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Abstract—Machine Learning-based approaches are revolution-
izing the way in which complex systems and machines are
monitored and controlled. In this work, we present a smart
monitoring system that combines a big data architecture with
an unsupervised anomaly detection technique, targeting the
automated equipment in the entertainment industry. Anomaly
detection uses state-of-the-art univariate and multivariate algo-
rithms, as well as recently proposed techniques in the field of
explainable artificial intelligence, to achieve enhanced monitoring
capabilities and optimize service operations. The monitoring
system is here presented and tested on a real world case study,
i.e., an amusement park ride.

Index Terms—anomaly detection, big data, entertainment in-
dustry, explainable artificial intelligence, industry 4.0, predictive
maintenance, unsupervised learning.

I. INTRODUCTION

The industry 4.0 paradigm has paved the way for the
extensive adoption of data-driven approaches to optimize
products [1], production [2] and services [3]. The availability
of historical data and big data infrastructures has enabled new
equipment functionalities and their effective implementation,
both technically and from a business perspective [4].

In the context of advanced monitoring of complex systems,
two main Machine Learning (ML)-based technologies have
emerged in recent years: unsupervised anomaly detection
(AD) [5], that aims at providing enhanced diagnostic capa-
bilities, and predictive maintenance [6], with the purpose of
predicting failures/degradation to enable the early intervention
of maintenance operators. In the literature, unsupervised AD
tools adopt (i) multivariate approaches based on tabular data
and (ii) univariate approaches working with time-series [7]:
(i) multivariate approaches [8] have the advantage of cap-
turing multivariate anomalous behaviour that typically goes
undetected by classic chart-based monitoring tools, but, when
applied to time-series data, they entail the use of feature
extraction procedures that are typically time-consuming for the
developers and may lead to loss of information; (ii) univariate
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approaches typically work by predicting residuals, i.e., com-
paring measured and forecast time-series data, and raising an
alarm as their difference exceeds a threshold. While Deep
learning techniques are available for (i) and (ii), they typically
need to be adapted to cope with discrete production data,
where time-series are usually split into batches representing
the machine cycles [9]. Another relevant issue in the monitor-
ing field is the so-called concept drift, which means that the
statistical proprieties of the target variables change over time
in an unforeseen way [10], posing the additional challenge of
tracking or estimating the drift.

In this work, we present a new big data architecture
that combines state-of-the-art univariate and multivariate ap-
proaches for AD and recently proposed techniques in the
field of eXplainable Artificial Intelligence (XAI) that are pro-
posed to reach enhanced monitoring capabilities and optimize
service operation; the design of such system was motivated
by a use case coming from the industry of automation for
entertainment, i.e., the industry that produces automated rides,
machines and attractions for entertainment parks. The rest of
the paper is organized as follows: in Section II the considered
use case and the challenges of its industry are detailed; in
Section III the proposed approach for AD is presented and
the methodological tools adopted are detailed. In Section IV
the database infrastructure for hosting the proposed approach
is illustrated, while in Section V the experimental results are
reported. Finally, concluding remarks and future works are
reported in Section VI.

II. AUTOMATION FOR THE ENTERTAINMENT INDUSTRY

Companies like Antonio Zamperla S.p.A., involved in the
development and production of entertainment rides, are con-
tinuously striving for their rides to become safer, greener
and more efficient. Smart monitoring systems are expected
to enrich the entertainment industry with a number of key
features. For example, faults could be predicted in advance, or
data analysis during the testing of the ride’s prototypes could
allow getting deeper insights onto various design choices.
Furthermore, maintenance operations are nowadays performed
manually, following ride’s manuals or government directives
that are usually scheduled on a periodic basis, regardless
of the actual conditions of the machines. This implies that,



Fig. 1. Case study: schema of the Zamperla DangleZ ride.

oftentimes, maintenance is performed without a real need,
entailing a waste of time, human resources and material.
This practice, although being cautious and robust, is quite
inefficient. Smart monitoring systems would allow a change
of paradigm from the current conservative approach to a
greener and more efficient one. Lastly, automated supervision
techniques would enforce the safeness of the rides by detecting
subtle anomalies, which would be hardly identified by a human
supervisor.

