPd
⌧ – – – – 1.0000 0.9430 0.4872 0.5670 0.5613 0.5670
⌧AP – – – – 1.0000 0.9213 0.5259 0.4745 0.4676 0.4757

eRAPd1
⌧ – – – – – 1.0000 0.4644 0.6239 0.6182 0.6239
⌧AP – – – – – 1.0000 0.5077 0.5268 0.5223 0.5304

eRAPd2
⌧ – – – – – – 1.0000 0.2593 0.2422 0.2365
⌧AP – – – – – – 1.0000 0.2872 0.2664 0.2591

gRBP
⌧ – – – – – – – 1.0000 0.9715 0.9658
⌧AP – – – – – – – 1.0000 0.9760 0.9650

eRRBPd1
⌧ – – – – – – – – 1.0000 0.9943
⌧AP – – – – – – – – 1.0000 0.9890

eRRBPd2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure 1 for T14

and Figure 2 for T21.

(d)
nDCG ERR bpref infAP GAPf eRAPf1 eRAPf2 gRBP eRRBPf1 eRRBPf2

nDCG
⌧ 1.0000 0.1282 0.8519 0.8348 0.8177 0.7835 0.6581 0.4359 0.4473 0.4530
⌧AP 1.0000 0.1627 0.7721 0.8063 0.8088 0.7497 0.6807 0.3663 0.3762 0.3806

ERR
⌧ – 1.0000 0.1852 0.2251 0.2194 0.2764 0.0028 0.6125 0.6011 0.5954
⌧AP – 1.0000 0.1891 0.2790 0.2789 0.3267 0.0785 0.5883 0.5781 0.5739

bpref
⌧ – – 1.0000 0.8462 0.8177 0.7949 0.7265 0.4929 0.5043 0.5100
⌧AP – – 1.0000 0.8324 0.8000 0.7600 0.7793 0.4097 0.4194 0.4244

infAP
⌧ – – – 1.0000 0.9715 0.9259 0.6296 0.5328 0.5442 0.5499
⌧AP – – – 1.0000 0.9664 0.9069 0.6968 0.4466 0.4581 0.4638

GAPf
⌧ – – – – 1.0000 0.9316 0.6011 0.5385 0.5499 0.5556
⌧AP – – – – 1.0000 0.9028 0.6667 0.4544 0.4658 0.4713

eRAPf1
⌧ – – – – – 1.0000 0.5670 0.6068 0.6182 0.6239
⌧AP – – – – – 1.0000 0.6282 0.5120 0.5228 0.5282

eRAPf2
⌧ – – – – – – 1.0000 0.3219 0.3333 0.3390
⌧AP – – – – – – 1.0000 0.3364 0.3475 0.3531

gRBP
⌧ – – – – – – – 1.0000 0.9886 0.9829
⌧AP – – – – – – – 1.0000 0.9879 0.9828

eRRBPf1
⌧ – – – – – – – – 1.0000 0.9943
⌧AP – – – – – – – – 1.0000 0.9945

eRRBPf2
⌧ – – – – – – – – – 1.0000
⌧AP – – – – – – – – – 1.0000

Fig. 4. Discriminative power for both T14 (first row) and T21 (second row). The prob-
abilities for the hard, medium, and lenient cases are the same as in Figure 1 for T14

and Figure 2 for T21.

(f)

T21

Fig. 1. Correlation analysis on T14 (first column) and T21 (second column) for different
sets of parameters. The first row of subfigures reports the hard case: (a) GAP with
threshold probabilities a = [0.20, 0.80], eRAP end eRRBP with probabilities a1 =
[0.00, 0.20, 1.00] and a2 = [0.05, 0.20, 0.95] on T14; (b) GAP with threshold probabilities
b = [0.10, 0.40, 0.50], eRAP end eRRBP with probabilities b1 = [0.00, 0.10, 0.50, 1.00]
and b2 = [0.05, 0.10, 0.50, 0.95] on T21. The second row of subfigures reports the medium
case: (c) GAP with threshold probabilities c = [0.50, 0.50], eRAP end eRRBP with
probabilities c1 = [0.00, 0.50, 1.00] and c2 = [0.05, 0.50, 0.95] on T14; (d) GAP with
threshold probabilities d = [0.20, 0.40, 0.40], eRAP end eRRBP with probabilities d1 =
[0.00, 0.20, 0.60, 1.00] and d2 = [0.05, 0.20, 0.60, 0.95] on T21. The third row of subfigures
reports the lenient case: (e) GAP with threshold probabilities e = [0.70, 0.30], eRAP
end eRRBP with probabilities e1 = [0.00, 0.70, 1.00] and e2 = [0.05, 0.70, 0.95] on T14;
(f) GAP with threshold probabilities f = [0.40, 0.40, 0.20], eRAP end eRRBP with
probabilities f1 = [0.00, 0.40, 0.80, 1.00] and f2 = C2 = [0.05, 0.40, 0.80, 0.95] on T21.



of thresholding the relevance degree. The same holds for bpref and infAP which
always adopt a lenient mapping to binary relevance.

