
Information Retrieval Journal manuscript No.
(will be inserted by the editor)

Boosting Learning to Rank with User Dynamics and
Continuation Methods

Nicola Ferro · Claudio Lucchese ·
Maria Maistro · Raffaele Perego

Received: 6 March 2019 / Revised: 15 August 2019 / Accepted: 3 October 2019

Abstract Learning to Rank (LtR) techniques leverage assessed samples of query-
document relevance to learn effective ranking functions able to exploit the noisy
signals hidden in the features used to represent queries and documents. In this
paper we explore how to enhance the state-of-the-art LambdaMart LtR algorithm
by integrating in the training process an explicit knowledge of the underlying
user-interaction model and the possibility of targeting different objective functions
that can effectively drive the algorithm towards promising areas of the search
space. We enrich the iterative process followed by the learning algorithm in two
ways: (i) by considering complex query-based user dynamics instead than simply
discounting the gain by the rank position; (ii) by designing a learning path across
different loss functions that can capture different signals in the training data.
Our extensive experiments, conducted on publicly available datasets, show that
the proposed solution permits to improve various ranking quality measures by
statistically significant margins.

Keywords Learning to Rank · User Dynamics · Continuation Methods

N. Ferro
Department of Information Engineering, University of Padua, Via Gradenigo 6/b, 35131,
Padova (PD), Italy
E-mail: ferro@dei.unipd.it

C. Lucchese
Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari, University of
Venice, Via Torino 155, 30172, Mestre (VE), Italy
E-mail: claudio.lucchese@unive.it

M. Maistro
Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 CPH,
Denmark
E-mail: mm@di.ku.dk
Department of Information Engineering, University of Padua, Via Gradenigo 6/b, 35131,
Padova (PD), Italy
E-mail: maistro@dei.unipd.it

R. Perego
Istituto di Scienza e Tecnologie dell’Informazione A. Faedo (ISTI), National Research Council
(CNR), Area di Ricerca di Pisa, Via G. Moruzzi 1, 56126, Pisa (PI), Italy
E-mail: raffaele.perego@isti.cnr.it



2 Ferro et Al.

1 Introduction

Information Retrieval (IR) systems are nowadays challenged with increasingly com-
plex search tasks where information about how users interact with the system
plays a central role to adapt them to the needs and interests of users. A lot of
research efforts focused on enhancing user engagement and retrieval effectiveness
by exploiting information about user-system interactions available, for example,
from the query logs of Web search engines (Lucchese et al., 2013; Mehrotra et al.,
2018; Silvestri, 2009). The ability to interpret and learn from the complex and
noisy traces of user-system interactions is fundamental for IR advance. The num-
ber of clicks on a given query-result pair, the Click-Through Rate (CTR), and the
dwell time, are examples of actionable information to improve various aspects of
IR systems (Chuklin et al., 2015). In the context of Learning to Rank (LtR) (Liu,
2009), user actions recorded in query logs are used to extract several important
features (Agichtein et al., 2006) with proper adjustments in order to remove the
position bias (Joachims and Radlinski, 2007; Joachims et al., 2017); the same
information can be used to model and predict user interests (White et al., 2009).

In this paper, we build on our previous work which explored how to exploit
user interaction for LtR (Ferro et al., 2017) and how to apply Curriculum Learn-

ing (CL) and Continuation Methods (CM) to LtR (Ferro et al., 2018). We investi-
gate here whether exploiting in conjunction these two techniques – i.e., the explicit
knowledge of the underlying user-interaction model and the possibility of target-
ing different objective functions – makes it possible to further improve the qual-
ity of the ranking model learned as measured by different metrics. In particular,
our investigation focuses on improving LambdaMart, a state-of-the-art LtR algo-
rithm (Burges, 2010; Wu et al., 2010), and tries to answer the following research
question: “how can user interaction and continuation methods be jointly exploited to

improve LtR effectiveness?”.

The user interaction model is integrated directly in the discount component
of the loss function used by LambdaMart at training time. Specifically, we model
the user dynamics in scanning a ranked result list with Markov chains trained on
query log data and we modify the loss function to embed this trained Markov
chain. Moreover, since different loss functions can capture different relevance sig-
nals hidden in the features modeling queries and documents, we instantiate the
training process as a continuous learning path across different loss functions, start-
ing from easier functions considering retrieval quality, e.g., recall or Mean Square

Error (MSE), up to the most complex one embedding our Markovian user model.
Learning through a curriculum is an interesting idea, borrowed from cognitive sci-
ence, according to which a complex learning process is designed as a multi-step
training path (Bengio et al., 2009). Initially, the learning algorithm is trained over
simple training examples and smooth loss functions, and then it is progressively
fine-tuned so as to deal with examples and loss functions of increasing complex-
ity. Continuation Methods (CM) (Allgower and Georg, 1980; Coleman and Wu,
1996) specifically refer to approaches that instead of optimizing difficult objective
functions, i.e., objective functions with many local minima, transform the original
function into a class of smoother or easier to minimize functions. The intuition
behind this approach is that a smooth version of the target objective function
can quickly and effectively drive the learning algorithm to a promising area of the
search space that possibly includes the global optimum.



Boosting Learning to Rank with User Dynamics and Continuation Methods 3

The contributions of the paper are the following:

– modelling user dynamics into LambdaMart: instead of proposing new features
to account for this particular aspect of user behavior and then training the
LtR model on this extended set of features, we model the user dynamics in
scanning a ranked result list with Markov chains trained on query log data.
Moreover, we define the Normalized Markov Cumulated Gain (nMCG) measure
which embeds this trained Markov chain, and we modify the LambdaMart

objective function to rely on nMCG instead of the usual Normalized Discounted

Cumulated Gain (nDCG) (Järvelin and Kekäläinen, 2002);
– user interaction-based curriculum learning for LambdaMart: designing a curricu-

lum of objective functions of increasing complexity has shown to be a promising
research direction and, therefore, we extend it by exploring whether nMCG,
i.e. a user interaction-based objective function, can provide further gain when
building a curriculum based on CM;

– extensive experimentation: we rely on the publicly available MSLR-WEB10K
and MSLR-WEB30K datasets (Qin and Liu, 2013) to conduct an extensive
validation of the proposed approaches and derive key insights about them.

The paper is organized as follows: Section 2 introduces the related works;
Section 3 presents our methodology; Section 4 describes the experimental setup
and discusses the experimental findings; finally, Section 5 draws some conclusions
and outlooks for future work.

2 Related Work

2.1 User Dynamics for LtR

LtR datasets already contain some user-related features. For example, the MSLR-
WEB30K and MSLR-WEB10K datasets provided by Microsoft (Qin and Liu,
2013) contain the following user-related features: query-url click count, i.e. the
click count of a query-url pair at a search engine in a period; url click count, i.e.
the click count of a URL aggregated from user browsing data in a period; and, url
dwell time, i.e. the average dwell time of a URL aggregated from user browsing
data in a period. As an empirical evidence of the importance of the user interaction
features, we trained a LambdaMart (Burges, 2010; Wu et al., 2010) model on the
MSLR-WEB10K LtR dataset with and without these user-interaction features:
the nDCG measured on the test set without such features drops from 0.4636 to
0.4410.

Jiang et al. (2013) provide a good overview of how search logs and user click
data can be exploited to improve search in many respects, among which rankings
of documents. Joachims et al. (2005) explored the use of clickthrough data as
user preferences among documents and implicit feedback, while Joachims (2002)
trained a Support Vector Machine (SVM) ranker using such data. Dou et al. (2008)
followed up by comparing the performance of RankNet (Burges et al., 2005) trained
on aggregated clickthrough data with respect to using human relevance judgments.

Click models (Chuklin et al., 2015; Craswell et al., 2008) are another active
area of research aimed at training models able to predict the probability of clicking
on a document for a given query. Click models have not been directly exploited



4 Ferro et Al.

within LtR algorithms, but Chapelle and Zhang (2009) proposed to use them to
predict relevance labels. Then, Chapelle and Zhang have shown that, when these
predicted relevance labels are used to train the boosting algorithm QBRank (Zheng
et al., 2007), they give just a 4% performance loss, while when used together with
editorial judgements they produce a 2% performance gain. Recent works, e.g.
by Zoghi et al. (2017), explore how to best exploit click models in online LtR.

Online LtR exploits click logs and users interactions data to infer preferences
between rankers in order to make online LtR faster (Hofmann et al., 2013; Schuth
et al., 2016; Wang et al., 2018). As another example, Lerot (Schuth et al., 2013)
proposes an online LtR algorithm which uses clicks as feedback for interleaving
methods.

To the best of our knowledge, the integration of the user dynamics directly
within the objective function of an offline LtR algorithm is novel and our previous
work (Ferro et al., 2017) was the first to explore it.

2.2 Curriculum Learning for LtR

Continuation Methods (CM) have shown to be effective in the optimization of com-
plex objective functions (Allgower and Georg, 1980; Coleman and Wu, 1996).
When the target objective function has many local minima, its direct optimization
may lead to a “bad” sub-optimal result. In Continuation Methods, a multi-step
optimization process is thus followed. At each step a different smooth function is
optimized, i.e. a function easy to minimize that approximates the desired target
function. The complexity and difficulty of the optimization function chosen is in-
creased until the original target function is finally used. The intuition behind this
approach is that the smooth versions of the original target function can provide a
global representation of the search space, which highlights the regions where the
best local optima and the global optima are located.

Curriculum Learning (CL) can be seen as a particular instantiation of Contin-
uation Methods (Bengio et al., 2009). The basic idea is to organize the training
examples in such a way that the easiest training examples are presented first and
the complexity of the following ones is gradually increased. This strategy guides the
training and allows the learner to exploit previously seen concepts to ease the ac-
quisition of subsequent more difficult concepts. Thus, Curriculum Learning can be
seen as a process exploiting a sequence of training criteria. Each training criterion
corresponds to a different set of examples that can be differently weighted based
on their complexity. At the subsequent steps, slightly more difficult examples are
assigned with new weights. This is different from boosting approaches commonly
adopted also in LtR, as in boosting the instance weights are determined during
the training according to the mis-classification risk, while in Curriculum Learning
weights are predetermined according to a training schedule.

Both approaches have been used successfully in several fields. Continuation
Methods are applied when the function to optimize is not convex, as for example
non linear optimization problems (Chen and Xiu, 1999) in computational chem-
istry (Coleman and Wu, 1996; Moré and Wu, 1997), computational physics (Rabani
et al., 2002) and automatic control (Nagamune, 2003). In Machine Learning (ML),
continuation methods are used with semi-supervised SVM, showing that this ap-
proach leads to lower test errors (Chapelle et al., 2006). CL is often applied with



Boosting Learning to Rank with User Dynamics and Continuation Methods 5

Neural Networks (NN)s and deep NNs, as for example in (Collobert et al., 2011; Hu
et al., 2014), where CL is used for Natural Language Processing (NLP), or in (Chen
and Gupta, 2015), where CL is exploited for representations of images. In (Bengio
et al., 2009), Curriculum Learning is exploited to train a language model (not
used for ranking) with a deep neural network. In (Qu et al., 2018) a Curriculum
Learning approach is applied to sort the training data to ease the learning of nodes
representations in a heterogeneous star network.

To the best of our knowledge, our previous work (Ferro et al., 2018) has been
the first to explore how CM and CL methods can be exploited in combination
with LtR algorithms. We found that CM is more effective than CL on this task
and this is why in this paper we rely only on CM.

3 Methodology

A LtR algorithm exploits a ground-truth set of training examples in order to learn
a document scoring function σ (Liu, 2009). Such training set is composed of a
large collection of queries Q, where each query q ∈ Q is associated with a set of
assessed documents D = {d0, d1, . . .}. Each document di is labeled by a relevance

judgment li according to its relevance to the query q. These labels induce a partial
ordering over the assessed documents, thus defining an ideal ranking which the LtR
algorithm aims at approximating. Each query-document pair (q, di) is represented
by a vector of features x, able to describe the query (e.g., its length), the document
(e.g., the in-link count) and their relationship (e.g., the number of occurrences of
each query term in the document).