In this work, the case study is represented by a coaster
(Zamperla’s DangleZ) whose seats can freely move during
the ride, independently of the underlying chassis, see Fig. 1.
In this case study, the coaster track is 133 meters long.

The data acquisition process provides, by means of an on-
board PLC, a set of q = 55 different time series acquired with
irregular sampling rate. Each time series represents a signal
which can be analyzed to monitor the behavior of the machine:

• nine signals are generated by the equipment sensors that
report the transit of the coaster over different locations
of the rail;

• fifteen signals describe voltages, currents, frequencies and
other physical quantities denoting the consumption and
the movement of the machine;

• five signals are acquired by a weather station that detects
the condition of the surrounding environment;

• the remaining signals are needed to check the correct
working conditions and the security of the machine (for
instance the state of the safety button).

Data are divided into sessions (or tests) and each session is
composed of a number of cycles. Each cycle collects the data
generated during one run of the coaster, from the moment
it leaves the station to its return to the station. Each session
contains data coming from a single day of measurements.
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Fig. 2. Functional schema of the proposed Anomaly Detection approach.

III. PROPOSED APPROACH FOR ANOMALY DETECTION

The proposed approach integrates univariate and multi-
variate methods, as illustrated in Fig. 2:
• at a given machine cycle, a set of raw signals
X = {X1, . . . , Xq} coming from the equipment sensors
(and additional context information) are fed to a fea-
ture extraction block that computes features x1, . . . , xp,
where it typically holds p 6= q. While signals Xj usually
are time-series, features xi are scalars. Here, we consider
the case where each feature xi is computed from a single
raw signal Xj and we denote the set of features computed
from Xj by SXj ;

• such features are used within a multivariate AD block
having two objectives: (i) obtaining a so-called health fac-
tor s(·) of the system status, a quantitative indicator that
summarizes the degree of “outlierness” of the machine
cycle X under exam; (ii) using an XAI approach to obtain
a feature importance score fi(X ), ∀ i ∈ {1, . . . , p}.
fi(X ) is a quantitative index that summarizes the impact
of feature xi in identifying a machine cycle as anomalous.
In Fig. 3, we show the feature importance score for an
anomalous encoder cycle: in this case, feature no. 22
(x22) is the one having the highest importance in the
detection of the event;

• raw signals that deserve to be monitored separately with a
time-series based (univariate) approach are detected based
on (i) expert knowledge and on (ii) the feature importance
fi(X ) coming from the AD module. The rationale is that
some anomaly types are better identified by analyzing a
specific time-series (see the example discussed in Fig. 9
of Section V). To be reliably detected, the respective sig-
nal Xi should be independently assessed, thus avoiding
the loss of information descending from a multi-variate
feature extraction procedure. To identify such signals, all
data points X are considered. Raw signals to be processed
by a univariate approach are identified by applying the
following conditions:

1) a cycle X is tagged as “anomalous” if it holds

s(X ) > τ, (1)

where τ is a pre-defined threshold on the anomaly
score (under the assumption that “high” values
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Fig. 3. Feature importance: anomalous encoder cycle.

of the anomaly score indicate a high degree of
outlierness). For the problem at hand, we used
τ = 0.55 w.r.t. the anomaly score generated by an
Isolation Forest (that will be introduced shortly in
Section III-A);

2) if, for an anomalous cycle, Xa, we detect that the
features obtained from a single time-series Xi are
more important than all the others in explaining the
anomaly, then the corresponding time-series Xi is
sent to the univariate monitoring block. Formally
Xi is selected

if there exists fj(X ) > δfk(X ),
where j, k ∈ {1, . . . , p},

and xj ∈ SXi
, xk /∈ SXi

, (2)

where δ > 1 is a pre-defined quantity (for our
results, we have set δ = 2);

3) if, besides the two previous steps, some expert
knowledge indicates that some raw signals are par-
ticularly relevant by themselves, then, they should
be monitored univariately as well.

The raw signals identified by the above procedure are then
monitored separately as described in Section III-B. The user is
finally provided with complementary information coming from
the two module types, with anomaly scores, system monitoring
indications, ranking of variables and concept drift estimations,
allowing for a guided Root Cause Analysis.

