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Abstract
Search Engines play important roles in helping users to rapidly retrieve relevant information. The

technology underlying Search Engines has been improved in the last years, both in terms of hardware

capabilities and in terms of software. However, they are still affected by many issues due to the continu-

ously growing amount of data and the various forms in which it comes. In this paper we discuss our

solution to the Information Retrieval problem proposed by the CLEF 2022 Touché Task 1.

We first describe in general the considered problem and subsequently present our Information Retrieval

System implemented through Apache Lucene illustrating the various phases and methods applied to

fulfil the objectives of the task. Eventually, we provide the obtained experimental results and possible

explanations for them. In particular, we investigate the reasons for which some methods performed

worse than others and describe possible ways to improve the system in the future.
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1. Introduction

Nowadays Search Engines are used by the vast majority of people in their daily routine to

retrieve any kind of information in a practical and efficient way. Even though there exist several

advanced implementations of them, there are still many big challenges such as the argument

retrieval for controversial [1] or comparative questions [2].

This report aims at providing an information retrieval system that has been developed to

solve the task "Argument Retrieval for Controversial Questions" provided by the third Touché

lab [3] on argument retrieval at CLEF 2022. The ultimate goal of this system is to retrieve a pair

of coherent arguments through a huge dataset of online debate portals in response to a query

about a controversial topic.
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The paper is organized as follows: Section 2 describes the previous studies that have been

done in this area; Section 3 describes our approach; Section 4 explains our experimental setup;

Section 5 discusses our main findings; Section 6 investigates the relevance judgements, finally,

Section 7 draws some conclusions; Section 8 outlooks for future works.

2. Related Work

Researchers have conducted a number of studies in the field of information retrieval [4] [5],

each one concerning a different application in use. To the extent that it relates to our work as

an argument retrieval task for decision making purposes [3], much of the knowledge base is

drawn from the work done in the previous year, which was summarized in the overview of

Touché lab in 2021 [6].

One critical thing to notice in an information retrieval task is the amount of time needed

to perform the task. A number of studies have investigated the effectiveness of document

organization in helping a user locate the relevant material among the retrieved documents

as quickly as possible. These studies have used a set of clustering algorithms, and various

experiments have demonstrated that clustering can be significantly more effective than the

traditional ranked list approach [7] like the one we have implemented.

The researchers, who tackled a task similar to ours, believed one premise could be formulated

differently [8]. Therefore, the system must avoid retrieving duplicate results and thus rely on

some form of clustering. To achieve this, they propose a probabilistic ranking framework for

premises based on the idea of TF-IDF that, given a query claim, the system will consider clusters

of premises with the same meaning instead of isolated claims and premises.

As the retrieval task involves text documents, different word classes are likely to be significant.

We can see the use of part of speech (POS) in order to compute a term weight [9]. Term weights

are mathematical computations of how informative words are, and constitute an integral part

of the statistical modelling of documents by information retrieval systems. Inspired by this

reference, we will assign weights to noun and not-noun classes of words in our proposed

methodology.

3. Methodology

In our system, the source file includes a parser, indexer, analyzer and a searcher in order to have

a robust project structure. The general structure of the system can be divided into several parts.

In particular each component has different aims as follows:

1. Parser: It parses the corpus CSV file and extracts documents.

2. Analyzer: It processes the extracted documents to apply tokenizers and stemmers.

3. Indexer: It creates indexable fields based on the parsed documents.

4. Searcher: It tries to retrieve relevant documents for each provided topic as a query.

The details of each part are separately reported in sections 3.2, 3.3, 3.4, 3.5.



3.1. Our System in General

Our information retrieval system starts by parsing the collection obtaining the parsed docu-

ments. Each parsed document is analyzed and indexed keeping only the necessary information.

Documents are indexed in 2 different folders:

• First Folder: We store for each document its context field and its sentences field after

having extracted only their ids.
• Second Folder: We store each sentence found in the sentences field with additional data

such as its stance retrieved from the conclusion and premises fields.

Figure 1: Schema of our system representing the parsing, analyzing and indexing parts

Topics are then parsed to formulate 2 queries for each of them: The first query will be used

to retrieve the relevant sentences’ ids according only to the corresponding contexts while the

second query will be used to retrieve relevant sentences. Query expansion can be applied to

formulate queries also by means of synonyms.

