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ABSTRACT
Evaluation of the quality of data integration processes is usually
performed via manual onerous data inspections. This task is par-
ticularly heavy in real business scenarios, where the large amount
of data makes checking all the tuples infeasible and the frequent
updates, i.e. changes in the sources and/or new sources, impose to
repeat the evaluation over and over. Our idea is to address this
issue by providing the experts with an unsupervised measure, based
on word frequencies, which quantifies how much a dataset is repre-
sentative of another dataset, giving an indication of how good is the
integration process and whether deviations are happening and a
manual inspection is needed. We also conducted some preliminary
experiments, using shared datasets, that show the effectiveness of
the proposed measures in typical data integration scenarios.

CCS CONCEPTS
• Information systems → Mediators and data integration;
Entity resolution; Deduplication.
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1 INTRODUCTION
The massive diffusion of data analysis tools and the large train-
ing data required by machine learning applications have greatly
stimulated the demand for raw data. In response, institutions and
scientific communities have published a large number of open
datasets, typically in the form of simple CSV-like text files, which
we will refer to as flat datasets. This availability, however, brings
a huge fragmentation of a knowledge domain, due to the many
different choices operated in each dataset to represent the same
domain, and it poses serious challenges when it comes to integrate
many datasets into a unified knowledge representation for that
domain.
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Therefore, data integration is one of the most challenging and
long-lasting issues that the research community is confronted with
for the last 30 years [6]. This task is typically addressed via a try
and error approach where a candidate integrated source is created
by means of software applications and domain experts are then
required to evaluate its quality and correctness. The evaluation,
then, leads to modifications to the software and to the creation of
a new improved release of the integrated source, that is subject
to further evaluation. This process is iterated until the experts are
satisfied with the result obtained.

Traditionally the creation of an integrated data source is per-
formed by software applications implementing a pipelined archi-
tecture, which consists of three major steps: schema alignment,
entity deduplication and data fusion [5]. Flat datasets typically de-
scribe just a single entity-type and, therefore, they can be integrated
by using a simplified procedure where a common schema is ob-
tained by unifying and aligning all the attributes from the different
datasets and raw tuples are integrated by using Entity Resolution
(ER) techniques.

ER has recently attracted marked interest by the research com-
munity and reliable approaches and tools are now available to
domain experts. From the user perspective, all these approaches
are black boxes providing an integration function, e.g. a set of rules
or a machine learning model, “embedding" the knowledge provided
by domain experts or automatically inferred by examples.

We can use measures like accuracy, or error rate, to evaluate the
extent to which the integrated data source represents the original
data sources. Nevertheless, the quality of the integrated source
can only be assessed by an expert who has to perform the time-
consuming task of manually inspecting the results of the integration
process. This process becomes particularly heavy in real business
scenarios, where the large amount of data makes checking all tuples
infeasible. Moreover, in the case of evolving sources, where the
content of the sources to integrate changes over time, and the
integrated data source has to be kept aligned with them, or in case
of an incremental integration process, where new sources are added
over time, the evaluation has to be performed over and over.

Therefore, it is crucial to support users and domain experts with
effective tools that facilitate and make the evaluation process less
demanding. Our idea is to introduce an unsupervised measure of
the extent to which a source “represents" the content of another
source. The more a dataset can be represented by an integrated
source, the less there is loss of information when the integrated
source is considered in place of the original one. Ideally, a dataset
should be completely represented in the integrated source. Never-
theless, loss of information is intrinsic in the process, due to the
reconciliation of data inconsistencies. On the other hand, the more
an integrated source is represented by an input source, the less
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the integration contains duplicated data or data related to entities
that are not described in the original dataset. We capture this intu-
ition by considering the frequency distribution of the words in the
sources and by quantifying how much a source is represented in
another source in terms of how much their frequency distributions
overlap. Experts can then use our measure to decide whether the
quality of the integration is (still) good enough and no further ac-
tions are needed and/or whether deviations are happening and (an
onerous) manual inspection is needed. Overall, being unsupervised,
our measure does not require any additional effort by experts and
can help them in reducing the amount of manual work needed.

