
SEUPD@CLEF: Team Gamora on Argument Retrieval
for Controversial Questions
Notebook for the Touché Lab on Argument Retrieval at CLEF 2022

Alessandro Benetti1, Michele De Togni1, Giovanni Foti1, Ralton Lacini1,
Andrea Matteazzi1, Enrico Sgarbossa1 and Nicola Ferro1

1University of Padua, Italy

Abstract
This paper is the report of the work we have done for Argument Retrieval CLEF 2022 Touché Task 1 as
Gamora team. Argument Retrieval CLEF 2022 Touché Task 1 focuses on the problem of retrieving and
ranking relevant pairs of sentences from a collection of arguments for a given controversial questions.
After an analysis of the structure and the possibilities of manipulating document data, we concentrated
our work on query management, applying methods of query expansion, reduction, query boost to
conclude with satisfactory results with the last two solutions listed. We came up with two systems, one
based on a two-stage operation, double index and double search, and one based on sentence pair ranking
based on its argumentative quality, assessed by a machine learning model.

Keywords
Information retrieval, Controversial questions, Argument retrieval, Query reduction, Query boost,
Argument quality

1. Introduction

In this paper we describe our solution, as team Gamora, for the CLEF 2022 Touché [1] Task
1 [2]. According to Touché Task 1, our goal is to realize an information retrieval system that
can support people searching arguments to be used in conversations. We developed a Java
based system that takes as input a list of more than 360.000 documents from args.me corpus
dataset [3] and it returns a ranked list with the best pairs of sentences. As required, the two
sentences in this pair may come from two different arguments and they are both related to the
right topic in order to have a global vision of pros and cons or some information about a certain
discussion point. We decided to develop simultaneously two different solutions, in order to
achieve different results and compare them. In the following we refer to these two as S1 and S2.
All the differences between them are described in Section 3.

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ alessandro.benetti.1@studenti.unipd.it (A. Benetti); michele.detogni@studenti.unipd.it (M. De Togni);
giovanni.foti@studenti.unipd.it (G. Foti); ralton.lacini@studenti.unipd.it (R. Lacini);
andrea.matteazzi.2@studenti.unipd.it (A. Matteazzi); enrico.sgarbossa.1@studenti.unipd.it (E. Sgarbossa);
ferro@dei.unipd.it (N. Ferro)
� http://www.dei.unipd.it/~ferro/ (N. Ferro)
� 0000-0001-9219-6239 (N. Ferro)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:alessandro.benetti.1@studenti.unipd.it
mailto:michele.detogni@studenti.unipd.it
mailto:giovanni.foti@studenti.unipd.it
mailto:ralton.lacini@studenti.unipd.it
mailto:andrea.matteazzi.2@studenti.unipd.it
mailto:enrico.sgarbossa.1@studenti.unipd.it
mailto:ferro@dei.unipd.it
http://www.dei.unipd.it/~ferro/
https://orcid.org/0000-0001-9219-6239
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The paper is organized as follows: Section 3 describes our approach; Section 4 explains
our experimental setup; Section 5 discusses our main findings; finally, Section 7 draws some
conclusions and outlooks for future work.

2. Related Work

The task of retrieving arguments for controversial questions involves three main stages: the
retrieval of suitable arguments, the augmentation of these results via query expansion and a
reranking step of the retrieved arguments.
For the retrieval of the arguments existing frameworks employ statistical language models
such as Dirichlet LM or ranking functions like BM25 [4]. For the augmentation of the retrieved
results, query expansion components in past experiments employ WordNet based systems [5]
and neural models such as BERT [6] alike.
For the ranking and reranking of the arguments it has been proven effective to leverage both the
relevance and the quality of an argument with respect to the query [4]. The Webis-ArgQuality-
20 Corpus [7] contains a collection of arguments from the argsme corpus, each with scores
for its rhetorical, logical and dialectical quality along with a combined score for these three
components. Gienapp [8] used a Support Vector Regressor trained on this dataset’s combined
quality score to assess the quality of an argument and used this measure along with topical
clustering to rerank the documents. In a similar fashion, Green et al.[6] used BERT-based models
trained on the Webis-ArgQuality-20 Corpus.

3. Methodology

Our system is composed by 3 sections: the first one takes care of doing the parse of all the
documents, the second section create the index file and there is the third part, that is the search
part. Both the solutions S1 and S2 have that structure but they differ in the methods that have
been used. For each section, we are going to discuss the differences between the two approaches.

3.1. Parsing

Considering the fact that we have a single file .csv that collects all documents, we want to avoid
to load in ram the entire file to parse it. The solution was to use a iterator to read line by line
and parse it.