According to the above notation, a LtR algorithm produces a function σ(x)
predicting a relevance score for the input feature vector x. Such function σ(x) is
finally used online to compute a score for documents matching a query and ranking
them accordingly.

Since IR measures are not differentiable, their optimization is very challenging.
To address this issue, the state-of-the-art solution is the LambdaRank gradient
approximation (Burges et al., 2006), which is based on the idea of measuring the
cost variation after swapping any two documents in a given result list. As discussed
in (Donmez et al., 2009), this approach can be applied to several IR measures and
it is capable of accurately discovering local optima.

LambdaRank can be summarized as follows. Given a query q and two candidate
documents di and dj in the training set with relevance labels li and lj respectively,
si and sj are the scores currently predicted for the documents. The lambda gradient
of any given IR quality function Q, as defined in (Burges, 2010), is:

λij =
∂Qij

∂ (si − sj)
= sgn(yi − yj)

∣∣∣∣∆Qij · 1

1 + esi−sj

∣∣∣∣
where, the sign is determined by the document labels only, the first factor ∆Q
is the quality variation when swapping scores si and sj , and the second factor
is the derivative of the RankNet cost (Burges et al., 2005), which minimizes the
number of disordered pairs. When li ≥ lj , the quality Q increases with the score
of document di. The larger the quality variation ∆Q, the higher the document di
should be scored. Note that the RankNet multiplier fades ∆Q if documents are
scored correctly, i.e. si ≥ sj , and boosts ∆Q otherwise. The lambda gradient for a



6 Ferro et Al.

document di is computed by marginalizing over all possible pairs in the result list:
λi =

∑
j λij . LambdaRank uses nDCG as Q and so ∆Q is the variation in nDCG

caused by the swap of two documents.

3.1 User Dynamics for LtR

We summarize here our methodology (Ferro et al., 2017) for including the user
dynamics into the above discussed LambdaRank algorithm.

Yilmaz et al. (2010) have shown that effectiveness is often measured as the
inner product of a relevance vector J and a discounting vector D. The elements
Ji account for the benefit of ranking an high-quality document at the i-th po-
sition of the Search Engine Result Page (SERP), while D denotes such contribu-
tion for low-ranked documents. For instance, according to Discounted Cumulated

Gain (DCG) (Järvelin and Kekäläinen, 2002) the i-th element of J is defined as
Ji = 2li − 1, where li is the relevance label of the i-th ranked document, and
Di = log(i+ 1). The underlying assumption is that low-ranked documents receive
less attention by the user and therefore they contribute less to the user-perceived
quality of the SERP. Defining a proper quality metric is crucial both for evaluat-
ing retrieval systems and for learning effective ranking models as such metrics are
used to drive the training process.

Most metrics assume that the user analyzes a SERP from top to bottom, and
therefore define a decreasing discount vector, however some user studies suggest
that the probability of observing a result depends on the quality of the documents
ranked higher: if the user finds a relevant document at position i it is less likely
that he will inspects the document at position i+1 (Zhang et al., 2010). However,
the user behavior is more complex as he/she can move forward and backward,
can jump from one document to any other and visit already visited documents, as
suggested by (Ferrante et al., 2014; Sakai and Dou, 2013).

Our work stems from the simple observation that the user behavior in visiting
a SERP differs depending on the query type and the number and position of the
relevant results. For example, it is likely that on a SERP with a single highly
relevant result in the first position the user assumes a navigational behavior, while
a SERP with several relevant results may likely correspond to an informational

query, where a more complex SERP visiting behavior can be observed (Broder,
2002). Since at training time a list-wise LtR algorithm such as LambdaMart

is aware of the number and distribution of relevance labels associated with the
training samples for each query, we suppose that it can profit from the knowledge
of the user dynamics associated with the specific kind of query.

We model the user dynamics with a Markovian process (Norris, 1998), where
the user scans the ranked documents in the SERP according to possibly complex
paths, moving both forward and backward. Let us denote by X1, X2, . . . the se-
quence of random variables representing the rank positions in R = {1, 2, . . . , R}
visited by the user, where Xn = j means that the nth document visited by the user
is at rank j. Moreover, we assume that the probability to move from the docu-
ment at rank i to the document at rank j depends on the document at rank i only
and is independent of all the previously visited documents. Finally, we denote
by P the transition matrix whose entries represent the transition probabilities



Boosting Learning to Rank with User Dynamics and Continuation Methods 7

Rank Positions
2 4 6 8 10

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25
1 Relevant Document
0 Relevant Documents
3 Relevant Documents
5 Relevant Documents
7 Relevant Documents
9 Relevant Documents

(a) Different Query Types

2 4 6 8 10
Rank Positions

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1

D
is

co
un

t

(i) = i-1+ i+
 = 0.2601
 = 0.0112
 = -0.0378

 Stationary Distribution
 User Dynamic

nDCG Discount

(b) Navigational Queries

2 4 6 8 10
Rank Positions

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1

D
is

co
un

t

(i) = i-1+ i+
 = 0.0848
 = 0.0045
 = 0.0502

 Stationary Distribution
 User Dynamic

nDCG Discount

(c) Informational Queries

Fig. 1 Stationary distributions for queries retrieving different numbers of relevant documents
(a), and stationary distribution with its fitted curve and DCG discount for navigational (b),
and informational queries (c).

P = (pij : i, j ∈ R), where pij = P[Xn+1 = j|Xn = i]. The sequence of random
variables (Xn)n>0 defines a discrete-time homogeneous Markov chain.

If we consider the transition matrix and compute Pn, we obtain the probability
to see the Markov chain in a given state after n steps. By assuming that P is
irreducible, which means that the probability of passing in a finite number of
steps from a given document in the ranked list to any other document is positive,
it can be proven that P admits a unique stationary distribution πP = π which,
under the hypothesis of P being aperiodic (Norris, 1998), is the limit of the n-step

transition probabilities, p
(n)
ij → πj as n→∞ for all i, j.

When extending this analysis to a long-term query log, we can consider the
behavior recorded for each user as a different observation of the same stochastic
process, and the resulting stationary distribution can be considered as an aggre-
gated representation of user dynamics. Notice that the convergence is typically
very fast, since already after n ≈ 10 iterations of the power method we obtain an
accurate estimation of π.

Since we observe that the behavior of users change depending on the number
of relevant documents in the SERP, we can classify queries on the basis of the
number of relevant documents returned and estimate different transition matrices
P̂ for different classes of queries. Specifically, we first aggregate the dynamics of
different users on the basis of the typology of query, then we adopt the maximum
likelihood estimator approach (Teodorescu, 2009) on the aggregated data:

1. for each i ∈ R let vi be the number of times that the users visited the document
at rank i given the query;

2. if vi = 0, then p̂ij = 0 for all j 6= i and p̂ii = 1;
3. if vi > 0, let vij be the number of transitions from the document at rank i to

the document at rank j, then p̂ij =
vij
vi

.

Figure 1(a) plots the stationary distributions obtained from the Yandex query
log described in Section 4.1. We split queries in the log on the basis of the number
of relevant documents retrieved and we computed the stationary distribution by
aggregating the sessions of all the users sharing the same typology of query. When
considering queries with just one relevant retrieved document, i.e. the red line with
circle markers in Figure 1(a), the user dynamics exhibit a spike with respect to
the first rank position, while for queries without any relevant documents or with
more than one relevant document, i.e. the blue lines, the probability tends to be
distributed more uniformly, meaning that the user is exploring the whole SERP.



8 Ferro et Al.

We focus on these two distinct macroscopic behavior types, and, for the sake
of simplicity, we call navigational the queries where users concentrated on just the
first item, and we consider all the other queries as informational since users tend to
visit more documents. To embed user dynamics in the LambdaMart cost function,
as detailed in the next section, we abstract these two observed behavioral types
(navigational and informational) by fitting a curve to the corresponding stationary
distributions.

On the basis of the above experimental observations, we claim that the user
dynamics can be described as a mixture of the navigational and informational
behavior. The navigational component is represented by the inverse of the rank
position i, 1

i , while the informational component is linear with respect to the rank
position i. Therefore, we model the user dynamics as

δ(i) = αi−1 + βi+ γ

where the parameters α, β and γ are calibrated in order to fit the estimated
stationary distributions computed on the Yandex dataset.

Figures 1(b) and 1(c) show the stationary distributions together with the fitted
curves for the navigational and informational cases, respectively. In Figure 1(b)
the stationary distribution is the same reported in the red line of Figure 1(a), while
to compute the stationary distribution reported in Figure 1(c) we aggregate all
the user dynamics corresponding to the other queries, i.e. queries without relevant
documents or with more than one relevant document.

Since it is clearly visible that users behave differently depending on the query
at hand, if we consider the notation introduced at the beginning of Section 3, we
might require different scoring functions σi depending on the query type, and a
classifier c able to discriminate between queries types. However, at query time, the
classifier c can exploit only query-based features xq as, in general, documents have
not yet been retrieved, and neither their relevance nor their features are available.
There is a large literature of query classification for different tasks, and query topic
categorization is well addressed within Web companies to increase effectiveness,
efficiency, and revenue potential in general-purpose Web search engines (Beitzel
et al., 2005). Therefore, building such a classifier c(xq) is feasible, but beyond the
purpose of this paper.

However, the desired scoring model should be a function of both the query
classification c(xq) and the class-dependent document scorer σc(xq). Since both
functions depend on x, they can be replaced trivially with a single scoring function
σ(x). This allows us to avoid the design of a query classifier, and let the LtR
algorithm to learn the query classification and document scoring at the same time.

In the following we will illustrate the approach adopted in order to include the
user dynamics in LambdaMart. Roughly speaking, the idea is to consider the user
dynamics as a discount function and to optimize a new evaluation metric based
on the stationary distribution and query class. A similar approach is presented
in (Yilmaz et al., 2010), where the expected browsing utility is estimated on log
data and used as discount function.

The user dynamics defined above can actually be considered as a discounting
vector to be exploited in any given quality metric. Differently from other ap-
proaches, the user dynamics is defined on the basis of two different query classes



Boosting Learning to Rank with User Dynamics and Continuation Methods 9

which exhibit a different user behavior. Figures 1(b) and 1(c) show how different
is the derived user dynamics w.r.t. the DCG discounting component. Below we
discuss how δ can be exploited in a state-of-the-art LtR algorithm.

We enhance the existing LambdaMart algorithm by replacing the above Q

with a new quality measure which integrates the proposed user dynamics δ. This
new measure is called Normalized Markov Cumulated Gain (nMCG) and it is defined
as follows:

nMCG@k =

∑
i≤k

(
2li − 1

)
· δc(i)∑

h≤k,sorted by lh
(2lh − 1) · δc(h)

where li is the relevance label of the i-th ranked document and δc(i) is the user
dynamics function at rank i relative to the query class c, either navigational or
informational. Basically, nMCG can be seen as an extension of nDCG, where the
discount function is defined by the user dynamic and depends on the query class.
Moreover, since δc depends on the query class, i.e. depends on the query q, we are
optimizing two different variants of the same quality measure nMCG across the
training dataset. Finally, ∆nMCG@kij can be computed efficiently as follows:

∆nMCG@kij =
−
(

2li − 2lj
)

(δc(i)− δc(j))∑
h≤k,sorted by lh

(2lh − 1) · δc(h)
.

Hereinafter, we use nMCG-MART to refer to the described variant of Lamb-

daMart aimed at maximizing nMCG.
Note that the query class is known at training time, and therefore the algorithm

can optimize the proper user dynamics δc. Nor the document relevance, neither the
query class information are available at test time, therefore the algorithm should,
at the same time, classify queries and rank documents according to the different
class-based dynamics δc.