The main contributions of the paper are: (1) the exploitation of
word frequencies in an integration process as a means for measur-
ing the quality of the integration; (2) the experimentation of the
measure in typical scenarios that highlight how it can support the
integration process.

The paper is organised as follows: Section 2 discusses some re-
lated works; Section 3 presents our approach; Section 4 introduces
some relevant scenarios and reports experiments about them; fi-
nally, Section 5 draws some conclusions, discusses the pros and
cons of our approach, and outlooks for future work.

2 RELATEDWORK
Despite the number of proposed approaches, Entity Resolution
(ER) is still an open challenge in the literature. A number of “inte-
gration functions” to discover and match the different structures
that represent the same real-world entity has been proposed [16].
Among these, rule-based and machine learning (ML) techniques
are the most common ones. Regardless of the use of ML or not, ER
approaches require either careful manual configuration by domain
experts or a large amount of labeled data [8, 10]. To cope with
the first issue, methods have been proposed for the fine tuning of
parameters such as [11], but all proposals require some human su-
pervision. Regarding to the second problem, the effectiveness of ER
processes is typically measured against ground truths and by using
precision, recall and f-measure as metrics. The availability of la-
beled data is a problem in real scenarios, where experts are required
to assess the results obtained. In case of large datasets, sampling
techniques have to be adopted to reduce the manual evaluation.
The effort required to create labeled datasets can also represent
a problem for the evaluation of the approaches proposed by the
research community, since most of the techniques are evaluated
against the same small number of sources (typically the benchmark
made available by the Magellan tool1) with few hundreds of la-
beled data. This makes possible the development and promotion of
approaches overfitting on those sources (which can have features
really different from the ones in sources available in real scenar-
ios). To the best of our knowledge, only recently [9] addressed this
issue, by proposing techniques for providing samples on datasets
guaranteeing a fair evaluation. To deal with the demand of a large
amount of labeled data, many semi-supervised approaches in the
field of active learning and crowd-sourcing have been also intro-
duced [2, 15]. The fundamental idea behind these techniques is
to limit the validation intervention required by domain experts to

1https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

a minimum or to resort to crowd-workers. However, these meth-
ods suffer from a poor quality control mechanism: indeed, the
former approach focuses on optimizing recall while ensuring a
user-specified precision level [3], while crowd-based solutions are
affected by uncertain labels provided by inexperienced workers [4].
Similarly to other techniques [3, 7, 12, 17], our approach is part
of this human-machine cooperation framework, but it mainly fo-
cuses on supporting analysts in the unsupervised evaluation of the
integration process.

3 THE APPROACH
3.1 Definitions
We consider a dataset (or source) 𝐷 as a collection of entities 𝐷 =

{𝑒1, . . . , 𝑒𝑁 } whose attributes are defined over a common schema
𝑅 = {𝐴1, . . . , 𝐴𝑀 }; each attribute represents a specific property of
an entity. The integration of datasets is performed by means of an
entity resolution function, defined below.

Definition 3.1 (Entity Resolution (ER)). ER is a function that cre-
ates an integrated dataset 𝐼 = 𝐸𝑅(D) from a collection of datasets
D = {𝐷1, . . . , 𝐷𝑘 }, which share a common schema 𝑅. The 𝐸𝑅 op-
erator defines the logic for matching and merging the entities in
the input dataset collection D.

We tackle the problem of evaluating the integration process by
considering how much the word frequency distribution of a dataset
is “representative” of that of another dataset. Thus, the following
definition introduces the concept of word frequency distribution.

Definition 3.2 (Word frequency distribution in datasets). Given a
dataset 𝐷 , let 𝑉 be its vocabulary of terms. The word frequency
distribution 𝑓 𝑟𝑒𝑞𝐷 (𝑤) : 𝑉 → N0 of the dataset 𝐷 is a function
which associates each term𝑤 ∈ 𝑉 with its frequency in 𝐷 .