Figure 2: Schema of our system representing the searching part

3.2. Parser

Our utmost goal at this step was to extract as much data as possible and not to lose any

meaningful data. To achieve the aimed completeness, our parsed document consists of 5 fields

which are document id, hash-table of premise ids and their texts, premise stances, hash-table of

conclusion ids and their texts and context.

Document ids were easy to extract while premise stances and hash-tables needed more effort.

Our first approach to extract premise stances was done by means of regular expressions to find

patterns of ’stance’: ’PRO’ or ’stance’: ’CON’ in the premises column of the corpus. Moreover,



the same was applied to extract premises/conclusions along with their ids. Here we have used

regular expressions that iterates the sentences column of the corpus and tries to find patterns of

’sent-id’ and ’sent-text’ as the starting points and then extracts only the clean id and text of

each premise/conclusion. However, in the second approach we decided to simplify the use of

regular expressions by combining them with Jackson JSON parser [10]. Finally, we kept the

context part for later experiments to check whether a retrieved sentence is ideally the most

representative sentence of its corresponding argument or not. Keeping contexts was very tricky

because it affects the indexing runtime.

Through our experiments we noticed that in almost 10 percent of the whole corpus, there

exists a conclusion in the conclusion column but it does not appear in the sentences column.

This happens because some conclusion texts are less than 3 words and do not actually contain

any stance information. For all these cases we have considered the conclusion as empty in the

hash-table.

3.3. Analyzer

We implemented a custom analyzer which extends the abstract class Analyzer provided in

Apache Lucene [11]. We made the architecture flexible by parametrizing our analyzer which

allows us to call it with different types of filters, tokenizers and stemmers. In this way the

analyzer can be modified from the top layer without changing the core code each time. By

changing the settings of these parameters it is possible to achieve better results in terms of

precision. In addition, it is possible to increase or decrease both the index size and the indexing

time required. We allow to choose from the possible parameters:

• Tokenizer: Allows choosing from different tokenizers to use such as Whitespace, Letter

and Standard.

• Stemmer: Allows choosing from different stemmers to use such as none, EnglishMinimal,

Porter and Krovetz.

• Token Length: Allows specifying the minimum length for a token and its maximum

length.

• Stop-List: Allows specifying a possible stop-list if used.

• English Possessive: Allows specifying if to apply or not the English Possessive Filter.

• Shingles: Allows specifying the size of the word n-grams if used.

• N-grams Size: Allows specifying the size of n-grams if used.

3.3.1. Custom Stop-List

We decided to analyze the indexed collection and try to create custom stop-lists composed of

the most frequent terms in the indexed collection. Thus we parsed, analyzed without any kind

of stemming and indexed the collection to inspect it with Luke [12]. Luke is a tool that can be

used to inspect the index and obtain some statistics of the indexed files. After having analyzed

the entire indexed collection with Luke, we managed to create 2 different stop-lists composed

of 100 terms each: one that can be used for the context field of the collection and one for the

sentences field.



3.4. Indexer

The arguments of the collection are stored in the index using four fields provided by the parser.

It is possible to avoid indexing some sentences that are recognized as spam. By looking at the

document collection, in fact, we found many sentences that contained random characters or

words in other languages. Therefore we decided to apply a language model provided by Apache

Open NLP [13] to retrieve the language of a sentence: if a sentence is not recognized as being

written in English, the sentence is discarded. This resulted in having roughly 300 thousands

sentences removed from the indexed documents but this requires additional time when indexing.