When parsing documents, what we realised is that the premises field contains a number of
sentences taken from the source-text field belonging to the context. These, in turn, are then
subdivided by the full stop to create a vector of sentences and the sentence contained within
the conclusion field is also added to the latter.
Moreover, compared to last year, this year we have included in the dataset the previously
mentioned context in which there are a series of data such as the title of the topic, all the source
code, the publication date, the source, the author and more.
Some of these data could be used to refine the search, for example based on the goodness of the

source/author or comparing the date of publication and the date on which the query is made,
but it is a deepening that for complexity and time we have not pursued.

We manually inspected the corpus to gather information about its structure. Documents are
sourced from four different debate discussion portals: “idebate”, “debate.org”, “debatepedia”,
“canadian-parliament”. The structure of the documents from these sources is the same for the id,
conclusion, premises, sentences fields but differ in the subfields of the field context, where, among
other differences, canadian-parliament sourced documents don’t provide a “discussionTitle”
subfield but provide a “topic” subfield instead. Also, out of the 365’308 documents provided in
the corpus, 998 ids of these documents are shared with other documents, with some ids getting
repeated in up to 8 documents. This results in a total of 2’214 documents with non-unique ids.
Since our task is to retrieve a pair of sentences, we also analyzed the sentences of the corpus. In
total, the corpus contains 6’123’792 sentences across all the documents. Since as noted above,
some of the documents are non-unique, we counted the sentences with unique document id
and unique sentence text bringing the total number of sentences to 5’337’409, meaning that
around 13% of the sentences in the corpus are either duplicates or from a duplicate document..

3.2. Indexing

After parsing the documents, we have created a class ArgsParsed in which we have inserted a
series of functions that return values in string form for the various main fields that we have
decided to index.
To the Lucene document we decided to add:

• the id of the document
• the discussionTitle, if present, otherwise the topic
• the text of the sentence for each sentences / premises text
• the conclusion
• the stance

In the S1 branch we decided to index the text of sentences concatenated because it is already
filtered of some non-useful words and in the S2 directly the premises field.

In S1 we used a custom Analyzer to which we have added the standard tokenizer, a token
filter of the KStem type and another lower case. On the other hand, in S2 we experimented with
different combinations of filters, thanks to the fact that we created a system that allows us to
run it several times and update the parameters at each repetition. In the end, the best results in
terms of nDCG were achieved using stopwords filter, length filter, kstemmer and the standard
tokenizer.

We provide two tables with the results of trec_eval. The Table 1 refer to the relevance results,
while the Table 2 refers to the quality results.

3.3. Searching

At this stage, as with document indexing, we parsed the file containing the queries. The

document contained 50 questions, each with four tags: num, topic, description and narrative.
We only considered the identifier and the title (topic) to carry out the search.

At this point we added the queries to Lucene’s BooleanQueryBuilder, carried out the search
and obtained a first run but since it was the first it became the yardstick for our subsequent
attempts, listed later in a dedicated section Results and Discussion, Section 5.

The file that Lucene returns from the run, however, does not conform to the task requested
by Touché because we have a file with the results of the best documents associated with the
queries ordered by score, but what we need to obtain is a file to which, for each query, the
two best argumentative sentences are associated and these two can also belong to different
documents, as long as they do not contradict each other. In order to better understand the
scenario of argumentative sentences, we consulted the article about Identifying Argumentative
Questions in Web Search Logs [9].

Here, we again divide the two approaches: in S1 we decided to create a new index from the
sentences alone based on the results of the first run and then perform a new search on the latter,
while in S2 we applied the second idea, i.e., again based on the results of the first run, create all
possible combinations of pairs of sentences and then perform a relevance analysis and return
the highest scoring pairs in the correct format, thus avoiding a new index and a subsequent
search.

3.3.1. S1 solution

Limiting the maximum number of documents to be retrieved for each topic, we considered a
sample of sentences from all these documents to create the second index, discarding sentences
that are too short assuming that a sentence, in order to be argumentative, must contain at
least a minimum number of words. We also decided to discard those sentences that are too
long because we noticed that very long sentences, i.e. that are composed of more than 10000
characters, always contains strange characters such as base64 images or binary strings. As
a first attempt, this second search was carried out by considering the topic title without any
modification in order to verify its correct functioning and obtain a starting point to compare
future alternative solutions, the first of which was based on query expansion made by WordNet.
By manually analyzing some sentences obtained for the various topics, it didn’t work well
neither adding 1-2 synonyms to the topic title nor replacing original words with synonyms,
probably because the quality of the synonyms found by WordNet was often poor as it caused
the topic to drift. We then also tried a trained online model (explained in a separate section 3.4)
to get more relevant synonyms but again no sign of major improvement.