A. Multivariate Anomaly Detection: Isolation Forest

Isolation Forest [11] is a popular unsupervised algorithm
for AD that exploits an isolation procedure to infer a measure
of outlierness for each data point in a dataset. It relies on the
assumption that anomalies are the minority of instances and
they have attribute values that sharply differ from those of
normal points.

The isolation procedure is based on an ensemble of tree-
like structures, termed Isolation Trees: each of them is built,
starting from the root, by recursively splitting a sub-sample
of data points between the left child and the right child of a
node. The splitting test is based on a randomly chosen splitting
variable and a randomly chosen splitting threshold: for each

internal node, the instances whose corresponding variable is
smaller than the threshold are sent to the left child, while
the others are sent to the right one. The process is iterated
until all the data points are isolated to a leaf of the tree or
until a predefined depth is reached. Many Isolation Trees are
computed to create an Isolation Forest, randomly selecting the
starting sub-sample of data points. Anomalies, due to their
nature, are more likely to be isolated close to the root of a
tree, therefore, the measure of outlierness associated with an
observation, called anomaly score, is computed by evaluating
the mean path length of such an observation on the various
Isolation Trees. The closer the score gets to one, the more
likely the observation is anomalous. A thresholding operation
can be performed on the anomaly score associated with all
observations to obtain binary labels, i.e., “0” for inliers and
“1” for outliers.

Recently, an approach for providing a ranked list of vari-
ables has been presented [12]: the Depth-based Feature Im-
portance for the Isolation Forest (DIFFI) provides both global
and local feature importance in the form of ranked variables.
We refer the interested readers to the original paper [12] for
a detailed description of the interpretability approach.

B. Univariate analysis: Grow When Required network

The univariate analysis is based on a customized imple-
mentation of the Growing When Required (GWR) neural gas
network [13].

1) GWR algorithm: GWR is an enhanced version of the
Growing Neural Gas (GNG) algorithm [14]. Like GNGs, it
is an unsupervised learning method that (a) allows obtaining
a perfectly topology-preserving representation of the input
data and (b) is able to adapt to time-varying distributions.
The major improvement brought by GWR is the ability to
automatically tune the number of nodes needed for the GWR
representation to reach a desired approximation accuracy. For
further details and for the definitions of the quantities involved
in the algorithm we refer the reader to [13].

Our implementation differs from the original in the update
rule for the firing counter of the winning neuron s and its
neighbours i, that is, using the notation of [13],

hs(t) = αb × hs(t− 1), (3)
hi(t) = αi × hi(t− 1), (4)

where 0 ≤ αb ≤ αi ≤ 1 are training parameters. This
slight modification makes the algorithm much easier to tune,
rendering it easier to use by non-experts in GWR neural
network design. GWR takes as inputs n-dimensional vectors.
The key point for using it with time series is to consider each
time instant as a different dimension, i.e., each point of the
input time series corresponds to a new component in the input
vector and represents a specific dimension in the feature space.

So, given a set of input signals (cycles) X with cardinality
|X | = k, GWR outputs a set of new signals D, usually with
|D| = m < k, that can represent every element in X within
a predefined error bound, e.g., considering a norm-2 distance.
We call D a dictionary and the elements of D, p, prototypes.



A dictionary can be either static or dynamic. It is static if,
after being created, it cannot be modified. It is dynamic if,
after its creation, it can be (dynamically) updated using new
input vectors. Dictionaries are used to represent the state of
the machine in a particular moment.

2) Concept drift estimation: to estimate the concept drift
of the machine, a static dictionary Ds is created using data
collected when the machine is in a reference condition, at
time t = tref . For example, one may create a dictionary using
data gathered for the machine cycles immediately after some
particular maintenance operation (e.g., lubricating the gears)
has just been carried out. Then, calling Z the set of data
obtained after the creation of Ds, that is, for t > tref ,
each cycle zt ∈ Z can be evaluated against Ds through the
following procedure

1) using some distance metric m1, find the element
p∗ ∈ Ds that is closest to zt;

2) using another distance metric m2, compute the distance
dt between zt and p∗.

dt is the concept drift of the considered signal at time t with
respect to the moment in which dictionary Ds was created.
In our experiments, we used m1 = m2 = || · ||2, but other
distance measures can be used (|| · ||1, || · ||∞, . . . ).