It is possible to see the details obtained from some of our runs regarding the index size and

indexing time based on the parameters used in the analyzer and based on the utilization of the

spam method used in the following table:

Tokenizer Stemmer Minimum
token
length

Maximum
token
length

Stoplist Spam
detection

Time Total
size

WhiteSpace Krovetz 3 10 Yes No 527 s 1.01 GB

WhiteSpace Porter 2 10 Yes No 559 s 1.00 GB

Standard English
Minimal

2 20 No No 451 s 1.10 GB

WhiteSpace English
Minimal

2 20 No Yes 1057 s 1.06 GB

Table 1: Indexing with different settings for the analyzer’s parameters

3.5. Searcher

The searcher is the component that is in charge of retrieving, from a given topic, a ranked list

of documents from the most to the least relevant. In this case the searcher aims at retrieving

the best 1000 pairs of sentences for a given topic. Each couple of sentences should have the

same stance that can be either PRO in case the pair of sentences is supporting the topic or CON
vice versa. Our developed searcher integrates different tools:

• Query Expansion: This is a technique that allows us to reformulate a query in order to

increase the number of matched documents.

• Term Weighting: This is a technique consisting of assigning different weights to each

term of the query based on its discriminant power on the collection.

• Document Re-Ranking: This is a technique that is applied after having retrieved a

large set of relevant documents. It involves applying different operations to rank the set

of retrieved document once again and keep only a smaller subset composed by the most

relevant ones.



We added the possibility to formulate queries based on both topics’ title and description.

After running our system we found that formulating queries using also the topics’ description

was deteriorating the precision of our system, therefore we decided to consider only the topics’

title and to not further implement the retrieval based also on the description field. The searcher

first parses the provided topics to extract their fields and then formulates 2 queries:

1. First Query: It is used to retrieve relevant sentences’ id that can be either premises or

conclusions based only on the context field of the collection.

2. Second Query: It is used to retrieve relevant sentences that can be either premises or

conclusions based only on the sentences field of the collection.

After obtaining the 2 lists of relevant documents corresponding to each query, we only keep

the best 2000 sentences based on the results of the 2 queries. This is shown in the Algorithm 1.

Algorithm 1 Filter ranked documents

1: procedure getBest2000RankedSentences

2: listSentencesFirstQuery← firstQuery.execute() // sentences from collectionś contexts field
3: listSentencesSecondQuery← secondQuery.execute() // sentences from collectionś sentences field
4: P1← weight parameter for contexts

5: P2← weight parameter for sentences

6: finalListSentences← empty

7: ∀ sentence ∈ listSentencesSecondQuery :
8: if sentence ∈ listSentencesFirstQuery :
9: sentence.weight=sentence.weight*P2+listSentencesFirstQuery.get(sentence).weight*P1

10: finalListSentences.add(sentence)

11: finalListSentences.orderByDescendingWeight()
12: finalListSentences=finalListSentences.keepOnlyFirst2000()
13: return finalListSentences

3.5.1. Query Expansion

We tried to implement the query expansion part by using the WordNet [14] thesaurus which

provides a list of words and their corresponding synonyms. Each topic is processed in a way

that when applying query expansion, we try to retrieve the possible synonyms for each term in

the topic and consider them when formulating the final query.

Since each term can have different grammatical meaning based on the context (e.g. can be

either a noun or a verb) and consequently the list of synonyms can be different, we first use

the Apache Open NLP [13] library to mark up each term as corresponding to a particular part

of speech (POS). We tested the POS-Tagger with 2 different models provided by Apache Open

NLP that are en-pos-maxent.bin and en-pos-perceptron.bin and we eventually decided to

use only the first one because it was generally more accurate.



After having tagged each term, we retrieve from the WordNet dataset the list of synonyms

associated with each term based on its tag. This is achieved by keeping an in-memory represen-

tation of the dataset through a HashMap. Thus we can obtain search operations in O(1).
The final query is then formulated by means of the Lucene [11] query classes BooleanQuery,

BoostQuery, TermQuery and PhraseQuery in the following way:

1. Each term of the topic title considering both the original terms of the topic and synonyms

is wrapped in a TermQuery object. If a synonym is composed of many terms (e.g. one of

the synonyms for the term ’search’ is ’look for’ ), then we use a PhraseQuery instead of

a TermQuery when creating the second query (the one used to retrieve sentences based

only on the topics’ sentences field). In fact, we index sentences storing offset values as

well, and this allows PhraseQuery for multiple terms matching.

2. Each TermQuery/PhraseQuery object is then wrapped in a BoostQuery object that

allows to specify a weight. These parameters can be set in our ISearcher class as parameters

that depend on the POS tag of the term and whether it is a synonym or an original term

of the topic.