We can observe a very general trend on both T14 and T21: in the case of GAP
and eRAP moving from the hard case to the lenient case increases the correlation
with nDCG in terms of both τ and τap, indicating that somehow “seeing” more
relevance degrees makes these evaluation measures closer to a natively multi-
graded one. However, while in the case of T14 and three relevance degrees these
correlations are quite high, around or above 0.9 in terms of Kendall’s τ , when
it comes to T21 and four relevance degrees they are typically below 0.8 in terms
of Kendall’s τ ; this suggest that, as the number of relevance degrees increases,
these measures tend to take a different angle on what multi-graded relevance is.

We can observe a similar behaviour also for eRRBP with respect to nDCG,
while the correlation between gRBP and nDCG is the same in all the cases since
they do not depend on the choice of the probabilities; we can also see how the
correlation between nDCG and eRRBP is lower than the one between nDCG
and gRBP in the hard case, somehow similar in the medium case, and higher in
the lenient case. However, these correlations are generally low, around or below
0.60 for T14 and 0.45 for T21 in terms of Kendall’s τ , suggesting an approach to
multi-graded relevance quite different from nDCG.

When it comes to ERR we can see a similar increasing correlation trend with
GAP and eRAP, even if the correlations are very low – below 0.55 for T14 and
0.35 for T21 in terms of Kendall’s τ – denoting completely different approaches
to ranking systems, probably due to the extremely top-heavy nature of ERR. On
the other hand, the correlation between ERR and gRBP/eRRBP is much higher
– around 0.75 for T14 and 0.60 for T21 in terms of Kendall’s τ – suggesting a
greater agreement probably due to the more top-heavy nature of gRBP/eRRBP.

When it comes to the comparison between GAP and eRAP we can note
that eRAP with probabilities constrained à la GAP (option 1) is very highly
correlated with GAP with both τ and τap almost always well above 0.9 on both
T14 and T21; moreover, this correlation tends to increase moving from the hard
to the lenient cases.

If we consider GAP and eRAP used in its intended way (option 2), we can
observe high correlations in the case of T14 above 0.8 for both τ and τap while
they drop below 0.65 in the case of T21, indicating that the more the number of
relevance degrees the more GAP and eRAP depart from each other; moreover,
as in the previous cases, we can note an increasing trend as we pass from the
hard to the lenient cases.

The comparison between gRBP and eRRBP shows that there is not much
difference between using option 1 and 2, since both are very highly correlated
with gRBP, being τ and τap above 0.9 on both T14 and T21. This hints that the
intrinsic structure of the RBP somehow “prevails” on the way in which you make
it multi-graded and, as a result, all the different ways to make it multi-graded
turn out to be very correlated.

When it comes to the comparison with measures for incomplete information,
i.e., bpref and infAP, we can observe that there is an increasing correlation
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Fig. 2. Robustness to pool downsampling for both T14 (first row) and T21 (second
row). The probabilities for the hard, medium, and lenient cases are the same as in
Figure 1 for T14 and T21.

trend passing from the hard to the lenient case for both eRAP and eRRBP on
both T14 and T21; this makes sense since both bpref and infAP adopt a lenient
approach for mapping multi-graded judgements to binary ones. In particular, in
the case of infAP and eRAP, we can observe quite high τ correlations, from 0.88
onwards on T14 and from 0.83 onwards on T21 when eRAP is constrained à la
GAP (option 1) where slightly lower correlations on T21 are due to the more
multi-graded nature of this track. When we allow for more degrees of freedom in
eRAP (option 2), correlations get lower, in the range 0.80-0.86 on T14 and 0.53-
0.63 on T21, still being coherent with infAP, but more affected by multi-graded
judgments.

Overall, the correlation analysis shows how introducing the idea of random
relevance and turning evaluation measures into random evaluation measures al-
lows us to seamlessly manage both binary and multi-graded judgements, keeping
a coherent vision with respect to both binary and multi-graded measures. More-
over, the same approach provide us also with an unifying view with respect to
addressing incomplete information, as also investigated in the next section.

4.2 RQ2: Properties of the Evaluation Measures

Figure 2 shows the robustness of the evaluation measures to pool downsampling
for both T14 and T21 in the hard, medium, and lenient cases considered before.
We downsampled pools as in [2] and we computed the Kendall’s τ correlation
of each measure with respect to its version on the full pool as an indicator of
how robust a measure is to pool downsampling. Consider that, downsampling
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Fig. 3. Discriminative power at pool samples for both T14 (first row) and T21 (second
row). The probabilities for the hard, medium, and lenient cases are the same as in
Figure 1 for T14 and T21.

the pools, in the case of T14 we are passing from a deep to a shallow pool while
for T21 we are passing from a shallow to an extremely shallow pool. We can
see that, consistently with previous findings in the literature, nDCG, bpref, and
infAP are among the most robust measures to pool downsampling while ERR is
more sensitive to it.