3.2 Continuation Methods for LtR

Applying a Continuation Method to a cost function C means to define a sequence
of cost functions Cγ with γ ∈ [0, 1], such that by increasing γ, the complexity of
the function increases. Therefore, C0 represents a highly smoothed version of the
original cost function corresponding to C1.

We implement Continuation Methods in the contest of forests of decision trees
as a two step learning process, where the initial trees are trained by minimizing a
cost function C0 and the remaining trees are trained by optimizing C1. We did not
explore in this work more complex multi-stage scenarios, which can trivially extend
this work. We denote continuation methods as C0T0 C1T1, meaning that the first
T0 trees of the ensemble minimize C0, while the remaining T1 trees minimize C1,
additively refining the prediction of the first T0 trees.

In order to apply a CM to LambdaMart we need to smooth the LambdaMart

loss function. Smoother variants of nDCG have been previously proposed, e.g. Soft-
NDCG (Taylor et al., 2008); however, their performance did not prove to be sig-
nificantly better than the original LambdaMart loss function. Therefore, we look
at two different smoother replacements of the nDCG measure.



10 Ferro et Al.

The first option we consider is to use as C0 the Mean Square Error (MSE) as a
smooth variant of the target nDCG measure. Even if MSE is easily differentiable
and an MSE equal to 0 corresponds to the maximum nDCG value, the MSE cost
cannot be considered a smooth approximation of nDCG. Nevertheless, Gradient
Boosted Regression Trees that minimize MSE are known to perform well, even
at optimizing nDCG. The rationale of using C0 equal to MSE is that of using
a smooth function that alone exhibits good performance as a good seed for the
refinement that the optimization of nDCG or nMCG may provide.

The second option we consider is to use Recall@k as C0. Recall is not a differ-
entiable function either, as it suffers the same issues as nDCG. Still, it is an easier

function to be optimized because it considers binary relevance instead of graded,
and it discriminates between documents above or below the cut-off k without fur-
ther discounting according to document ranks. The rationale is to train the first
portion of the forest in order to place the most relevant documents above the cut-
off, and then to complete the training with the target metric nDCG or nMCG to
adjust their relative ranking.

Since Recall is not differentiable, we devised a LambdaMart-based approach
similar to nMCG-MART. We define ∆nRecall@kij as the normalized change in
Recall@k when swapping the i-th and j-th documents in the current ranking.
Given a relevance binarization thresholds ρ, ∆nRecall@kij is defined as follows:

∆nRecall@kij =
−
(
1li≥ρ − 1lj≥ρ

) (
1i≥k − 1j≥k

)∑
h 1lh≥ρ

,

where 1p is the indicator function evaluating to 1 if predicate p is true and 0
otherwise.

Finally, in addition to C1 being equal to nDCG, we also consider the case where
nMCG-MART is used as C1. Our goal is to evaluate the added value of exploiting
the user dynamics in producing the final ranking, even when the first trees of the
forest where built by optimizing a different metric.

In conclusion, by evaluating different combinations of C0 and C1, we are com-
paring the effectiveness of LambdaMart and nMCG-MART, and we are assessing
the benefit they can receive by a pre-training on a different metric, which actually
allows the two algorithms to initiate their search process from a different point in
the solution space, possibly leading to a better final solution.

4 Experimental Evaluation

4.1 Experimental Setup

We remark that since there is no publicly available dataset providing, at the same
time, user session data, document relevance and query-document pairs features,
we have to use two different datasets in our analysis. A first dataset providing user
session data is used for the user dynamics derivation, while standard LtR datasets
are used for learning the ranking models.

We calibrate the proposed user model on the basis of the click log dataset pro-
vided by Yandex (Serdyukov et al., 2012) (http://imat-relpred.yandex.ru/en/).
The dataset is composed of 340,796,067 records with 30,717,251 unique queries,
retrieving 10 URLs each. We used the training set, which consists of 5,191 assessed



Boosting Learning to Rank with User Dynamics and Continuation Methods 11

queries with binary judgments, corresponding to 30,741,907 records. Notice that
9% of the sessions corresponds to navigational queries, while the remaining 91%
corresponds to informational ones.

The accuracy of the proposed algorithms is instead evaluated on two public
LtR datasets, MSLR-WEB30K and MSLR-WEB10K, provided by Microsoft (Qin
and Liu, 2013). Dataset MSLR-WEB30K encompasses 31,531 queries from the
Microsoft Bing search engine for a total of 3,771,125 query-document pairs rep-
resented by 136 features. The dataset is provided as a 5-fold split. The MSLR-
WEB10K dataset contains instead 10,000 queries samples at random from the
previous dataset.

The query-document pairs in both the datasets are assessed with integer rele-
vance labels in the range [0, 4].

In order to classify queries as navigational or informational we adopt the fol-
lowing criterion: a query is considered as navigational if it contains only one result
with relevance label ≥ 3. Approximatively 15% of the queries in the Microsoft
datasets are classified according to this heuristic as navigational queries, which
is a fraction quite similar to the one measured on the Yandex dataset. The ex-
act number of navigational and informational queries for each fold is reported in
Table 1 for MSLR-WEB10K and in Table 2 for MSLR-WEB30K.

Table 1 Number of navigational and informational queries included in MSLR-WEB10K.

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

test nav 293 (15%) 323 (16%) 264 (13%) 292 (15%) 284 (14%) 1456 (15%)
test inf 1707 (85%) 1677 (84%) 1736 (87%) 1708 (85%) 1716 (86%) 8544 (85%)

Table 2 Number of navigational and informational queries included in MSLR-WEB30K.

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

test nav 871 (14%) 927 (15%) 895 (14%) 957 (15%) 864 (14%) 4514 (14%)
test inf 5435 (86%) 5380 (85%) 5411 (86%) 5349 (85%) 5442 (86%) 27017 (86%)

We used LambdaMart as the reference LtR algorithm. Specifically, we used
(and modified) the open source implementation of LambdaMart provided in the
LightGBM gradient boosting framework1 and swiped the hyper parameters with
cross-validation so as to maximize the average performance over the validation
folds. Learning rate ν was varied in the set {0.01, 0.05, 0.1, 0.5}, while the maximum
number of leaves L in the set {8, 16, 32, 64}, with best results observed with the
setting ν = 0.05 and L = 64. Notice that in the following sections, whenever
we refer to the baseline we mean a LambdaMart model trained using the above
settings and with nDCG@10 as effectiveness measure. We keep the same setting for
all the other proposed models, which are trained with the same values of learning
rate and number of leaves, and with a total of T = 500 trees. We implemented the
proposed nMCG and CM algorithms as LightGBM plug-ins providing the required

1 Available at https://github.com/Microsoft/LightGBM.



12 Ferro et Al.

derivative and hessian matrices for the gradient boosting optimization. The source
code of our implementation will be made available upon publication of the paper.

For continuation methods approaches, we report the results achieved when
training a first set of T0 trees with the first objective function C0 and the remaining
T1 = T − T0 by exploiting a different objective function C1. We explored different
switching points for the cost functions at T0 equals to 100, 200, 300, 400 trees,
while the total number of trees T is always equal to 500. As function C0 we use
Recall@10 or MSE, while as second objective function we use either nDCG@10 or
nMCG@10.

As name convention, all the CM approaches are referred with the name of
the first objective function C0, the corresponding number of trees used during the
first training phase T0, followed by the name of the second objective function C1

with the corresponding number of trees T1. Therefore, recallT300 ndcgT200 means
that the model is trained with Recall@10 for the first 300 trees and then with
nDCG@10 for the following 200 trees. Moreover, we report as reference models for
CM approaches nMCG-MART and the best performing model proposed in (Ferro
et al., 2018), i.e. mseT200 ndcgT300, which is the continuation method approach
where the first 200 trees where trained with MSE as objective function, and the
following 300 trees where trained with nDCG@10.

In the following sections we describe the experimental evaluation conducted to
investigate the performance of each model. More in detail, we address the following
research questions:

RQ1 – what are the best performing models? Section 4.2 presents the evalu-
ation of each model with respect to different measures;

RQ2 – what is the impact of navigational and informational queries? Sect-
ion 4.3 addresses the evaluation of each model focusing on navigational and
informational queries;

RQ3 – what is the impact of the number of used trees? Section 4.4 studies
the tree-wise performance of each model and compares the ranking models on
the basis of the number of trees and the CM switching points.

4.2 RQ1: Models Evaluation

In this section we evaluate the proposed models with respect to different mea-
sures. Besides the baseline, nMCG-MART and recallT300 ndcgT200, we report
the evaluation performance of recallT300 ndcgT200 and recallT400 ndcgT100, and
recallT300 nmcgT200 and recallT300 nmcgT200. We tested all the continuation
method approaches with combinations of recall followed by nDCG or nMCG and
switching point T0 ∈ {100, 200, 300, 400}, however, due to space constraints, we
report only those combinations that lead to better performance.

Each model is evaluated separately on each fold and then the evaluation scores
are averaged across the folds. As evaluation measures we use nDCG2 with two
different cut-off thresholds, 10 and 100, Recall with cut-off at 10 and 100, and Ex-

pected Reciprocal Rank (ERR) (Chapelle et al., 2009) with cut-off at 10. Table 3 and

2 We exploited LightGBM implementation of nDCG, which assigns nDCG score equal to 1
to queries with no relevant documents.



Boosting Learning to Rank with User Dynamics and Continuation Methods 13

Table 3 Models evaluation on MSLR-WEB10K test set with respect to different mea-
sures. Statistically significant improvements with p = 0.05 over the baseline LambdaMart
are marked with •. Statistically significant improvements with p = 0.05 over the model
recallT. . . ndcgT. . . are marked with +. The best score is highligthed in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.5037 0.4984 0.4933 0.5047 0.5083 0.5017
nMCG-MART 0.5049 0.4996 0.4951 0.5024 0.5085 0.5021
mseT200 ndcgT300 0.508• 0.5059• 0.4972• 0.508 0.512 0.5062•

recallT300 ndcgT200 0.5032 0.501 0.4945 0.5051 0.5093 0.5026
recallT400 ndcgT100 0.502 0.5015 0.4952 0.5036 0.5105 0.5025
recallT300 nmcgT200 0.5072•,+ 0.5062•,+ 0.4986•,+ 0.5091•,+ 0.5136•,+ 0.507•,+

recallT400 nmcgT100 0.5083•,+ 0.5045•,+ 0.4983•,+ 0.5094• 0.5146• 0.507•,+

nDCG@100

LambdaMart 0.6834 0.6819 0.6761 0.6818 0.6872 0.6821
nMCG-MART 0.6841 0.6814 0.6775 0.6811 0.6872 0.6823
mseT200 ndcgT300 0.6867• 0.6857• 0.6813• 0.6844• 0.6908• 0.6858•

recallT300 ndcgT200 0.6847 0.6832 0.6791• 0.6824 0.6884 0.6836•

recallT400 ndcgT100 0.6838 0.684 0.679• 0.6816 0.6891 0.6835•

recallT300 nmcgT200 0.6852 0.6855•,+ 0.6803• 0.6848•,+ 0.6899• 0.6851•,+

recallT400 nmcgT100 0.6857•,+ 0.6844• 0.6797• 0.6847•,+ 0.6904• 0.685•,+

Recall@10

LambdaMart 0.3573 0.3526 0.3656 0.3537 0.3584 0.3575
nMCG-MART 0.3587 0.3556 0.3648 0.3525 0.3595 0.3582
mseT200 ndcgT300 0.362• 0.3579• 0.3664 0.3593• 0.3629• 0.3617•

recallT300 ndcgT200 0.3579 0.3574• 0.3646 0.3549 0.3623 0.3594
recallT400 ndcgT100 0.3601 0.3565 0.3657 0.3534 0.365• 0.3601•

recallT300 nmcgT200 0.3609 0.3568• 0.3679 0.3567 0.3626 0.361•

recallT400 nmcgT100 0.3624• 0.3573• 0.3666 0.3557 0.3647• 0.3614•

Recall@100

LambdaMart 0.9015 0.9016 0.9038 0.902 0.9064 0.9031
nMCG-MART 0.902 0.9014 0.9033 0.9025 0.906 0.9031
mseT200 ndcgT300 0.9051• 0.9029 0.9071• 0.9052• 0.9095• 0.906•

recallT300 ndcgT200 0.9043• 0.9034 0.9078• 0.9054• 0.9094• 0.9061•

recallT400 ndcgT100 0.905• 0.9034 0.907• 0.9046• 0.9098• 0.906•

recallT300 nmcgT200 0.9019 0.9018 0.9063• 0.9034 0.9079 0.9043•

recallT400 nmcgT100 0.9021 0.9018 0.9068• 0.9034 0.9076 0.9043•

ERR@10

LambdaMart 0.5389 0.5379 0.533 0.5467 0.5509 0.5415
nMCG-MART 0.5406 0.536 0.5364 0.5444 0.5509 0.5417
mseT200 ndcgT300 0.5373 0.5433 0.5381 0.5436 0.5525 0.543
recallT300 ndcgT200 0.5315 0.5342 0.5293 0.5389 0.5448 0.5357
recallT400 ndcgT100 0.5298 0.5349 0.5279 0.5354 0.5438 0.5344
recallT300 nmcgT200 0.5382+ 0.5452•,+ 0.5378+ 0.5466+ 0.5541+ 0.5444•,+

recallT400 nmcgT100 0.5383+ 0.5407+ 0.5345+ 0.5481+ 0.554+ 0.5431+

Table 4 present the evaluation scores on MSLR-WEB10K and MSLR-WEB30K
respectively.