3. Each BoostQuery object is then added to a final BooleanQuery that represents the OR
of all the added BoostQueries.

3.5.2. TermWeighting

When formulating a query, term weighting can be incredibly useful in emphasizing the im-

portance of some terms over others. In fact, after having inspected the collection, we found

that many terms appeared in nearly every document while others were found in only some of

them. It is possible to see that terms appearing in almost every document do not have a high

discriminant power: a query based only on that term would retrieve almost every document in

the collection. We implemented our Searcher with 2 possible Term Weighting measures:

• TF-IDF: Over the whole collection. It is a customized version of the normal TF-IDF in

which the term frequency TF is calculated over all the terms in the collection and not for

the terms in the considered query. We also tried to smooth it by means of the fifth root.

Let 𝑡𝑜𝑡𝑡𝑘 be the total number of tokens in the collection, 𝑡𝑜𝑡𝑑𝑜𝑐 be the total number of

documents in the collection, |𝑡𝑜𝑘𝑒𝑛𝑖| be the number of occurrences of the 𝑖-th considered

token over the whole collection and |𝑑𝑜𝑐𝑡𝑜𝑘𝑒𝑛𝑖
| be the number of documents containing

at least one occurrence of the 𝑖-th considered token. Then the weight of a term according

to this measure can be calculated as follows:

𝑇𝐹𝐼𝐷𝐹 (𝑡𝑜𝑘𝑒𝑛𝑖) = 𝑇𝐹 (𝑡𝑜𝑘𝑒𝑛𝑖) · 𝐼𝐷𝐹 (𝑡𝑜𝑘𝑒𝑛𝑖) =
5

√︁
|𝑡𝑜𝑘𝑒𝑛𝑖|
𝑡𝑜𝑡𝑡𝑘

· (log 𝑡𝑜𝑡𝑑𝑜𝑐
|𝑑𝑜𝑐𝑡𝑜𝑘𝑒𝑛𝑖

|)

• I-Coefficient: This is a coefficient that we came up with to calculate the discriminant

power of a term. Let 𝑡𝑜𝑡𝑑𝑜𝑐 be the total number of documents in the collection, |𝑡𝑜𝑘𝑒𝑛𝑖|
be the number of occurrences of the 𝑖-th considered token over the whole collection and

|𝑑𝑜𝑐𝑡𝑜𝑘𝑒𝑛𝑖
| be the number of documents containing at least one occurrence of the 𝑖-th

considered token. Then the weight of a term according to this measure can be calculated

as follows:

𝐼𝑐𝑜𝑒𝑓 (𝑡𝑜𝑘𝑒𝑛𝑖) = (1− |𝑑𝑜𝑐𝑡𝑜𝑘𝑒𝑛𝑖
|

𝑡𝑜𝑡𝑑𝑜𝑐
) · (1− |𝑑𝑜𝑐𝑡𝑜𝑘𝑒𝑛𝑖

|
2·|𝑡𝑜𝑘𝑒𝑛𝑖| )



3.5.3. Document Re-Ranking

We implemented document re-ranking using IBM Project Debater. This is an AI system de-

veloped by IBM that was developed to debate humans on complex topics [15]. It has been

in development since 2012 and it is based on a massive dataset. To use project debater it is

necessary to have an internet connection since each API call is done through http requests, then

IBM servers elaborate the corresponding answer and send back an http response containing

it. Using project debater therefore requires almost no computation by the computer that is

running our system, but it takes quite some time to obtain an answer for all the topics.

We used the project debater Java library to exploit the following 2 APIs:

• Pro/Cons API: This API is used to understand if a sentence most strongly opposes the

topic or most strongly supports it. This is used to obtain which of the 2000 retrieved

sentences by our system are PRO or CON a given topic. In fact, the final output of our

program needs to have a couple of sentences having same stance.

This API is used by default in our system; the time taken to obtain the result for 50 topics

considering only this part of our system is in the order of 1 hour.

• Evidence Detection API: This API is used to determine if a sentence is likely to contain

evidence relating to a topic and vice versa. By means of this API we saw a significant

improvement in the results, especially considering the best ranked sentences.