The simplest approach, which we adopt in this paper, for the
definition of a vocabulary of terms 𝑉 for a dataset is to apply a
tokenization algorithm to the concatenation of all the tuples in 𝐷 .
Token splitting can be considered as a solved problem [14] and a
large number of techniques are available in NLP code libraries. We
can now introduce the notion of “representativeness” between two
datasets.

Definition 3.3 (Dataset representativeness score). Given two datasets
𝐷1 and 𝐷2, the dataset representativeness 𝑟𝐷1→𝐷2 quantifies the
extent to which dataset 𝐷1 represents 𝐷2 by measuring how much
the word frequency distribution 𝑓 𝑟𝑒𝑞𝐷1 approximates 𝑓 𝑟𝑒𝑞𝐷2 .

In the next section, we propose a way to measure the approxi-
mation between two word frequency distributions in the context
of a data integration process. The representativeness score should
provide users with an assessment of how much datasets are rep-
resented by integrated sources by showing if there is any loss of
information; vice-versa, it should quantify how much integrated
sources are represented by the original datasets by showing if there
is any redundancy or irrelevant content.

3.2 Scoring representativeness
When assessing the quality of the integration process, we need
to consider the two sides of the coin, i.e. how well a source 𝐷

is represented by the integration 𝐼 and, vice-versa, how well the
integration 𝐼 is represented by a source 𝐷 .
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Figure 1: Example of word distributions

In the former case, if the integration process is perfect, we expect
that the content of 𝐷 is completely “covered" by the content of 𝐼 .
This means that the vocabulary used in 𝐷 should be included in
the vocabulary used in 𝐼 , and the word frequency distribution of
words in𝐷 should be less than or equal to the one in 𝐼 . The measure
of the coverage of these word frequency distributions can provide
a measure of the representativity of an integration source for a
dataset. We call this measure 𝑟𝐷→𝐼 and it is defined in equation (1).

In the latter case, we expect that an integrated dataset contains
more entities than an input dataset, due to the contribution of
other datasets. Nevertheless, excluding stop words and other very
generic words, we can suppose that the distribution of frequencies
of words belonging to the intersection of the vocabularies of 𝐼 and
𝐷 is close. By measuring this closeness, we can evaluate how much
the dataset can represent its integration for the shared words. We
call this measure 𝑟𝐼→𝐷 and it is defined in equation (2).

Definition 3.4. Given two datasets𝐷 and 𝐼 , where 𝐼 is the integra-
tion of 𝐷 according to some 𝐸𝑅 function, let 𝑉𝐷 be the vocabulary
of 𝐷 and 𝑓 𝑟𝑒𝑞𝑋 (𝑤) be the word frequency distribution of either 𝐷
or 𝐼 . We define the following representativeness scores

𝑟𝐷→𝐼 = 1 − 1
|𝑉𝐷 |

∑
𝑤∈𝑉𝐷

𝑓 𝑟𝑒𝑞𝐷 (𝑤) −𝑚𝑖𝑛 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤))
𝑚𝑎𝑥 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤)) (1)

𝑟𝐼→𝐷 = 1 − 1
|𝑉𝐷 |

∑
𝑤∈𝑉𝐷

𝑓 𝑟𝑒𝑞𝐼 (𝑤) −𝑚𝑖𝑛 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤))
𝑚𝑎𝑥 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤)) (2)