In each table the best score achieved with respect to each fold and measure is
highlighted in bold. We remark that nDCG evaluation of different rankers are com-
monly very close, and that, in web search rankers, changes of over half a percentage
point of nDCG are considered major revisions (Chapelle et al., 2012). Moreover we
computed Fisher’s randomization test with 100, 000 random permutations, which
accordingly to Smucker et al. (2007) is the most appropriate statistical test to
evaluate whether two approaches differ significantly. Thus, when an approach is
marked with •, it means that it is significantly different from the baseline with the
two-sided p value lower than α = 0.05. Similarly we compare each continuation
method combining recall followed by nDCG, with the corresponding continuation
method combining recall and nMCG, i.e. we compare recallT300 ndcgT200 against
recallT300 nmcgT200 and recallT400 ndcgT100 against recallT400 nmcgT100. Sig-
nificantly different approaches with the two-sided p value lower than α are marked
with +.

Table 3 shows that the CM approaches combining Recall and nMCG, namely
recallT300 nmcgT200 and recallT400 nmcgT100, achieve the best performance on



14 Ferro et Al.

each fold in terms of nDCG@10. They are significantly different from both the
baseline and the corresponding CM approaches which combine Recall followed by
nDCG. This supports our hypothesis that the combination of CM and the user
dynamics integrated by nMCG can boost LambdaMart performance.

The third best performing model is recallT300 ndcgT200, which is signifi-
cantly different from the baseline, on three out of five folds and also when the
average is considered. On the other hand, nMCG-MART3 and CM approaches
recallT300 ndcgT200 and recallT400 ndcgT100 perform better than the baseline,
but they are not significantly different.

When we consider nDCG with a greater cut-off, i.e. nDCG@100,
mseT300 ndcgT200 becomes the best performing model on four out of five folds,
being significantly different from the baseline on four folds and also on the av-
erage results. CM approaches involving the user dynamics represent the second
and third best performing models, again significantly improving over the base-
line. Even if overall they are significantly different from the corresponding CM
approaches exploiting nDCG, this does not always hold when each fold is con-
sidered separately. Indeed, only on two out of five folds recallT300 ndcgT200

and recallT400 nmcgT100 are significantly different from recallT300 ndcgT200 and
recallT400 ndcgT100. However, the CM approaches which exploit nMCG are sig-
nificantly better than the baseline, while this is not true for those CM approaches
exploiting nDCG.

When considering Recall@10, the evaluation outcomes are similar to those us-
ing nDCG@100. Thus, mseT300 ndcgT200 is the best performing model followed
by CM which exploit the user dynamics. Overall, all these approaches achieve
statistically significant improvements over the baseline, but when each fold is con-
sidered separately, this behaviour can not be generalized, being these approaches
significantly different just on some folds.

Moreover, CM approaches perform close to the mseT300 ndcgT200 baseline, be-
ing recallT300 ndcgT200 the best performing model for nDCG on fold 5. This is
further highlighted when the models are evaluated with respect to Recall@100. In
this case, CM approaches that exploit nDCG instead of nMCG perform better and
recallT300 ndcgT200 represent the best performing model, significantly improving
over the baseline. CM approaches using nDCG are followed by mseT300 ndcgT200

and then by CM approaches exploiting nMCG.

As shown by the comparison between nDCG@10 against nDCG@100, and Re-
call@10 against Recall@100, CM approaches using nMCG perform better with
lower cut-off threshold. Therefore, they better place relevant documents at the
beginning of the ranked list. This is further confirmed when ERR@10 is taken into
account. Table 3 shows that when ERR@10 is considered, CM approaches using
nMCG are the best performing one. Moreover, recallT200 nmcgT300 is the only
approach which is significantly better than the baseline with respect to the average
over all the folds. CM approaches using nMCG are also significantly better than
the corresponding approaches using nDCG both overall and with respect to each
separate fold.

3 Note that nDCG@10 scores are slightly different from those reported in (Ferro et al., 2017)
for nMCG-MART due to the different implementation of nDCG@10 metric used in this paper.
See Footnote 2.



Boosting Learning to Rank with User Dynamics and Continuation Methods 15

Table 4 Models evaluation on MSLR-WEB30K test set with respect to different mea-
sures. Statistically significant improvements with p = 0.05 over the baseline LambdaMart
are marked with •. Statistically significant improvements with p = 0.05 over the model
recallT. . . ndcgT. . . are marked with +. The best score is higlighted in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.5152 0.5175 0.5201 0.5153 0.5137 0.5164
nMCG-MART 0.517• 0.5169 0.5202 0.5154 0.5135 0.5166
mseT200 ndcgT300 0.5194• 0.519 0.5221• 0.5182• 0.5147 0.5187•

recallT300 ndcgT200 0.5185• 0.5189 0.5204 0.518• 0.5166• 0.5185•

recallT400 ndcgT100 0.5185• 0.5178 0.5206 0.517 0.5159 0.518•

recallT300 nmcgT200 0.5201• 0.5206•,+ 0.5228•,+ 0.519• 0.5174• 0.52•,+

recallT400 nmcgT100 0.5199• 0.5198•,+ 0.5233•,+ 0.5184• 0.517• 0.5197•,+

nDCG@100

LambdaMart 0.6917 0.6925 0.6942 0.6912 0.6914 0.6922
nMCG-MART 0.6931• 0.692 0.6945 0.6911 0.6916 0.6925
mseT200 ndcgT300 0.6959• 0.6946• 0.6965• 0.6936• 0.6941• 0.6949•

recallT300 ndcgT200 0.6953• 0.6937 0.6952 0.6933• 0.6947• 0.6944•

recallT400 ndcgT100 0.6952• 0.6932 0.6949 0.6928• 0.6943• 0.6941•

recallT300 nmcgT200 0.695• 0.6941• 0.6957• 0.6929• 0.6941• 0.6944•

recallT400 nmcgT100 0.6952• 0.6935 0.6959•,+ 0.6924• 0.6941• 0.6942•

Recall@10

LambdaMart 0.3579 0.366 0.3631 0.364 0.3648 0.3632
nMCG-MART 0.3584 0.3665 0.3641 0.365 0.3647 0.3637
mseT200 ndcgT300 0.3624• 0.3682 0.3658• 0.3696• 0.3666 0.3665•

recallT300 ndcgT200 0.3599 0.3679 0.3639 0.3673• 0.3656 0.3649•

recallT400 ndcgT100 0.3617• 0.3662 0.3644 0.3663• 0.3648 0.3647•

recallT300 nmcgT200 0.3616• 0.3681 0.365 0.3663• 0.3656 0.3653•

recallT400 nmcgT100 0.3618• 0.3691•,+ 0.366• 0.3669• 0.3646 0.3657•,+

Recall@100

LambdaMart 0.9045 0.9051 0.9068 0.9038 0.9072 0.9055
nMCG-MART 0.9045 0.9049 0.9069 0.9043 0.9075 0.9056
mseT200 ndcgT300 0.9076• 0.9079• 0.9094• 0.907• 0.9101• 0.9084•

recallT300 ndcgT200 0.9074• 0.9079• 0.9092• 0.9068• 0.9104• 0.9083•

recallT400 ndcgT100 0.9077• 0.908• 0.909• 0.9066• 0.9103• 0.9083•

recallT300 nmcgT200 0.9062• 0.9063• 0.9074 0.904 0.9092• 0.9066•

recallT400 nmcgT100 0.9064• 0.9064• 0.9077 0.9046 0.9092• 0.9069•

ERR@10

LambdaMart 0.5598 0.5581 0.5637 0.5554 0.5544 0.5583
nMCG-MART 0.5611 0.5568 0.5649 0.5551 0.5543 0.5584
mseT200 ndcgT300 0.5616 0.5564 0.5619 0.5534 0.5545 0.5575
recallT300 ndcgT200 0.5578 0.5523 0.5561 0.5517 0.5533 0.5542
recallT400 ndcgT100 0.5558 0.5515 0.5551 0.5493 0.5516 0.5527
recallT300 nmcgT200 0.5622+ 0.5584+ 0.5634+ 0.5576+ 0.5573+ 0.5598•,+

recallT400 nmcgT100 0.5614+ 0.5566+ 0.5629+ 0.5543+ 0.556+ 0.5582+

It is well known that ERR is an heavily top-biased measure, i.e. it assigns
very high weights to relevant documents at top rank positions and assigns a great
discount factor to the following rank positions. Therefore, the evaluation conducted
with ERR@10 confirms our hypothesis that CM approaches leveraging the user
dynamics improve the effectiveness at the top rank positions. Moreover, since the
user dynamics exploited by nMCG is defined just for the first 10 rank positions,
by extending the user dynamics further down in the ranking, we might be able to
improve the score of our models at lower rank positions. However this is out of the
scope of the present work and will be considered for future investigations.

Table 4 reports the evaluation scores of each model on MSLR-WEB30K instead
of MSLR-WEB10K. The conclusions that we can infer from Table 4 are aligned
to those inferred from Table 3.

Therefore, when we consider nDCG@10 as evaluation measure, CM approaches
using nMCG, namely recallT300 nmcgT200 and recallT400 nmcgT100, are the best
performing ones both on each separate folds and on the average across folds. Fur-
thermore, they are significantly better than the baseline both overall and on each
fold. Overall, they are also significantly different from the corresponding CM ap-



16 Ferro et Al.

proaches adopting nDCG instead of nMCG. Again, this corroborates our intuition
that combining CM and the user dynamics represents a successful strategy, which
leads the models to perform better than the baseline and the CM approaches
without user dynamics.

As it happens for MSLR-WEB10K, when nDCG@100 is considered, CM ap-
proaches using nMCG are less effective and mseT200 ndcgT300 is the best perform-
ing model, significantly improving over the baseline both on each fold and on the
average across folds. Moreover, CM approaches using nMCG are not significantly
different from those using nDCG. However, they are still significantly improving
over the baseline.

When we consider Recall@10, the outcomes of the evaluation are similar to
those using nDCG@10. mseT200 ndcgT300 is still the best performing model when
the average across each fold is considered. However, if we break down the results
on each fold, recallT400 nmcgT100 is the best performing model on three folds out
of five. Moreover, recallT400 nmcgT100 is significantly better than the baseline and
than recallT400 ndcgT100.