Using this API in our system is optional; the time taken to obtain the result for 50 topics

considering only this part of our system is in the order of 4-5 hours.

4. Experimental Setup

Our work is based on the following experimental setups:

• Repository: https://bitbucket.org/upd-dei-stud-prj/seupd2122-intseg/src/master/

• Collection: The corpora at https://webis.de/events/touche-22/shared-task-1.html

• Evaluation Measure: LMDirichlet

• System Hardware: We have used different computers to test our system but we re-

port in this document only the results obtained with a machine having the following

specifications:

– CPU: Intel i5-8600k not overclocked

– GPU: Zotac Nvidia Gtx 1060 AMP 6 GB

– RAM: 32 GB ddr4 3000 MHz

– SSD: Samsung 960 evo 1 TB nvme, sequential read: 3,200MB/s, sequential write:

1,900MB/s

5. Results

In order to determine which configuration provided better results, we tested the system with a

variety of configurations. Additionally, we also tried adapting it to last year’s Touché Task 1 [6].

https://bitbucket.org/upd-dei-stud-prj/seupd2122-intseg/src/master/
https://webis.de/events/touche-22/shared-task-1.html


This has been done by modifying the searcher part so that queries are only applied to contexts

and stance detection is not being performed.

Here we report the results of 3 systems with different configurations based on last year’s

topics and relevance judgements following some important evaluation measures. The 3 systems

reported here have been chosen to demonstrate how different configurations lead to variant

results. However these 3 systems are different than the one submitted to CLEF [3].

Configurations
Evaluation Measure System 1:

Letter Tok.

English Stem.

No Stop-List

POS Tag

WordNet

Evidence Det.

ICoefficient

LMDirichlet

System 2:

Whitespace Tok.

Krovetz Stem.

Stop-List

POS Tag

WordNet

Evidence Det.

ICoefficient

LMDirichlet

System 3:

Whitespace Tok.

Porter Stem.

No Stop-List

POS Tag

WordNet

TFIDF

LMDirichlet

num_ret 43397 47895 48054

num_rel 1818 1818 1818

num_rel_ret 1113 1048 806

map 0.0329 0.0240 0.0197

Rprec 0.0458 0.0269 0.0316

bpref 0.4731 0.4416 0.3645

iprec_at_recall_0.00 0.1695 0.0954 0.1081

iprec_at_recall_0.20 0.0512 0.0408 0.0404

iprec_at_recall_0.40 0.0396 0.0344 0.0240

iprec_at_recall_0.60 0.0279 0.0244 0.0135

iprec_at_recall_0.80 0.0156 0.0118 0.0048

P_5 0.0760 0.0280 0.0240

P_10 0.0640 0.0360 0.0220

P_100 0.0370 0.0238 0.0276

P_1000 0.0223 0.0210 0.0161

recall_5 0.0101 0.0038 0.0030

recall_10 0.0164 0.0101 0.0065

recall_100 0.1063 0.0667 0.0888

recall_1000 0.6134 0.5753 0.4369

ndcg_cut_5 0.0428 0.0187 0.0214

ndcg_cut_10 0.0417 0.0227 0.0188

ndcg_cut_100 0.0715 0.0430 0.0550

ndcg_cut_1000 0.2567 0.2256 0.1830

Table 2: Touché Task 1 2021 [6] Results



We have observed that, in general, the system performs better when configured to not use

stop-lists and Porter stemmer. As well, we noticed that using synonyms and POS tags could

improve our precision levels, whereas the use of stemmers decreased overall. It is possible to

see from the above results that our IR system does not perform very well on the topics from

last year. However, we tried to change different parameters to find which configurations were

the most effective ones in order to submit our runs to the CLEF [3].

We inspected how the different queries were created. This was in order to understand if there

were some problems in our system. However, queries seemed to be formulated in a correct way,

by assigning different weights to different terms based on their discriminant power and part of

speech tag. We also tried to inspect which topics were obtaining the best results and therefore

we tried to see if there were problems with our stop-lists or particular stemmers/tokenizers

adapting our system as a consequence.

6. Statistical Analysis

This section contains a summary of the hypothesis testing we did using ANOVA and boxplots

for our 5 different runs submitted to CLEF [3] which their configurations are listed in Table

3. The mean value is calculated using two metrics: Average Precision (AP) and Normalized

Discounted Cumulative Gain at 10 (nDCG@10).