We can observe as both 𝑟𝐷→𝐼 and 𝑟𝐼→𝐷 are defined over the
vocabulary 𝑉𝐷 of the dataset 𝐷 and not also on the vocabulary of
the integration 𝐼 . Indeed, there is an intrinsic asymmetry in the
integration process and we need to keep the focus on the dataset 𝐷 ,
either considering how much it is represented by the integration
𝐼 , i.e. 𝑟𝐷→𝐼 , or how much it represents the integration 𝐼 , i.e. 𝑟𝐼→𝐷 ,
but without skewing the scores due to the terms of𝑉𝐼 which would
bring in other sources than 𝐷 and which may differ a lot from 𝑉𝐷
depending on the number of integrated sources.
Example 1. Figure 1 shows a simplified word frequency distribu-
tion for a dataset 𝐷1 and its integration 𝐼 . The x-axis represents
the words found in the data sources and the y-axis the respective
distribution. Note that for sake of simplicity the heights of the
frequency histograms are approximated to three possible values
and the words are not marked on the x-axis. In this way, the ar-
eas 𝐴, 𝐵,𝐶, 𝐷, 𝐸 represent the word frequency distribution for 𝐷1
and the areas 𝐵,𝐶, 𝐸, 𝐹,𝐺 the one of 𝐼 . 𝐴 and 𝐺 represent words
belonging only to the input dataset and integrated dataset respec-
tively. The words represented by 𝐵,𝐶, 𝐷, 𝐸, 𝐹 are common to both

the sources and: (1) the ones in 𝐵 have the same frequency distri-
bution; (2) the ones in 𝐶, 𝐷 have frequency distribution 𝐶 in the
integration and frequency distribution𝐶+𝐷 in the input dataset; (3)
the ones in 𝐸, 𝐹 have frequency distribution 𝐸 in the input dataset
and frequency distribution 𝐸 + 𝐹 in the integration. According
to this figure, the representativeness scores are proportional to
𝑟𝐷→𝐼 ∝ 1− (𝐴 + 𝐷

𝐶+𝐷 ), and 𝑟𝐼→𝐷 ∝ 1− ( 𝐹
𝐸+𝐹 ). In other words, the

representativeness increases when the common words in 𝐷 and 𝐼
have the same frequency distribution.

The quality of an integration process can be evaluated by plotting
the representativeness scores in a two-dimensional Cartesian plane
where the 𝑥-axis reports 𝑟𝐷→𝐼 and shows the values obtained by
the datasets with respect to the integration and, vice-versa, the
𝑦-axis reports 𝑟𝐼→𝐷 and shows the behavior of the integration
with respect to the input sources. Values closest to the point (1, 1)
represent the best performance. Therefore, the more we depart
from (1, 1), the more a manual inspection may be needed.

Example 2. Let us suppose to integrate the restaurant entities in
datasets 𝐷1 and 𝐷2 in Figure 2. The vocabulary 𝑉𝐷1 is composed
of 23 terms, among them, Madison andWI are the most frequent,
appearing 4 times in the dataset. 𝐼𝑀 is a possible integration, created
by taking the values from𝐷1 in case of restaurants described in both
sources; note that 𝐼𝑀 includes, by construction, every restaurant
in 𝐷1 and 𝐷2. As an alternative integration, consider 𝐼𝐶 , which is
obtained by simply concatenating 𝐷1 and 𝐷2 and thus contains
duplicated restaurants.

Figure 3 shows the values of the representativeness scores ob-
tained when datasets 𝐷1 and 𝐷2 in Figure 2 are integrated either
in 𝐼𝑀 or in 𝐼𝐶 . The plot shows that 𝐼𝑀 creates an integration that
better represents the input datasets since points 𝐼𝑀 -𝐷1 and 𝐼𝑀 -𝐷2
in the figure are closer to 1. Considering 𝐼𝐶 , the 𝑟𝐷→𝐼 value on the
𝑥-axis is 1 since both datasets are completely included in the inte-
gration. Nevertheless, 𝐼𝐶 contains duplicated data, as the decreased
𝑟𝐼→𝐷 value on the 𝑦-axis shows. The reason for this behavior is
the doubling of the frequencies of the duplicated words which
contributes to the increase of the denominator in Equation (2).