When we consider Recall@100, CM approaches using nDCG perform better
than those using nMCG. Both recallT300 ndcgT200 and recallT400 ndcgT100 are
the best performing models on three folds out of five and they are significantly
better than the baseline. However, when considering the score across all the folds,
mseT200 ndcgT300 is still the best performing model. Thus, when using Recall@100
as evaluation measure, we reach conclusions similar to those that can be inferred
from nDCG@100.

Summing up, CM approaches exploiting the user dynamics perform better at
lower rank positions, while CM approaches using nDCG and mseT200 ndcgT300 are
somehow better in retrieving a higher number of relevant documents in the first
100 rank positions. This is further supported by the results when using ERR@10.
recallT300 nmcgT200 is the best performing model in terms of ERR@10 and it is
the only approach which is significantly better than the baseline. Moreover, CM
approaches using nMCG are also significantly better than those using nDCG, with
respect to both each separate fold and the average across folds.

4.3 RQ2: Models Comparison on Navigational and Informational Queries

In this section we focus the comparison among models on navigational and in-
formational queries separately. Table 5 and Table 6 report the evaluation scores
on MSLR-WEB10K for navigational and informational queries, respectively. We
adopt the same notation used for the tables presented in Section 4.2: the best
score is reported in bold, • denotes statistically significant improvements with
respect to LambdaMart, and + denotes statistically significant improvements of
CM approaches trained with nMCG with respect to those trained with nDCG.

From Table 5 we can note that there are just a few models which are signif-
icantly better than the baseline for navigational queries. This trend is indepen-
dent of the evaluation measure adopted, with a few exceptions represented by
mseT200 ndcgT300 with respect to nDCG@10 and nDCG@100, and
recallT300 nmcgT200 with respect to nDCG@10. This suggests that all the models
achieve somehow a comparable performance when evaluated with respect to nav-
igational queries. We argue that with navigational queries the number of relevant



Boosting Learning to Rank with User Dynamics and Continuation Methods 17

Table 5 Models evaluation on MSLR-WEB10K navigational queries with respect to differ-
ent measures. Statistically significant improvements with p = 0.05 over the baseline Lamb-
daMart are marked with •. Statistically significant improvements with p = 0.05 over the
model recallT. . . ndcgT. . . are marked with +. The best score is highlighted in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.4833 0.5033 0.4803 0.5149 0.5142 0.4992
nMCG-MART 0.4837 0.5108 0.4804 0.5175 0.5068 0.4998
mseT200 ndcgT300 0.4924 0.5106 0.4914 0.5238 0.5161 0.5069•

recallT300 ndcgT200 0.4767 0.5021 0.4819 0.5171 0.5107 0.4977
recallT400 ndcgT100 0.4723 0.5002 0.4824 0.52 0.5134 0.4976
recallT300 nmcgT200 0.4836 0.5105+ 0.485 0.5234 0.5156 0.5036•,+

recallT400 nmcgT100 0.4847+ 0.506 0.4826 0.5232 0.5181 0.5029+

nDCG@100

LambdaMart 0.6645 0.6833 0.6675 0.6879 0.6882 0.6783
nMCG-MART 0.6661 0.6852 0.669 0.6911 0.6829 0.6788
mseT200 ndcgT300 0.6677 0.687 0.677• 0.6931 0.6913 0.6832•

recallT300 ndcgT200 0.6623 0.6827 0.6696 0.6876 0.6835 0.6772
recallT400 ndcgT100 0.6582 0.6826 0.6705 0.6891 0.685 0.6771
recallT300 nmcgT200 0.6648 0.6864 0.6723 0.6934 0.688 0.681+

recallT400 nmcgT100 0.6649+ 0.6843 0.6715 0.6942•,+ 0.6876 0.6805+

Recall@10

LambdaMart 0.3079 0.326 0.3214 0.3609 0.3639 0.336
nMCG-MART 0.307 0.3316 0.3134 0.3609 0.3614 0.3349
mseT200 ndcgT300 0.3126 0.3274 0.3152 0.3745• 0.3663 0.3392
recallT300 ndcgT200 0.3021 0.3266 0.3126 0.3698 0.3716 0.3365
recallT400 ndcgT100 0.304 0.3252 0.3138 0.3715 0.3726 0.3374
recallT300 nmcgT200 0.3113+ 0.3318 0.3179 0.3708 0.3695 0.3403
recallT400 nmcgT100 0.3074 0.3294 0.3164 0.3685 0.3692 0.3382

Recall@100

LambdaMart 0.9016 0.9114 0.918 0.9249 0.9288 0.9169
nMCG-MART 0.9037 0.9113 0.9164 0.9282 0.9242 0.9168
mseT200 ndcgT300 0.9034 0.9106 0.9189 0.9269 0.9316 0.9183
recallT300 ndcgT200 0.9029 0.9121 0.9194 0.9258 0.9277 0.9176
recallT400 ndcgT100 0.904 0.911 0.9171 0.9264 0.928 0.9173
recallT300 nmcgT200 0.8971 0.9101 0.9174 0.9289 0.9288 0.9164
recallT400 nmcgT100 0.8967 0.9093 0.9176 0.9289 0.9252 0.9156

ERR@10

LambdaMart 0.4729 0.4945 0.4669 0.5028 0.5021 0.4878
nMCG-MART 0.4783 0.501 0.4687 0.5042 0.4951 0.4894
mseT200 ndcgT300 0.4776 0.4994 0.4813 0.5006 0.5006 0.4919
recallT300 ndcgT200 0.4678 0.4893 0.4684 0.4956 0.485 0.4812
recallT400 ndcgT100 0.4592 0.4864 0.4712 0.4983 0.488 0.4806
recallT300 nmcgT200 0.476 0.4954 0.4745 0.5112+ 0.4971 0.4908+

recallT400 nmcgT100 0.4767+ 0.491 0.4723 0.5111+ 0.4984 0.4899+

documents is limited and systems have little room for manoeuvre: they need to
place the most relevant document at the top of the ranked list and, when doing
this properly, they all perform equally well in achieving this task.

Furthermore, even if the results are not statistically significant, we can observe
from Table 5 that no model is performing markedly better than the others, but
there is instead a lot of variability depending on the measure and the fold under
consideration. For example, when using nDCG@10, mseT200 ndcgT300 is the best
performing model on average but it is the best model just on three out of five folds;
when using nDCG@100 instead, mseT200 ndcgT300 is the best performing model
on four folds. The scenario is different when we consider Recall@10, Recall@100
or ERR@10, where there isn’t any regular trend across the folds and the best
performing model changes on each fold.

Thus, we conclude that, when using navigational queries, all the models achieve
a comparable performance and none of them should be actually preferred. Indeed,



18 Ferro et Al.

Table 6 Models evaluation on MSLR-WEB10K Informational queries with respect to differ-
ent measures. Statistically significant improvements with p = 0.05 over the baseline Lamb-
daMart are marked with •. Statistically significant improvements with p = 0.05 over the
model recallT. . . ndcgT. . . are marked with +. The best score is highlighted in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.5072 0.4975 0.4952 0.503 0.5074 0.5021
nMCG-MART 0.5086 0.4975 0.4973 0.4998 0.5088 0.5024
mseT200 ndcgT300 0.5107 0.505• 0.4981 0.5053 0.5113 0.5061•

recallT300 ndcgT200 0.5078 0.5008 0.4964 0.5031 0.509 0.5034
recallT400 ndcgT100 0.507 0.5017 0.4971 0.5008 0.5101 0.5033
recallT300 nmcgT200 0.5113•,+ 0.5054•,+ 0.5007•,+ 0.5067•,+ 0.5133•,+ 0.5075•,+

recallT400 nmcgT100 0.5124•,+ 0.5043• 0.5006•,+ 0.5071•,+ 0.514•,+ 0.5077•,+

nDCG@100

LambdaMart 0.6866 0.6816 0.6774 0.6807 0.687 0.6827
nMCG-MART 0.6872 0.6807 0.6788 0.6794 0.6879 0.6828
mseT200 ndcgT300 0.6899• 0.6855• 0.6819• 0.6829 0.6907• 0.6862•

recallT300 ndcgT200 0.6886 0.6833 0.6805• 0.6816 0.6893 0.6846•

recallT400 ndcgT100 0.6881 0.6843 0.6803• 0.6803 0.6897• 0.6846•

recallT300 nmcgT200 0.6887• 0.6853•,+ 0.6815• 0.6833• 0.6902• 0.6858•,+

recallT400 nmcgT100 0.6893• 0.6845• 0.681• 0.683•,+ 0.6908• 0.6857•,+

Recall@10

LambdaMart 0.3658 0.3577 0.3724 0.3524 0.3575 0.3612
nMCG-MART 0.3676 0.3603 0.3726 0.351 0.3592 0.3621
mseT200 ndcgT300 0.3705• 0.3638• 0.3742 0.3566 0.3624• 0.3655•

recallT300 ndcgT200 0.3675 0.3634• 0.3725 0.3524 0.3607 0.3633
recallT400 ndcgT100 0.3697 0.3625 0.3736 0.3503 0.3637• 0.364•

recallT300 nmcgT200 0.3694 0.3616 0.3755 0.3543 0.3614 0.3644•

recallT400 nmcgT100 0.3718• 0.3627• 0.3743 0.3535 0.364• 0.3653•

Recall@100

LambdaMart 0.9015 0.8997 0.9017 0.8981 0.9028 0.9007
nMCG-MART 0.9017 0.8995 0.9013 0.8981 0.903 0.9007
mseT200 ndcgT300 0.9053• 0.9014 0.9053• 0.9015• 0.9059• 0.9039•

recallT300 ndcgT200 0.9045• 0.9018 0.906• 0.9019• 0.9064• 0.9041•

recallT400 ndcgT100 0.9052• 0.902• 0.9055• 0.9009• 0.9067• 0.9041•

recallT300 nmcgT200 0.9028 0.9002 0.9047• 0.899 0.9045 0.9022•

recallT400 nmcgT100 0.903 0.9004 0.9051• 0.8991 0.9047 0.9024•

ERR@10

LambdaMart 0.5502 0.5463 0.5431 0.5542 0.559 0.5505
nMCG-MART 0.5513 0.5427 0.5467 0.5513 0.5602 0.5504
mseT200 ndcgT300 0.5476 0.5517 0.5467 0.5509 0.5611 0.5516
recallT300 ndcgT200 0.5424 0.5429 0.5386 0.5463 0.5547 0.545
recallT400 ndcgT100 0.542 0.5443 0.5366 0.5418 0.553 0.5435
recallT300 nmcgT200 0.5489+ 0.5547•,+ 0.5475+ 0.5527+ 0.5636+ 0.5535+

recallT400 nmcgT100 0.5489+ 0.5502+ 0.544+ 0.5544+ 0.5632+ 0.5521+

except for a couple of cases, none of the proposed models is significantly better
than the baseline.

However, this is not the case when we consider informational queries, as shown
in Table 6. When using nDCG@10, CM approaches embedding the user dynamics
are the best performing models on each fold. Moreover, they are significantly better
than the baseline on each fold, while all the other models are not significantly
different, except for mseT200 ndcgT300 in two cases: fold 2 and on the average. CM
approaches using nMCG are also significantly better than those using nDCG, both
on each fold and on the overall average.

The experimental comparison of models on informational queries provides more
insights on the performance of CM approaches combined with the user dynamics.
The exploitation of the user dynamics together with CM boosts the ranking of
queries for which several relevant documents are available. Indeed, it helps in
identifying those documents that are more relevant than others and in placing
them at the beginning of the ranked lists.