3) Anomaly detection: when dealing with the AD task, a
dynamic dictionary Dd should be created and continuously
updated using the most recent data. In this way, it always
provides a representation of the current state of the machine.
Assuming that Dd is updated with all the data up to time
(cycle) t−1, the evaluation procedure for a signal zt obtained
at time (cycle) t is as follows:

1) using some distance metric m1, find the element
p∗ ∈ Dd that is closest to zt;

2) using another distance metric m2, compute the distance
at between zt and p∗.

If the anomaly score at is greater than a threshold ath,
then, classify zt as anomalous. In our experiments, we used
m1 = m2 = || · ||2. The idea behind this approach is that, if
the machine operates in normal (non-anomalous) conditions,
every new data zt should not be too far from the prototypes
in Dd, trained with all the data up to time t − 1. Also, even
if the machine undergoes some kind of concept drift, this is
included and tracked by Dd. Thus, a big value for at can only
occur when zt differs greatly from the values it used to have
up to time t− 1.

IV. DATABASE AND DATA MANAGEMENT

Working on an ever growing dataset, a structured architec-
ture is needed to maintain data consistency and access flex-
ibility. Moreover, in our application, acquisition data coming
from the rides contains a lot of redundancy and requires a long
parsing procedure to get a reasonable data representation to be
used in our algorithms. For this reasons, we rely on a relational
database to organize both the data gathered from the sensors
installed on Antonio Zamperla S.p.A. rides and the relevant
information coming from the analysis, in the most favourable

Fig. 4. Entity-Relationship schema of the database.

format for our AD procedures. All the park and ride related
data are also modeled in the database to allow its usage in the
real case scenario, where a single database instance should
manage data coming from multiple parks.

Fig. 4 shows the Entity-Relationship schema of our
database, containing four principal sets of entities:

• Parks and Users (Green): Park names with a reference
email and Profile information of the users allows to access
and insert acquisition data (Park Managers), or analysis
data (Analysts).

• Ride related information (Red): Each ride has a spe-
cific model and is equipped with a set of acquisition
devices. All the maintenance events are stored together
with their category (ordinary/extraordinary maintenance
or hardware upgrade) and their type (e.g., components
lubrication, replacement of gaskets). Events data is used
in the AD system to identify the different feasible work-
ing conditions of the machines.

• Acquisition Data (Yellow): Data are organized into ses-
sions, each of which represents a set of ride cycles under
the same underlying conditions, i.e., the acquisition data
related to a full morning or afternoon. These conditions
are stored in the form of metatag values related to the
session (e.g., Weather condition, load, notes). The acqui-
sition is organized into cycles, meaning it the equivalent
of a ticket paid by a final user. During the acquisition,
each device gathers data for a set of variables, each
identified by a unique TAG name. Synonymy relations
between tags are stored to deal with old tag names in
legacy acquisitions. Data are stored in packets, each one
containing a vector of values (data array) for a TAG
coming from a device during a specific cycle.

• Analysis related data: Dictionaries (the obtained proto-
types) for the Univariate AD and the corresponding drift
value of each packet are stored (Orange entities). Features
for the Multivariate AD and their values for each packet
are stored (Purple entities).
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V. EXPERIMENTAL RESULTS

Considering the multivariate analysis, the feature extraction
procedure analyzes the signals which change the most, to
monitor all their possible behaviors and compute suitable
features in signal parts which vary across acquisition cycles.

We started analyzing the whole set of 55 different signals
acquired from the machine. At first, in light of the previous
consideration, features were computed only from the 10 most
variable (and most informative) signals. Subsequently, domain
knowledge allowed us to identify the most important signals
for the purpose of detecting anomalies, so that the number
of signals to be used was reduced from 10 to 5. We remark
that features are not only related to physical signals acquired
from the machine, but also to parameters that characterize
its working condition and the surrounding environment, like
the machine load (number of customers carried), the lubri-
cation, the ambient temperature and the presence of rain. To
exemplify, Fig. 5 shows a particular electric current during a
machine cycle: this signal was processed by extracting features
related to the value of the first current peak, the rising time
(to rise to 90% of the peak’s amplitude), the maximum current
value, a standard deviation in its neighborhood, and the value
of the last peak before the signal drops to zero. Once all the
features were computed, a correlation analysis was performed
to remove redundancy, obtaining vectors composed of p = 23
independent features ready to be inputted into the Isolation
Forest.