4 SCENARIOS AND EXPERIMENTS
We assess the behavior of the representativeness scores in three
typical integration scenarios. We firstly show how we create the
sample datasets and we analyze the results obtained in the dataset
DBLP-Google Scholar from the benchmark by the Magellan tool.
Then we evaluate the other datasets published in the same bench-
mark by using the same approach.
Creating the datasets Firstly, the data source is deduplicated, by
pairwise evaluating the entries and removing those with a Jaccard
similarity greater than a specified threshold. With the remaining
data, we generate three datasets, 𝐷1, 𝐷2, and 𝐷3. |𝐷1 | has a cardi-
nality double than |𝐷2 | which has the same cardinality as |𝐷3 |. 𝐷2
contains a subset of the entities of 𝐷1. 𝐷3 contains entities that are
not in 𝐷1. 𝐷4 concatenates 𝐷2 and 𝐷3. Regarding DBLP-Google
Scholar, the cardinality of |𝐷1 | is 2,000 entities; the cardinality of
|𝐷2 | and |𝐷3 | is 1,000 entities. The cardinality of the vocabularies
associated with the datasets is |𝑉1 | = 5, 802, |𝑉2 | = 3, 905, |𝑉3 | =
3, 632, |𝑉4 | = 5, 939.
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Dataset 𝐷1
Name Address
Tutto Pasta Madison 5614 Schroeder Rd, Madison, WI
Casa Del Sol 3040 Cahill Main, Fitchburg, WI
AJ Bombers 201 W Gorham St, Madison, WI
Flaming Wok 4237 Lien Rd Ste H, Madison, WI

Dataset 𝐷2
Name Address
Tutto Pasta Grill & Bar 5614 Schroeder Rd, Madison, WI 53711
Casa Del Sol 3040 Cahill Main, Fitchburg, WI
Acquerello 1722 Sacramento Street, San Francisco, CA
Pampas Grill 6333 W 3rd St, Los Angeles, CA

Integration 𝐼𝑀

Name Address
Tutto Pasta Madison 5614 Schroeder Rd, Madison, WI
Casa Del Sol 3040 Cahill Main, Fitchburg, WI
AJ Bombers 201 W Gorham St, Madison, WI
Flaming Wok 4237 Lien Rd Ste H, Madison, WI
Acquerello 1722 Sacramento Street, San Francisco, CA
Pampas Grill 6333 W 3rd St, Los Angeles, CA

Figure 2: The sources in the example

Scenario 𝑟𝐷→𝐼 𝑟𝐼→𝐷

𝐷1 → 𝐼𝐶 1 0.729
𝐷2 → 𝐼𝐶 1 0.737
𝐷1 → 𝐼𝑀 1 0.964
𝐷2 → 𝐼𝑀 0.891 0.932
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Figure 3: 𝑟𝐷→𝐼 and 𝑟𝐼→𝐷 values for the sources of Figure 2

Scenario 1: Datasets describing the same entities.We consider
𝐷1 and 𝐷2. Since 𝐷1 is a superset of 𝐷2, it can be considered as
a possible integration, called 𝐼𝑀 = 𝐷1 in Figure 4a. 𝐼𝐶 is the inte-
gration obtained by a concatenation of the tuples in 𝐷1 and 𝐷2.
In this case we know the ground-truth and it is thus possible to
compute the error rate, which is 0 for 𝐼𝑀 , and 0.333 for 𝐼𝐶 . Our
measure shows that, from a dataset perspective, the concatenation
𝐼𝐶 is the best integration scenario, since it does not generate any
loss of information. This is clear in Figure 4a, where 𝐼𝐶 assumes
the maximum value of representativeness for 𝑟𝐷→𝐼 on the 𝑥-axis.
Nevertheless, concatenation introduces data duplication (𝐷1 is a
superset of 𝐷2) and this is the reason why in Figure 𝐼𝐶 has a 𝑟𝐼→𝐷

value on the 𝑦-axis lower than 𝐼𝑀 . The plot clearly shows that 𝐼𝑀 is
a better integration than 𝐼𝐶 , as we can expect by analyzing the data
sources. Therefore, we can see how there is a general agreement
between the error rate and our measures which, however, offer two
advantages: (i) being unsupervised, they do not need ground-truth
to be computed; (ii) they offer a more fine-grained explanation on
why an integration is preferable to another one.
Scenario 2: Datasets describing different entities.We consider
𝐷1 and 𝐷3, which describe different entities. As in the previous
scenario, we consider 𝐷1 also as integration and we call it 𝐼𝑀 in
Figure 4b. 𝐼𝐶 is the integration obtained by the concatenation of
𝐷1 and 𝐷3, which does not contain duplicates in this case. In this
scenario, 𝐼𝐶 should be the best integration since all entities are
included in this source. This is confirmed by the error rate, 0.5 for
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Figure 4: The scenarios used in the experiments