Heuristics

Query reduction So, we tried another solution, based on a manual query reduction in
order to detect words that we wanted to exclude from the query (e.g. articles, adverbs), keeping
only those 2-6 main terms of the query title. This version was born out of an attempt to give
weight to certain terms in the query in order to make them more important.

Query boosting This feature consists in splitting the original topic in the list of its words
and for each word create a TermQuery. This is later wrapped in a BoostQuery object in which

https://lucene.apache.org/core/9_2_0/core/org/apache/lucene/search/BooleanQuery.Builder.html

we apply a boost, consisting in a numerical value. Every BoostQuery object is then added to
a BooleanQuery in order to build the final query. This technique is used in combination with
Query decorators, explained below, in order to give more weight to original topic words, rather
than the decorators. The results seemed satisfactory, we read a tens of sentences for each topic
in order to be confident we were heading in the right direction.

Query decorators This feature consists in attaching a number of keywords, called dec-
orators, to the original query. An example of such used keywords is: consequence, conclusion,
reason, proof, fact, argument, therefore, show, result etc. These, when attached to the original
query, will increase the chance that the retrieved sentence will be more argumentative.

An example of how a query changed in these steps is given below:

1. Should teachers get tenure?
2. teachers tenure
3. teachers*4 tenure*4 consequence conclusion reason proof evidence therefore show

Once again, we improved on the previous results, obtaining sentences of a reasonable length,
inherent to the topic and in agreement with each other.

For this kind of task attempts were made with both LMDirichlet similarity and BM25 simi-
larity and only with the last one we obtain logically correlated and relevant sentences. With
LMDirichlet many of the sentences with high scores were completely out of context.

3.3.2. S2 solution

In this approach we decided to choose the best sentence pairs using an argument quality regres-
sion model that evaluates the argumentative quality of each sentence obtained as concatenation
of the sentences in the pair.
The sentence pairs to be evaluated are gathered starting from the best documents retrieved in
the run file produced during a Lucene-based search on for a list of queries (or topics as in our
case). For each topic, the ids of the best documents are gathered, and for each document the
sentences with the best quality are kept in a list shared between documents for the same topic.
Then all possible combinations of rank two between sentences in this list are computed and
the concatenation of the two sentences is evaluated according to the quality regression model.
The final score of a pair is obtained as weighted average between the predicted quality of the
composed sentence and the mean of the score of the two documents the original sentences
belong to.
To evaluate the quality of the sentences we trained a Support Vector Regressor model on the
“Webis Argument Quality Corpus 2020 (Webis-ArgQuality-20)” dataset [7] in a similar way to
Gienapp[8] and Bundesmann et al.[10]. We created two models that differ between them only
in the vectorizer model. One uses a TFIDF Vectorizer which considers only frequency of tokens,
the second one is an encoder based on the SBERT architecture [11] which encodes also relevant
semantic information.

3.4. Model for query expansion

In order to improve the search, we have tried to enhance the queries through the expansion
of important keywords with synonyms. In particular, in order to find the more important
terms in the queries, we have exploited Part of Speech (PoS) [12] for selecting just the keywords
corresponding to meaningful tags. Then, once the more meaningful terms have been extracted,
for each of them we have found the top two closest words to add to the query, in such a way to
avoid the addition of derived words with respect to the corresponding word on the query. The
model used to perform such a task is GloVE [13], which is an unsupervised learning algorithm
for obtaining vector representations for words. Its training is performed on aggregated global
word-word co-occurrence statistics from a corpus, and the resulting representations showcase
interesting linear substructures of the word vector space. In particular, we found a family of
pretrained models from [14] and after some experiments, it turned out that the best model for
our documents collection was “glove-twitter-200”, which is based on 2B tweets, 27B tokens,
1.2M vocab, all uncased. The interesting feature of this family of pretrained model is the
implementation of the method “most_similar”, which returns, given a word, the top ten closest
words in vector space sense with a score of closeness for each of them.

4. Experimental Setup

In order to ensure compatibility and repeatability of the experiments, the used paradigm was
the Cranfield one. This approach is based on three main components:

• Documents collection: which contains all the documents to index (the information to
retrieve);

• Topics: which are the surrogates for the user query;
• Relevance Judgment: this is written in the qres.txt file and contains the ground-truth of

the ranked lists obtained querying for the topics on the documents collection;

Documents collection
The documents collection was provided by CLEF and contains 365408 documents about various
topics. The collection is an 9 GB file in csv format.

Topics
Also the topic file was provided by CLEF and it contains 50 different topics.