In Fig. 6, the evolution of the anomaly score obtained from
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marker in Fig. 6

the Isolation Forest is shown, while in Fig. 7 the feature
importance is given for the outlier indicated with the red
marker in Fig. 6.

For the concept drift estimation, we focused on one specific
signal, namely, the current consumption of a particular engine,
since it highly correlates with the lubrication that is performed
periodically on the machine. We used, as a reference, measure-
ments collected in a day when the gears were lubricated and
during which the machine was tested in all its possible load
configurations (i.e., recalling that, as shown in Fig. 1, four
seats are available, the possible configurations correspond to
1, 2, 3 or 4 occupied seats). The left part of Fig. 5 illustrates
these data. Some of these configurations generate traces that
are clearly identifiable by visual inspection, as a higher number
of occupied seats implies more weight and, therefore, a higher
current consumption. However, the proposed GWR approach
does this automatically, extracting and then storing the typical
patterns (the prototypes) into the dictionary depicted in the
right part of Fig. 5.

As discussed in Section III-B, such dictionary was used
to compute the drift of the machine from a reference setup.
In the considered example, the drift depends on the service
time of the lubricating oil: as time evolves, the oil film gets
thinner, the friction gets higher and, consequently, the current
consumption increases. We computed the mean drift of every
session, that is, averaging the drifts of the cycles belonging to
the same session. The results are shown in Fig. 8, where the
label total identifies when a total lubrication was carried out.
A positive correlation between the reduction of the lubricating
oil film and the current consumption drift can be observed. The
current drift can be used to monitor the conditions of the ride
and, setting a threshold on it, it can be used to (automatically)
infer when lubrication is required.

Next, we show how the dictionary can be used to also detect
anomalies on machine cycles. After creating the reference dic-
tionary, a second dynamic dictionary Dd was updated with data
until the 1st of December 2020. Then, this latter dictionary was
used to evaluate measures taken on the 3rd of December 2020,
which was a snowy day. Note that snow is not common in the
place where the machine was deployed and it was the first
time that measurements with such weather conditions were
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taken. Fig. 9 illustrates the evolution of an anomalous cycle
za from this snowy day: the dictionary prototypes are plotted
in grey, za is represented by the red solid line, while the
dashed blue line represents the prototype p∗ that is closest to
the evaluated cycle, and, so, the one that is used to compute
the anomaly score. The red shaded area at the bottom of the
plot represents the absolute difference between za and p∗.
Remember that the distance is computed by summing the
squared differences between the two signals (norm-2) and note
that, during the evaluation, these are normalized. The anomaly
score for non-anomalous cycles is usually between 0.2 and 0.8
and, consequently, we decided to set the anomaly threshold at
ath = 0.95. The cycle from the snowy day, za, originated an
anomaly score of 1.42. The main contributions to this score are
(i) the first peak at about 15s, that is much lower than that of
the prototypes, and (ii) the final current peak, which is shifted
to the left. The latter fact is probably because of the reduction
of friction due to the snow and to the low temperature, which
allowed the ride to complete the cycles earlier. During the
same day, the machine and the rails on which it runs warmed
up, and the current consumption returned to normal values as
shown by the green line in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an AD system to monitor amusement rides has
been presented. The system combines a database management
engine and a multi-faceted AD engine performing univariate
and multi-variate analyses. The approach is unsupervised,
making it appealing for scenarios where tagged information
is unavailable or unreliable. Also, features are ranked ac-
cording to their importance in explaining an alarm, using an
explainable artificial intelligence method. Various extensions
of the AD engine are possible, such as using other norms
and adopting a semi-supervised technique, i.e., by additionally
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Fig. 9. za and zn represent, respectively, an anomalous cycle (red line) and
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using tagged data, where tags can either come from manual
labeling or from new sensors.
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