𝐼𝑀 and 0 for 𝐼𝐶 . This is also clear by our measure, comparing the
coordinates of 𝐼𝐶 and 𝐼𝑀 in the Figure. 𝐼𝐶 has coordinates (1, 0.79).
This means a maximum representativeness value for the sources
in the integration (i.e., 𝑟𝐷→𝐼 ). 𝐼𝑀 has coordinates (0.73,0.9). The
𝑟𝐷→𝐼 value is due to the low representativeness value for 𝐷3 in 𝐼𝑀
(0.46). Note that even if 𝐼𝑀 does not contain the entities described
in 𝐷3 the representativeness is not zero since there is still a low
number of words in 𝐷3 which are contained in 𝐼𝑀 anyway. The
high level measured from the integration perspective is because 𝐼𝑀
completely includes 𝐷1 which has a twice the cardinality of 𝐷3.
Scenario 3: Datasets describing common entities.We consider
𝐷1 and𝐷4 which contain a half common and a half different entities.
𝐼𝑃 in Figure 4c is generated by concatenating 𝐷1 and 𝐷3. This is a
perfect integration since it includes all entities described by the 𝐷1
and 𝐷4 datasets. 𝐼𝑀 , as in the previous scenarios, is 𝐷1 only which,
in this case, does not describe half of the entities in 𝐷4. Finally, 𝐼𝐶
is obtained by the concatenation of 𝐷1 and 𝐷4. This integration
suffers from redundancy, generated by the duplicated entities of 𝐷1
contained in 𝐷4 and included twice in 𝐼𝐶 . The error rates of these
integrations are 0.5 for 𝐼𝑀 and 𝐼𝐶 , and no error rate for 𝐼𝑃 . Figure 4c
shows our measures and correctly reflects the datasets included in
the integration, by showing the 𝑟𝐷→𝐼 values on the 𝑥-axis of 𝐼𝑃
and 𝐼𝑀 close, but not equal to 1, thus meaning that there is some
loss of information in the integration. In 𝐼𝐶 , the 𝑟𝐷→𝐼 values are
equal to 1, since the datasets are completely represented, but the
integration suffers from redundancy as shown by the lowest 𝑟𝐼→𝐷

value on the 𝑦-axis.
Extended evaluation. Table 1 summarizes the results of the ex-
periments performed on the other datasets in the benchmark. The
first column shows the names of the dataset and the cardinalities
of the entities and vocabularies. The second column reports the
scenarios, and the other columns outline the measures obtained by
considering the 𝐼𝑀 , 𝐼𝐶 , and 𝐼𝑃 integrations. The bold values are the
best ones for each dataset in each scenario, i.e. the closest to the
point (1,1). According to the previous discussion, we expect 𝐼𝑀 to
be the best integration in Scenario 1, 𝐼𝐶 in Scenario 2, and 𝐼𝑃 in Sce-
nario 3. The measure performs correctly in almost all evaluations.
Wrong best integrations reported in the second, fourth and last
dataset have all distance very close to the best one. Their mistakes
are due to the sparse vocabularies (and the low cardinalities in the
second dataset).