As observed on the whole dataset in Table 3, when the nDCG cut-off is in-
creased to 100, CM approaches using nMCG are less effective than
mseT200 ndcgT300. mseT200 ndcgT300 is the best performing model on the over-



Boosting Learning to Rank with User Dynamics and Continuation Methods 19

all average and on three folds, while CM approaches using nMCG are the best
performing models just on two folds. Both mseT200 ndcgT300 and CM approaches
using nMCG are significantly better than the baseline. Furthermore, when the
average across folds is considered, CM approaches using nMCG are better than
their corresponding models using nDCG.

The evaluation using Recall@10 leads to conclusions comparable to those for
nDCG@10. Even if the best performing model is mseT200 ndcgT300 instead of
recallT400 nmcgT100, CM approaches using nMCG are the best performing mod-
els on three folds and they are significantly improving over the baseline. Again,
when the Recall cut-off is extended to 100, CM approaches using nMCG are less
effective than those using nDCG, which significantly improve over the baseline.

Therefore, we come to a conclusion similar to the one we claimed for the whole
dataset: CM approaches using nMCG perform better at the top rank positions,
while they are less effective when all the rank positions up to 100 are consid-
ered. Even if there is no statistical difference with respect to LambdaMart, this
is further supported by ERR@10, which considers CM approaches using nMCG
as the best performing models also on informational queries. Furthermore, CM
approaches using nMCG are significantly better than those using nDCG over each
fold with respect to ERR@10.

We conducted the same analysis for navigational and informational queries on
MSLR-WEB30K, as reported on Table 7 and Table 8 respectively. The experimen-
tal results are aligned with those reported for MSLR-WEB10K.

Firstly, except for a few cases, there is no statistical improvement over the
baseline for any measure or models when navigational queries are considered. This
is the same trend observed in Table 5. However, CM approaches using nMCG
are significantly better than those using nDCG when evaluated with nDCG@10,
nDCG@100 and ERR@10. Thus, even if none of the models is performing better
than the baseline, CM approaches using nMCG can be preferred to those using
nDCG, especially when the interest is at the top rank positions.

Secondly, on MSLR-WEB30K the high variability of the best performing model
with respect to the measure and the fold is even more visible than on MSLR-
WEB10K. Given an evaluation measure, none of the proposed models is constantly
the best performer across every fold. For instance, the best performing model is
always different for each fold when nDCG@10 or ERR@10 are considered. The
only exception is represented by Recall@10, where mseT200 ndcgT300 is significantly
better than the other models on three folds and on the average across folds.

Therefore, also for navigational queries on MSLR-WEB30K, we can conclude
that none of the models can be considered somehow outstanding or can be preferred
over other models for each measure and fold. Except for a few cases, the proposed
models are not significantly improving over the baseline and this can be due to the
small amount of relevant documents included in the datasets. As discussed above,
models just need to place the single highly relevant document at the beginning of
the ranking and they are all comparable in achieving this task.

Finally, Table 8 reports the evaluation scores for each measure and fold with re-
spect to informational queries on MSLR-WEB30K. When nDCG@10 is considered,
CM approaches trained with nMCG are the best performing models, significantly
improving over the baseline on each fold. Moreover, when the average across folds
is considered they are also significantly better than CM approaches trained with



20 Ferro et Al.

Table 7 Models evaluation on MSLR-WEB30K navigational queries with respect to differ-
ent measures. Statistically significant improvements with p = 0.05 over the baseline Lamb-
daMart are marked with •. Statistically significant improvements with p = 0.05 over the
model recallT. . . ndcgT. . . are marked with +. The best score is highlighted in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.5126 0.5108 0.5288 0.5009 0.51 0.5126
nMCG-MART 0.5156 0.5093 0.5277 0.5012 0.5065 0.512
mseT200 ndcgT300 0.5143 0.5124 0.5336 0.501 0.5042 0.5131
recallT300 ndcgT200 0.5078 0.5109 0.5248 0.4997 0.5048 0.5096
recallT400 ndcgT100 0.508 0.5103 0.5264 0.497 0.5022 0.5088
recallT300 nmcgT200 0.5118 0.5166•,+ 0.5282 0.4997 0.5057 0.5124+

recallT400 nmcgT100 0.5132+ 0.5159•,+ 0.5314+ 0.4989 0.508+ 0.5135+

nDCG@100

LambdaMart 0.6862 0.6845 0.698 0.6803 0.6857 0.6869
nMCG-MART 0.6889 0.6847 0.6981 0.6803 0.6838 0.6872
mseT200 ndcgT300 0.6891 0.6854 0.7022• 0.682 0.6851 0.6888•

recallT300 ndcgT200 0.6875 0.6851 0.6958 0.6802 0.685 0.6867
recallT400 ndcgT100 0.6869 0.6858 0.6959 0.679 0.6839 0.6863
recallT300 nmcgT200 0.687 0.6879• 0.6973 0.6799 0.6847 0.6873
recallT400 nmcgT100 0.6882 0.6873 0.6992+ 0.6797 0.6866+ 0.6882+

Recall@10

LambdaMart 0.3483 0.3271 0.3601 0.3299 0.3354 0.3402
nMCG-MART 0.3473 0.3251 0.3613 0.33 0.3323 0.3392
mseT200 ndcgT300 0.3547• 0.3304 0.3658• 0.333 0.3307 0.3429•

recallT300 ndcgT200 0.3472 0.329 0.3572 0.3324 0.3321 0.3396
recallT400 ndcgT100 0.3495 0.3267 0.3594 0.3301 0.3289 0.3389
recallT300 nmcgT200 0.3502 0.332 0.3616 0.3287 0.3297 0.3404
recallT400 nmcgT100 0.3514 0.3322+ 0.3634 0.3291 0.3249 0.3402

Recall@100

LambdaMart 0.9196 0.9127 0.9236 0.9165 0.9147 0.9174
nMCG-MART 0.9196 0.9138 0.9238 0.9173 0.9143 0.9178
mseT200 ndcgT300 0.9223 0.9157• 0.9259• 0.9188 0.9182• 0.9202•

recallT300 ndcgT200 0.9238• 0.9152 0.9219 0.9197 0.9179• 0.9197•

recallT400 ndcgT100 0.9232• 0.9153 0.9219 0.92 0.9177• 0.9196•

recallT300 nmcgT200 0.9218 0.9128 0.9222 0.9147 0.9158 0.9174
recallT400 nmcgT100 0.9221 0.9131 0.9228 0.916 0.9163 0.918

ERR@10

LambdaMart 0.5038 0.4962 0.5173 0.4871 0.4987 0.5006
nMCG-MART 0.5094 0.4967 0.5171 0.4863 0.494 0.5007
mseT200 ndcgT300 0.5023 0.494 0.5207 0.4815 0.488 0.4973
recallT300 ndcgT200 0.4992 0.4954 0.5078 0.4808 0.4886 0.4944
recallT400 ndcgT100 0.4962 0.4972 0.5064 0.4767 0.4863 0.4926
recallT300 nmcgT200 0.5014 0.5035•,+ 0.5138 0.4851 0.4937 0.4995+

recallT400 nmcgT100 0.5025+ 0.5002 0.5185+ 0.4821 0.4993+ 0.5005+

nDCG. This further confirms our hypothesis that combining CM with the user
dynamics represent a successful approach, especially in terms of nDCG@10.

We can observe a similar trend when Recall@10 is used as evaluation measure.
In this case, mseT200 ndcgT300 is the best performing model when we consider the
average across folds and it is significantly better than the baseline. However, when
we consider the scores on each single fold, mseT200 ndcgT300 is the best model on
fold 4 and fold 5, and similarly recallT400 nmcgT100 is the best performing model
on fold 2 and fold 3. With respect to the average across folds, recallT400 nmcgT100

is the second best performing model, significantly improving over the baseline and
over recallT400 ndcgT100.

ERR@10 further highlights this trend: recallT300 nmcgT200 is the best per-
forming model on three folds out of five and when the average across folds is
considered. Moreover, it is the only model which is significantly better than the
baseline. Both recallT300 nmcgT200 and recallT400 nmcgT100 are significantly im-
proving over recallT300 ndcT200 and recallT400 ndcgT100 both on each separate
fold and on the average across folds.



Boosting Learning to Rank with User Dynamics and Continuation Methods 21

Table 8 Models evaluation on MSLR-WEB30K informational queries with respect to differ-
ent measures. Statistically significant improvements with p = 0.05 over the baseline Lamb-
daMart are marked with •. Statistically significant improvements with p = 0.05 over the
model recallT. . . ndcgT. . . are marked with +. The best score is highlighted in bold.

Measure Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

nDCG@10

LambdaMart 0.5156 0.5186 0.5186 0.5179 0.5143 0.517
nMCG-MART 0.5172 0.5183 0.5189 0.5179 0.5146 0.5174
mseT200 ndcgT300 0.5202• 0.5201 0.5202 0.5213• 0.5164• 0.5196•

recallT300 ndcgT200 0.5202• 0.5202 0.5197 0.5212• 0.5185• 0.52•

recallT400 ndcgT100 0.5202• 0.5191 0.5197 0.5206• 0.5181• 0.5195•

recallT300 nmcgT200 0.5214• 0.5213• 0.5219•,+ 0.5225• 0.5193• 0.5213•,+

recallT400 nmcgT100 0.521• 0.5205 0.522•,+ 0.5218• 0.5185• 0.5207•,+

nDCG@100

LambdaMart 0.6926 0.6939 0.6936 0.6931 0.6923 0.6931
nMCG-MART 0.6938• 0.6933 0.6939 0.693 0.6929 0.6934
mseT200 ndcgT300 0.697• 0.6962• 0.6956• 0.6956• 0.6955• 0.696•

recallT300 ndcgT200 0.6965• 0.6951 0.6951• 0.6956• 0.6962• 0.6957•

recallT400 ndcgT100 0.6965• 0.6945 0.6947 0.6953• 0.6959• 0.6954•

recallT300 nmcgT200 0.6963• 0.6951• 0.6954• 0.6952• 0.6956• 0.6955•

recallT400 nmcgT100 0.6964• 0.6946 0.6954• 0.6947• 0.6953• 0.6953•

Recall@10

LambdaMart 0.3594 0.3727 0.3636 0.3701 0.3695 0.3671
nMCG-MART 0.3602 0.3736 0.3645 0.3713 0.3698 0.3679
mseT200 ndcgT300 0.3637• 0.3747 0.3659 0.3761• 0.3722• 0.3705•

recallT300 ndcgT200 0.362 0.3746 0.365 0.3735• 0.3709 0.3692•

recallT400 ndcgT100 0.3637• 0.373 0.3652 0.3728• 0.3705 0.369•

recallT300 nmcgT200 0.3634• 0.3744 0.3656 0.373• 0.3713 0.3695•

recallT400 nmcgT100 0.3634• 0.3755•,+ 0.3665• 0.3736• 0.3709 0.37•,+

Recall@100

LambdaMart 0.902 0.9038 0.904 0.9015 0.906 0.9035
nMCG-MART 0.9021 0.9033 0.9041 0.9019 0.9065 0.9036
mseT200 ndcgT300 0.9053• 0.9065• 0.9066• 0.9048• 0.9088• 0.9064•

recallT300 ndcgT200 0.9048• 0.9067• 0.9071• 0.9045• 0.9092• 0.9064•

recallT400 ndcgT100 0.9052• 0.9068• 0.9068• 0.9042• 0.9091• 0.9064•

recallT300 nmcgT200 0.9037• 0.9052• 0.905 0.9021 0.9081• 0.9048•

recallT400 nmcgT100 0.9039• 0.9052• 0.9053• 0.9026• 0.9081• 0.905•

ERR@10

LambdaMart 0.5688 0.5688 0.5714 0.5676 0.5633 0.568
nMCG-MART 0.5694 0.5671 0.5728 0.5674 0.5639 0.5681
mseT200 ndcgT300 0.5711 0.5672 0.5687 0.5663 0.565 0.5676
recallT300 ndcgT200 0.5672 0.562 0.5641 0.5644 0.5635 0.5643
recallT400 ndcgT100 0.5653 0.5609 0.5632 0.5623 0.562 0.5627
recallT300 nmcgT200 0.5719+ 0.5679+ 0.5716+ 0.5706+ 0.5674•,+ 0.5699•,+

recallT400 nmcgT100 0.5708+ 0.5664+ 0.5702+ 0.5672+ 0.565+ 0.5679+

However, as it was previously observed, when the cut-off is increased to 100,
CM approaches using nMCG are less effective. Thus, when nDCG@10 is consid-
ered, mseT200 ndcgT300 is the best performing model, followed by CM approaches
with Recall and nDCG. When using Recall@100, the ranking of models is reversed
and CM approaches trained with Recall and nDCG are the best performing mod-
els followed by mseT200 ndcgT300 (even if their scores are equals up to the third
decimal digit). Although CM approaches trained with nMCG are not the best
performing models when the cut-off is set at 100, they are still significantly better
then the LambdaMart baseline.