In the case of T14 (first row of Figure 2) we can observe two separate clusters
for all the cases (hard, medium, lenient): one for GAP and eRAP and the other
for gRBP and eRRBP where the former is more robust to pool downsampling
than the latter. In the case of GAP/eRAP we can see that the more we pass
from the hard to the lenient case the closer is their behaviour to the nDCG,
bpref, and infAP ones even if GAP has stable performances up to 30% reduction
rate while eRAP used in its intended way (option 2, continuous blue line with
squares) outperforms it and remains stable also for the more extreme reduction
rates, basically behaving like nDCG and bpref.

In the case of T21 (second row of Figure 2), we do not have anymore two
separate clusters but all the measures look very similar up to the 30% reduction
rate, being nDCG and bpref always the top performing ones. However, for the
10% and 5% reduction rates all the measures have a sudden drop, even below
the level of ERR, with the sole exceptions of nDCG, bpref, and eRAP used in its
intended way (option 2, continuous blue line with squares) which remain stable
and perform very similarly.

Figure 3 shows the Discriminative Power (DP) [13] achieved at different pool
samples for both T14 and T21 in the hard, medium, and lenient cases.



If we consider the full pools, we can see that, consistently with previous
findings in the literature, nDCG (DP = 75.44% on T14 and DP = 66.10% on
T21) together with bpref (DP = 68.18% on T14 and DP = 54.13% on T21) and
infAP (DP = 75.38% on T14 and DP = 57.26% on T21) are among the most
discriminative measures while ERR (DP = 41.38% on T14 and DP = 46.15% on
T21) is one of the least discriminative ones, due to its strongly top-heavy nature.
As a general trend, we can see how the DP improves passing from the hard to
the lenient case for both eRRBP and eRAP. In particular, we can see how gRBP
(DP = 50.57% on T14 and DP = 51.00% on T21) and eRRBP (DP = 44.00%–
55.00% on T14 and DP = 43.00%–53.00% on T21), due to their more top-heavy
nature, behave somehow similarly to ERR and tend to be less discriminative
than the other measures. On the other hand, GAP (DP = 72.00%–75.00% on
T14 and DP = 58.00%–60.00% on T21) and eRAP (DP = 63.00%–79.00% on
T14 and DP = 42.00%–74.00% on T21) behave closer to nDCG, bpref and infAP.
In particular, on both T14 and T21, eRAP used in its intended way (option 2,
continuous blue line with squares) outperforms even nDCG, bpref, and infAP in
both the medium case (DP = 77.92% on T14 and DP = 67.24% on T21) and in
the lenient case (DP = 79.19% on T14 and DP = 74.07% on T21).

If we consider the different down-sampled pools, we can observe that the
above mentioned trends are roughly respected and the discriminative power is
stable enough up to the 50% reduction rate. On the other hand, for higher pool
reduction rates, there is typically a drop in the performance with the exception
of nDCG, bpref, and eRAP used in its intended way (option 2, continuous blue
line with squares). These three latter measures behave quite similarly on T14

while eRAP used in its intended way (option 2) substantially outperforms both
nDCG and bpref on T21 in the hard, medium, and lenient cases.

Overall, this analysis suggests that the proposed random measures maintain
(or even improve) desirable properties in terms of robustness to incomplete in-
formation and discriminative power but providing a single unified vision which
account for binary and multi-graded judgements as well as for incomplete infor-
mation.

5 Conclusions and Future Work

In this paper, we have proposed a general stochastic approach for modelling rele-
vance as a random binomial variable. Besides modelling the intrinsic randomness
present in the relevance assessment process and the different viewpoints of a user
population, the random relevance allows us to turn evaluation measures into ran-
dom evaluation measures and to provide a single unifying vision between binary
and multi-graded measures as well as on the robustness to incomplete informa-
tion.

A systematic experimentation on TREC collections has shown how these new
random measures relate and differ from existing measures and that they have
desirable properties in term of robustness to pool downsampling and ability of
discriminating among different systems. Overall, this suggested that the pro-



posed new stochastic approach provides the aforementioned benefit at no cost
or even improving the properties of the random measures derived from it.

Future work will concern the investigation of further applications of the ran-
dom relevance and the random evaluation measures. In the crowd-sourcing con-
text, random relevance could be exploited as an alternative way, e.g. to majority
voting, to merge pools produced by multiple crowd-assessors, since the relevance
of a document could be expressed via a binomial random variable of parameter
(1, p), where p is determined accordingly to the different assessments given by
the assessors.
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5. Hosseini, M., Cox, I.J., Milić-Frayling, N., Kazai, G., Vinay, V.: On Aggregating
Labels from Multiple Crowd Workers to Infer Relevance of Documents. ECIR 2012.
pp. 182–194. (2012)
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