5 CONCLUSION AND FUTUREWORK
We proposed an unsupervised measure to evaluate the quality of an
integration process by analyzing the word frequency distributions
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Dataset Sc. 𝐼𝑀 𝐼𝐶 𝐼𝑃

Structured Walmart-Amazon
(|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=2152, |V2|=1713, |V3|=1231, |V4|=2453)

1 (0.88, 0.91) (1.0, 0.69)
2 (0.74, 0.96) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.88, 0.88)

Structured DBLP-ACM
(|D1|=2100, |D2|=1050, |D3|=388, |D4|=1438,
|V1|=7396, |V2|=4858, |V3|=1863, |V4|=5509)

1 (0.98, 0.87) (1.0, 0.59)
2 (0.87, 0.80) (1.0, 0.70)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

Structured Beer
(|D1|=50, |D2|=25, |D3|=25, |D4|=50,
|V1|=208, |V2|=120, |V3|=136, |V4|=235)

1 (0.9, 0.94) (1.0, 0.70)
2 (0.62, 0.97) (1.0, 0.89)
3 (0.70, 0.97) (1.0, 0.76) (0.92, 0.92)

Textual Abt-Buy
(|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=4776, |V2|=1431, |V3|=2258, |V4|=3092)

1 (0.83, 0.83) (1.0, 0.71)
2 (0.80, 0.89) (1.0, 0.73)
3 (0.7, 0.92) (1.0, 0.73) (0.93, 0.77)

Structured Amazon-Google
(|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=1664, |V2|=1139, |V3|=986, |V4|=1699)

1 (0.91, 0.89) (1.0, 0.66)
2 (0.75, 0.91) (1.0, 0.76)
3 (0.78, 0.95) (1.0, 0.68) (0.92, 0.85)

Dirty DBLP-GoogleScholar
(|D1|=2300, |D2|=1150, |D3|=1150, |D4|=2300,
|V1|=5993, |V2|=4119, |V3|=3979, |V4|=6364)

1 (0.92, 0.89) (1.0, 0.67)
2 (0.72, 0.91) (1.0, 0.8)
3 (0.76, 0.95) (1.0, 0.71) (0.93, 0.86)

Dirty Walmart-Amazon
(|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=2875, |V2|=2096, |V3|=1694, |V4|=3195)

1 (0.86, 0.91) (1.0, 0.71)
2 (0.72, 0.93) (1.0, 0.80)
3 (0.73, 0.96) (1.0, 0.73) (0.88, 0.89)

Structured iTunes-Amazon
(|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=503, |V2|=293, |V3|=335, |V4|=529)

1 (0.95, 0.89) (1.0, 0.61)
2 (0.71, 0.93) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.67) (0.98, 0.85)

Dirty iTunes-Amazon
(|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=697, |V2|=433, |V3|=462, |V4|=736)

1 (0.92, 0.87) (1.0, 0.65)
2 (0.72, 0.93) (1.0, 0.79)
3 (0.75, 0.94) (1.0, 0.70) (0.95, 0.85)

Structured Fodors-Zagats
(|D1|=100, |D2|=50, |D3|=50, |D4|=100,
|V1|=375, |V2|=192, |V3|=192, |V4|=347)

1 (0.98, 0.95) (1.0, 0.65)
2 (0.65, 0.96) (1.0, 0.88)
3 (0.78, 0.98) (1.0, 0.72) (0.98, 0.92)

Dirty DBLP-ACM
(|D1|=2100, |D2|=1050, |D3|=365, |D4|=1415,
|V1|=7359, |V2|=4854, |V3|=1790, |V4|=5460)

1 (0.96, 0.87) (1.0, 0.59)
2 (0.87, 0.79) (1.0, 0.7)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

Table 1: The evaluation of the scenarios in other datasets

of the datasets involved. The preliminary experiments confirm
that the measure behaves as expected in three typical scenarios.
However, some improvements can (1) reduce the mismatches due to
the use of a measure computed over the entire dataset to evaluate
a “local" behavior (i.e., the correspondence of tuples); (2) make
the approach usable with numeric datasets. To deal with the first
issue, our idea is to evaluate a “local" model which compares word
frequencies of the tuples in the input datasets with the ones in the
integrated source. To be able to evaluate numeric datasets, our idea
is to exploit functional dependencies (FD), i.e., when the values
in one set of columns functionally determine the value of another
column [1]. Tools like Metanome [13] can easily retrieve the FDs
existing in a dataset. Our model based on word frequencies can be
easily extended to a model based on FD frequencies.
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