Therefore, we can conclude that with informational queries CM approaches
exploiting the user dynamics represent the best models or are among the best
ones when the focus is on the top 10 positions, meaning that exploiting the user
dynamics is beneficial for identifying the most relevant documents and moving
them towards the top of the ranking.

As discussed above, the user dynamics account only for the first 10 rank po-
sitions and an extension of the user dynamics further deep in the ranking might
potentially improve the performance of these models, even at higher cut-off thresh-



22 Ferro et Al.

Fig. 2 Comparison of nDCG@10 vs. nMCG@10 score distributions for informational and
navigational queries.

olds. Moreover, even if the proposed CM approaches using nMCG are not the best
performing models with respect to nDCG@100 or Recall@100, they are still sig-
nificantly improving over the LambdaMart baseline.

Finally, in Figure 2 we further investigate how the nMCG metric impacts on
the model training process compared to nDCG. Specifically, we computed the
distribution of nDCG@10 scores generated by the LambdaMart model over the
test queries of the Fold 1 of the MSLR-WEB30K dataset, and the distribution
of nMCG@10 scores generated by the nMCG-MART model (we observed similar
results on other folds). While the score distributions cannot be compared directly
as they refer to different IR metrics, they can be used to analyse the behaviour
of the two models. Figure 2 shows, distinguishing between informational and nav-
igational queries, the nDCG@10 scores by LambdaMart for each query, where
queries are sorted from least to best performing, and the nMCG@10 scores by
nMCG-MART for the same queries in the same order. We can observe two very
different behaviours. For navigational queries the two distributions are similar
showing some correlation. This means that for whichever query LambdaMart is
able to provide an high nDCG@10 then also nMCG-MART is accurate. Indeed,
the user dynamics enforced by nMCG is very similar to the nDCG discount: the
first rank position is highly promoted compared to the others as also shown in
Figure 1. For informational queries, the two distributions show instead a more
limited correlation: queries where LambdaMart is accurate might not be the best
queries for nMCG-MART and viceversa. This means that, to some extent, the
nMCG-MART model devotes its focus and training efforts on a different subset of
queries, due to the different user dynamics of the nMCG metric. This results in a
better accuracy across different metrics, other than nMCG, as we observed in this
sub section.

4.4 RQ3: Tree-wise Performance Comparison

In this section we analyse the tree-wise performance of the proposed models. Fig-
ure 3 compares the performance of different models on MSLR-WEB30K for fold
1. On each plot, the x-axis reports the number of trees while the y-axis reports
nDCG@10 score. Since the trend of the proposed models is similar across folds and



Boosting Learning to Rank with User Dynamics and Continuation Methods 23

Tree-Wise Performance for MSLR-WEB30K

(a) Test queries (b) Test queries

(c) Navigational queries (d) Informational queries

Fig. 3 Comparison of continuation methods approaches trained with nMCG and with different
switching points (a) and comparison of different models on test queries (b), just on navigational
queries (c) and just on informational queries (d). All the figures refers to MSLR-WEB30K Fold
1 and all the models are evaluated with respect to nDCG@10.

datasets, we do not report the same figure for each fold and for MSLR-WEB10K,
but we choose fold 1 as the explanatory example.

Figure 3(a) shows the tree-wise performance of different CM approaches trained
with Recall, followed by nMCG, together with LambdaMart as baseline. For the
CM approaches, we varied the switching point T0 in the set {100, 200, 300, 400}.
You can note that all the CM approaches are always better than the baseline, as the
number of trees increases. Moreover, each boosting of the performance corresponds
exactly to the switching point T0. Therefore, replacing the objective function from
Recall to nMCG is beneficial for the learning algorithm at any switching point.
Indeed, the learning algorithm gets an immediate boosting at the switching point
and then persists in learning with a decreasing rate until a plateau is reached.



24 Ferro et Al.

Figure 3(b), Figure 3(c), and Figure 3(d), compare recallT200 nmcgT300 with
recallT200 ndcgT300, mseT200 ndcgT300, nMCG-MART and LambdaMart as base-
lines. Figure 3(b) shows the tree-wise performance of each model on the whole
test set. Again, you can clearly note that all the proposed models are better than
the baseline as the number of trees increases. Focusing on the CM approaches
leveraging the user dynamics, it is interesting how these methods achieve the
greatest boosting when the objective function is replaced, i.e. at T − 0 = 200.
Indeed, when the number of trees is lower than 200, the best performing model
is mseT200 ndcgT300, meaning that MSE leads to better nDCG@10 scores than
Recall. However, after the switching point recallT200 nmcgT300 becomes the best
performing model, thanks to nMCG which increases nDCG@10 scores more than
nDCG. This supports once more our hypothesis that combining CM approaches
with nMCG represents a successful strategy.

Figure 3(d) corresponds to Figure 3(b), but considers just informational queries.
The general trend of each model is quite similar to the one illustrated in Fig-
ure 3(b), before the switching point MSE leads to better performance, while after
the switching point nMCG allows the CM to achieve higher scores than nDCG, as
the number of trees increases. This is perfectly aligned with the results reported
in Table 4 and in Table 8, where the outcome of the models comparison is similar
for the whole dataset and for informational queries with respect to nDCG@10.

Finally, Figure 3(c) corresponds to Figure 3(b), but considers just navigational
queries. It is extremely evident how the lines representing each model are not as
smooth as in Figure 3(b) or Figure 3(c). This perfectly mirrors the results reported
in Table 7, which demonstrate how the best performing model strongly depends on
the fold and none of the models is stable across the folds with respect to nDCG@10.
Indeed, in Figure 3(c) all the models lines cross each other multiple times and
the best performing model depends on the number of trees. With less than 200
trees mseT200 ndcgT300 is the best model, then recallT200 nmcgT300 is the best
model and, finally, with more than 400 trees mseT200 ndcgT300 is again the best
performing model. Therefore, Figure 3(c) further highlights that the considered
models struggle in learning how to rank documents when the amount of relevance
available is limited. As future work we plan to investigate different combinations
of CM approaches to achieve better performances even on navigational queries.

5 Conclusion and Future Work

This paper investigated whether integrating in LtR the knowledge of the user-
interaction model and the possibility of targeting different objective functions is
profitable and allows us to train more effective ranking functions. Building on
the results of our previous work, we modeled the user dynamics in scanning a
ranked result list with Markov chains and integrated the resulting model in the loss
function driving the learning process. Moreover, with the aim of better capturing
the weak relevance signals hidden in the features representing the training samples,
we designed the iterative learning of ranking functions based on forests of decision
trees as a two step process, where the initial trees are trained by minimizing a
simpler, possibly smoother objective function, while the remaining trees are trained
by optimizing nDCG or our new nMCG measure aware of the user dynamics.



Boosting Learning to Rank with User Dynamics and Continuation Methods 25

To assess our proposal we conducted an exhaustive set of reproducible exper-
iments based on publicly available datasets and code. We swiped all the hyper-
parameters to devise the setting of the baselines and our proposed algorithms
providing the best performance on the validation datasets. The results of the
experiments, measured with different metrics and cut-offs, gave us a more clear
understanding of the problem addressed and confirmed our initial intuitions. We
showed, by also breaking down the analysis to different classes of queries, that the
proposed continuation methods exploiting our user-aware nMCG measure consis-
tently outperform the baselines by statistically significant margins.

As future work we will study different methods for applying click models to
LtR datasets. A possibility suggested in (Chuklin et al., 2015) could be to exploit
editorial relevance labels as a link between different datasets and use a trained
click model to generate new click-based features for datasets not providing them.
Moreover, we plan to investigate more complex continuation methods, as for exam-
ple with three steps instead of two, to understand whether there is a performance
boosting with respect to each switching point and whether changing the objective
function is always beneficial for the learning algorithm.

Acknowledgements This paper is partially supported by the BIGDATAGRAPES (EU H2020
RIA, grant agreement N. 780751) and the OK-INSAID (MIUR-PON 2018, grant agreement
N.ARS01 00917) projects. The work is also partially funded by the “DAta BenchmarK for
Keyword-based Access and Retrieval” (DAKKAR) Starting Grants project sponsored by Uni-
versity of Padua and Fondazione Cassa di Risparmio di Padova e di Rovigo.

References

Agichtein E, Brill E, Dumais S (2006) Improving Web Search Ranking by Incor-
porating User Behavior. In: Efthimiadis EN, Dumais S, Hawking D, Järvelin K
(eds) Proc. 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2006), ACM Press, New York,
USA, pp 19–26

Allan J, Aslam JA, Sanderson M, Zhai C, Zobel J (eds) (2009) Proc. 32nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2009), ACM Press, New York, USA

Allgower EL, Georg K (1980) Numerical Continuation Methods. An Introduction.
Springer-Verlag, Heidelberg, Germany

Beitzel SM, Jensen EC, Frieder O, Grossman D, Lewis DD, Chowdhury A, Kolcz A
(2005) Automatic web query classification using labeled and unlabeled training
data. In: Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM, New York, NY,
USA, SIGIR ’05, pp 581–582, DOI 10.1145/1076034.1076138, URL http://doi.

acm.org/10.1145/1076034.1076138

Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum Learning. In:
Danyluk A, Bottou L, Littman ML (eds) Proc. 26th Annual International Con-
ference on Machine Learning (ICML 2009), ACM Press, New York, USA, pp
41–48

Broder A (2002) A Taxonomy of Web Search. SIGIR Forum 36(2):3–10



26 Ferro et Al.

Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender
G (2005) Learning to Rank using Gradient Descent. In: Dzeroski S, De Raedt
L, Wrobel S (eds) Proc. 22nd International Conference on Machine Learning
(ICML 2005), ACM Press, New York, USA, pp 89–96

Burges CJC (2010) From RankNet to LambdaRank to LambdaMART: An
Overview. Tech. rep., Microsoft Research, MSR-TR-2010-82

Burges CJC, Ragno R, Le QV (2006) Learning to Rank with Nonsmooth Cost
Functions. In: Schölkopf B, Platt JC, Hoffman T (eds) Proc. 19th International
Conference on Neural Information Processing Systems (NIPS 2006), MIT Press,
Cambridge (MA), USA, pp 193–200

Chapelle O, Zhang Y (2009) A Dynamic Bayesian Network Click Modelfor Web
Search Ranking. In: Quemada J, León G, Maarek Y, Nejdl W (eds) Proc. 18th
International Conference on World Wide Web (WWW 2009), ACM Press, New
York, USA, pp 1–10

Chapelle O, Chi M, Zien A (2006) A Continuation Method for Semi-supervised
SVMs. In: Cohen W, Moore A (eds) Proc. 23rd Annual International Conference
on Machine Learning (ICML 2006), ACM Press, New York, USA, pp 185–192

Chapelle O, Metzler D, Zhang Y, Grinspan P (2009) Expected Reciprocal Rank
for Graded Relevance. In: Cheung DWL, Song IY, Chu WW, Hu X, Lin JJ
(eds) Proc. 18th International Conference on Information and Knowledge Man-
agement (CIKM 2009), ACM Press, New York, USA, pp 621–630