Run ID Stemmer Tokenizer Term
Weighting

Stoplist POS
Tag/Evidence
Detection

1 Krovetz WhiteSpace ICoefficient Yes No

2 Krovetz Letter ICoefficient No Yes

3 English
Minimal

Letter ICoefficient No Yes

4 Krovetz WhiteSpace ICoefficient Yes Yes

5 Porter WhiteSpace TF-IDF No Yes

Table 3: The runs submitted to CLEF [3]

Based on the Average Precision in Figure 3 (a) we can notice that run 1, run 2, run 3 and run 4
all show a similar structure in terms of their median values and interquartile ranges. However,

with respect to the length of the whiskers, we can note some differences. Moreover, as shown

in run 1 and run 4, both of which use stoplists, there are many outliers (the ones represented as

circles). The presence of these outliers leads to deteriorated performance.

When considering nDCG@10 in Figure 3 (b), run 1 and run 3 have an almost identical structure.

Since run 2 was the one with the highest mean value and had the smallest standard deviation,

run 2 in this case is the one with the best performance.



(a) Using AP (b) Using nDCG@10

Figure 3: Boxplots of runs (X: Runs in decreasing order of mean performance, Y: Performance)

On the other hand, the ANOVA test is used to determine if the means of some groups are equal

or not. It assesses whether it is feasible to reject or not reject a null hypothesis H0 (hypothesis

that all means are equal between the groups). The following two tables demonstrate that the

p-value obtained when considering both AP and nDCG is below the value alpha that we set to

0.05. We can therefore conclude that the null hypothesis is rejected.

’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
’Columns’ 0.0120 4 0.0030 10.0253 1.5713e-07

’Error’ 0.0736 245 3.0042e-04 [] []

’Total’ 0.0857 249 [] [] []

Table 4: The one-way ANOVA table using AP

’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
’Columns’ 1.1896 4 0.2974 7.6717 7.7149e-06

’Error’ 9.4976 245 0.0388 [] []

’Total’ 10.6872 249 [] [] []

Table 5: The one-way ANOVA table using nDCG@10



From the following charts, we can see that run 5 is quite different from the others.

(a) AP (b) nDCG@10

Figure 4: ANOVA tables (The means of runs 2 and 5 in the X-axis are significantly different)

7. Conclusions

In this paper we reviewed the structure of an Information Retrieval system and we proposed a

solution to the Information Retrieval problem proposed by the CLEF 2022 Touchè Task 1 [3].

We started by describing each of the different components in our system and further we showed

how they interact with each other. We also discussed the results obtained by running our system

with various configurations and we highlighted which could have been some of its major issues.

We finally observe that there is the need for a more complex evaluation measure. In fact, there

may be many combinations of sentences that could be matched together forming couple of

relevant sentences having same stance. Therefore before using trec_eval [16] to evaluate our

system, it could be useful to modify the relevance judgements/quality judgements given by CLEF

[3] according to the coherence judgements to account also for different possible combinations

of sentences.

8. Discussions and Future Work

Our IR system is far from perfect and there are many aspects that can be improved to make it

more effective. Extracting data that can be used to formulate queries from the topics’ description

field may improve performances. This must be done in a way that only the relevant terms are

actually added to the query because some terms may introduce noise and decrease precision.

Another improvement that can be done is to parse contexts in a better way to index only the

fields that can actually be useful. In this way, the index size can be decreased and the precision

of the system may be improved by formulating queries to more fields.



In addition, another feature that could be implemented is to apply query expansion by

retrieving some terms from documents that resulted the most relevant from a first search phase

and formulate a new query accordingly. In this way we could create a second query containing

more terms and that would likely increase the recall (similar approach to pseudo-relevance

feedback).

Lastly machine learning and in particular systems like BERT’s [17] could be used to further

improve the results when doing re-ranking and stance detection. Machine learning is, in fact, a

field in which many researchers are interested and therefore new well performing solutions

will be proposed. Thus integrating those solutions in future IR systems will probably be a key

factor to further improve their effectiveness.
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