Chapelle O, Joachims T, Radlinski F, Yue Y (2012) Large-scale validation and
analysis of interleaved search evaluation. ACM Transactions on Information
Systems (TOIS) 30(1):6

Chen B, Xiu N (1999) A Global Linear and Local Quadratic Noninterior Con-
tinuation Method for Nonlinear Complementarity Problems Based on Chen–
Mangasarian Smoothing Functions. SIAM Journal on Optimization 9(3):605–
623

Chen X, Gupta A (2015) Webly Supervised Learning of Convolutional Networks.
In: Bajcsy R, Hager G, Ma Y, Ikeuchi K, Schnörr C, Sivic J, Vidal R (eds)
Proc. 2015 IEEE International Conference on Computer Vision (ICCV), IEEE
Computer Society, Los Alamitos, CA, USA, ICCV ’15, pp 1431–1439

Chuklin A, Markov I, de Rijke M (2015) Click Models for Web Search. Morgan &
Claypool Publishers, USA

Coleman TF, Wu Z (1996) Parallel Continuation-based Global Optimization for
Molecular Conformation and Protein Folding. Journal of Global Optimization
8(1):49–65

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011)
Natural Language Processing (Almost) from Scratch. The Journal of Machine
Learning Research 12:2493–2537

Craswell N, Zoeter O, Taylor M, Ramsey B (2008) An Experimental Comparisonof
Click Position-Bias Models. In: (Najork et al., 2008), pp 87–94

Donmez P, Svore KM, Burges CJC (2009) On the local optimality of LambdaRank.
In: (Allan et al., 2009), pp 460–467

Dou Z, Song R, Yuan X, Wen JR (2008) Are Click-through Data Adequate for
Learning Web SearchRankings? In: Shanahan JG, Amer-Yahia S, Manolescu
I, Zhang Y, Evans DA, Kolcz A, Choi KS, Chowdhury A (eds) Proc. 17th
International Conference on Information and Knowledge Management (CIKM
2008), ACM Press, New York, USA, pp 73–82



Boosting Learning to Rank with User Dynamics and Continuation Methods 27

Ferrante M, Ferro N, Maistro M (2014) Injecting User Models and Time into
Precision via Markov Chains. In: Geva S, Trotman A, Bruza P, Clarke CLA,
Järvelin K (eds) Proc. 37th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2014), ACM Press,
New York, USA, pp 597–606

Ferro N, Lucchese C, Maistro M, Perego R (2017) On Including the User Dynamic
in Learning to Rank. In: Kando N, Sakai T, Joho H, Li H, de Vries AP, White
RW (eds) Proc. 40th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2017), ACM Press, New York,
USA, pp 1041–1044

Ferro N, Lucchese C, Maistro M, Perego R (2018) Continuation Methods and
Curriculum Learning for Learning to Rank. In: Cuzzocrea A, Allan J, Paton
NW, Srivastava D, Agrawal R, Broder A, Zaki MJ, Candan S, Labrinidis A,
Schuster A, Wang H (eds) Proc. 27th International Conference on Information
and Knowledge Management (CIKM 2018), ACM Press, New York, USA, pp
1523–1526

Hofmann K, Schuth A, Whiteson S, de Rijke M (2013) Reusing Historical Interac-
tion Data for Faster Online Learning to Rank for IR. In: Leonardi S, Panconesi
A, Ferragina P, Gionis A (eds) Proc. 6th ACM International Conference on Web
Searching and Data Mining (WSDM 2013), ACM Press, New York, USA, pp
183–192

Hu B, Lu Z, Li H, Chen Q (2014) Convolutional Neural Network Architectures for
Matching Natural Language Sentences. In: Ghahramani Z, Welling M, Cortes
C, Lawrence ND, Weinberger KQ (eds) Proc. 27th International Conference on
Neural Information Processing Systems (NIPS 2014) – Volume 2, MIT Press,
Cambridge (MA), USA, pp 2042–2050

Järvelin K, Kekäläinen J (2002) Cumulated Gain-Based Evaluation of IR Tech-
niques. ACM Transactions on Information Systems (TOIS) 20(4):422–446

Jiang D, Pei J, Li H (2013) Mining Search and Browse Logs for Web Search:
A Survey. ACM Transactions on Intelligent Systems and Technology (TIST)
4(4):57:1–57:37

Joachims T (2002) Optimizing Search Engines using Clickthrough Data. In: Zäıane
O, Goebel R, Hand D, Keim D, Ng R (eds) Proc. 8th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD 2002), ACM
Press, New York, USA, pp 133–142

Joachims T, Radlinski F (2007) Search Engines That Learn from Implicit Feed-
back. Computer 40(8):34–40

Joachims T, Granka L, Pan B, Hembrooke H, Gay G (2005) Accurately Inter-
preting Clickthrough Data as Implicit Feedback. In: Baeza-Yates R, Ziviani N,
Marchionini G, Moffat A, Tait J (eds) Proc. 28th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval (SIGIR
2005), ACM Press, New York, USA, pp 154–161

Joachims T, Swaminathan A, Schnabel T (2017) Unbiased Learning-to-Rank with
Biased Feedback. In: de Rijke M, Shokouhi M, Tomkins A, Zhang M (eds)
Proc. 10th ACM International Conference on Web Searching and Data Mining
(WSDM 2017), ACM Press, New York, USA, pp 781–789

Liu TY (2009) Learning to Rank for Information Retrieval. Foundations and
Trends in Information Retrieval (FnTIR) 3(3):225–331



28 Ferro et Al.

Lucchese C, Orlando S, Perego R, Silvestri F, Tolomei G (2013) Discovering Tasks
from Search Engine Query Logs. ACM Transactions on Information System
(TOIS) 31(3):14:1–14:43

Mehrotra R, Awadallah AH, Yilmaz E (2018) Learnir: Wsdm 2018 workshop
on learning from user interactions. In: Proceedings of the Eleventh ACM In-
ternational Conference on Web Search and Data Mining, ACM, New York,
NY, USA, WSDM ’18, pp 797–798, DOI 10.1145/3159652.3160598, URL http:

//doi.acm.org/10.1145/3159652.3160598

Moré JJ, Wu Z (1997) Global Continuation for Distance Geometry Problems.
SIAM Journal on Optimization 7(3):814–836

Nagamune R (2003) A Robust Solver Using a Continuation Method for
Nevanlinna-Pick Interpolation with Degree Constraint. IEEE Transactions on
Automatic Control (TAC) 48(1):113–117

Najork M, Broder A, Chakrabarti S (eds) (2008) Proc. 1st ACM International
Conference on Web Searching and Data Mining (WSDM 2008), ACM Press,
New York, USA

Norris JR (1998) Markov chains. Cambridge University Press, UK
Qin T, Liu TY (2013) Introducing LETOR 4.0 Datasets. arXivorg, Information

Retrieval (csIR) arXiv:1306.2597
Qu M, Tang J, Han J (2018) Curriculum Learning for Heterogeneous Star Network

Embedding via Deep Reinforcement Learning. In: Chang Y, Zhai C, Liu Y,
Maarek Y (eds) Proc. 11th ACM International Conference on Web Searching
and Data Mining (WSDM 2018), ACM Press, New York, USA, pp 468–476

Rabani E, Reichman DR, Krilov G, Berne BJ (2002) The Calculation of Transport
Properties in Quantum Liquids Using the Maximum Entropy Numerical Ana-
lytic Continuation Method: Application to Liquid Para-hydrogen. Proceedings
of the National Academy of Sciences of the United States of America (PNAS)
99(3):1129–1133

Sakai T, Dou Z (2013) Summaries, Ranked Retrieval and Sessions: A Unified
Framework for Information Access Evaluation. In: Jones GJF, Sheridan P, Kelly
D, de Rijke M, Sakai T (eds) Proc. 36th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR 2013),
ACM Press, New York, USA, pp 473–482

Schuth A, Hofmann K, Whiteson S, de Rijke M (2013) Lerot: An Online Learning
to Rank Framework. In: Balog K, Elsweiler D, Kanoulas E, Kelly L, Smucker MD
(eds) Proc. 1st Workshop on Living Labs for Information Retrieval Evaluation
(LL 2013), ACM Press, New York, USA, pp 23–26

Schuth A, Oosterhuis H, Whiteson S, de Rijke M (2016) Multileave Gradient
Descentfor Fast Online Learning to Rank. In: Bennett PN, Josifovski V, Neville
J, Radlinski F (eds) Proc. 9th ACM International Conference on Web Searching
and Data Mining (WSDM 2016), ACM Press, New York, USA, pp 457–466

Serdyukov P, Craswell N, Dupret G (2012) WSCD2012: Workshop on Web Search
Click Data 2012. In: Adar E, Teevan J, Agichtein E, Maarek Y (eds) Proc. 5th
ACM International Conference on Web Searching and Data Mining (WSDM
2012), ACM Press, New York, USA, pp 771–772

Silvestri F (2009) Mining Query Logs: Turning Search Usage Data into Knowledge.
Foundations and Trends in Information Retrieval (FnTIR) 4(1–2):1–174

Smucker MD, Allan J, Carterette BA (2007) A Comparison of Statistical Sig-
nificance Tests for Information Retrieval Evaluation. In: Silva MJ, Laender



Boosting Learning to Rank with User Dynamics and Continuation Methods 29

AAF, Baeza-Yates R, McGuinness DL, Olstad B, Olsen ØH, Falcão Aa (eds)
Proc. 16th International Conference on Information and Knowledge Manage-
ment (CIKM 2007), ACM Press, New York, USA, pp 623–632

Taylor M, Guiver J, Robertson S, Minka T (2008) SoftRank: Optimizing Non-
Smooth Rank Metrics. In: (Najork et al., 2008), pp 77–86

Teodorescu I (2009) Maximum likelihood estimation for Markov Chains. arXivorg,
Computation (statCO) arXiv:0905.4131

Wang H, Langley R, Kim S, McCord-Snook E, Wang H (2018) Efficient Explo-
ration of Gradient Space for Online Learning to Rank. In: Collins-Thompson
K, Mei Q, Davison B, Liu Y, Yilmaz E (eds) Proc. 41th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2018), ACM Press, New York, USA, pp 145–154

White RW, Bailey P, Chen L (2009) Predicting User Interests from Contextual
Information. In: (Allan et al., 2009), pp 363–370

Wu Q, Burges CJC, Svore KM, Gao J (2010) Adapting Boosting for Information
Retrieval Measures. Information Retrieval 13(3):254–270

Yilmaz E, Shokouhi M, Craswell N, Robertson S (2010) Expected Browsing Utility
for Web Search Evaluation. In: Huang J, Koudas N, Jones GJF, Wu X, Collins-
Thompson K, An A (eds) Proc. 19th International Conference on Information
and Knowledge Management (CIKM 2010), ACM Press, New York, USA, pp
1561–1565

Zhang Y, Park LAF, Moffat A (2010) Click-based evidence for decaying weight
distributions in search effectiveness metrics. Information Retrieval 13(1):46–69

Zheng Z, Zha H, Zhang T, Chapelle O, Chen K, Sun G (2007) A General Boosting
Method and its Application toLearning Ranking Functions for Web Search.
In: Platt JC, Koller D, Singer Y, Roweis ST (eds) Proc. 20th International
Conference on Neural Information Processing Systems (NIPS 2007), MIT Press,
Cambridge (MA), USA, pp 1697–1704

Zoghi M, Tunys T, Ghavamzadeh M, Kveton B, Szepesvari C, Wen Z (2017) Online
Learning to Rank in Stochastic Click Models. In: Precup D, Whye Teh Y (eds)
Proc. 34th Annual International Conference on Machine Learning (ICML 2017),
ACM Press, New York, USA, pp 4199–4208