Relevance Judgment
In order to test the different analyzers performance, the qrels were used, so the output ranked
lists were computed also from the 50 topics. Then for the submission the 2021 topics list has
been used.

For both solutions S1 and S2, our work is based on the following experimental setups:

• Used collections: Apache Maven, Lucene;
• Java JDK version 18;

• Version control system: git;
• Repository: https://bitbucket.org/upd-dei-stud-prj/seupd2122-javacafe/src/master
• During the develop and the experimentation we have used our own computer and in the

end we have run our code using Tira;

We provide three different results for S1 solution by manually enabling/disabling certain
features, resulting in three different runs.

The first one, called "StandardDoubleIndex" consists in a standard Java/Lucene pipeline carried
out by first searching the topic title in the first index and then on the second index, as described
here. 3.3.1

The second pipeline, called "HeuristicsDoubleIndex" follows the same path as the first one,
but the following heuristics are applied:

• Query reduction;
• Query decoration;
• Query boosting;

As a third attempt, called "HeuristicsOnlyQueryReductionDoubleIndex" only the query reduc-
tion technique is applied.

In our second solution S2 we created a class used for creation and searching on the index. The
input parameter for the indexer and searcher objects are given as command line arguments.

5. Results and Discussion

In this section we provide graphical and numerical results about the experiments we conducted
during the project development.
The two different solutions S1 and S2 had in common the first run, which is the one on the
documents indexing, so the following graph is very similar for both.

In the following graph 1 we report the values of the interpolated precision against recall anal-
ysis of the three different method we have used which differ by their similarity: kstemstopengpos-
bm25, kstemstopengpos-lmdir and kstemstopengpos-multi. The graph shows that Lucene’s Multi-
Similarity gave us better result, in particular comparing to BM25Similarity. Indeed, it is possible
to see a bigger Area Under the Curve (AUC) for the curve corresponding to MultiSimilarity and
this translates in a better trade-off between precision and recall. Such trade-off can be better
seen in Table 1 since the F-score is the harmonic mean between precision and recall.

https://bitbucket.org/upd-dei-stud-prj/seupd2122-javacafe/src/master
https://lucene.apache.org/core/9_2_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html
https://lucene.apache.org/core/9_2_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 kstemstopengpos-bm25
kstemstopengpos-lmdir
kstemstopengpos-multi

Figure 1: Plot of the Interpolated precision against recall of the three methods.

5.1. Comparison about set measures and rank based

In the following configuration, we used the stopword filter in the analyzer. The following tables
report the results of trec_eval. The Table 1 refer to the relevance results, while the Table 2
refers to the quality results. Note that Multi value under Similarity column is the Lucene’s
MultiSimilarity, that we built by combining BM25 and LMDirichlet similarities.

Run ID F-
Sc

or
e

Pr
ec

is
io

n

Re
ca

ll

nD
C

G
@

5

Si
m

ila
ri

ty

Le
n.

Fi
lte

r

En
g.

Fi
lte

r

St
em

m
er

porterstop 0.4152 0.3704 0.5502 0.6542 Multi Porter
kstemstopengpos 0.4094 0.3656 0.5426 0.6737 Multi O KStem

kstemstop 0.4087 0.3648 0.5421 0.6733 Multi KStem
kstemlenstopengpos 0.4065 0.3624 0.5397 0.6744 Multi O O KStem

kstemstoplen 0.4061 0.3620 0.5394 0.6702 Multi O KStem
stop 0.4009 0.3604 0.5294 0.6403 Multi

stopengpos 0.3982 0.3580 0.5257 0.6444 Multi O
stoplen 0.3969 0.3572 0.5234 0.6398 Multi O

kstemstopengpos 0.3832 0.3400 0.5136 0.5898 BM25 O KStem
kstemlenstopengpos 0.3827 0.3396 0.5130 0.5900 BM25 O O KStem

kstemstop 0.3827 0.3396 0.5130 0.5864 BM25 KStem
kstemstopengpos 0.3819 0.3424 0.5076 0.6439 LMDir O KStem

kstemstop 0.3815 0.3420 0.5072 0.6446 LMDir KStem
kstemstoplen 0.3806 0.3376 0.5108 0.5925 BM25 O KStem

porterstop 0.3804 0.3368 0.5077 0.5699 BM25 Porter
porterstop 0.3782 0.3400 0.4960 0.6105 LMDir Porter

kstemstoplen 0.3771 0.3384 0.5004 0.6406 LMDir O KStem
stop 0.3758 0.3384 0.4995 0.6146 LMDir
stop 0.3752 0.3344 0.5006 0.5877 BM25

stopengpos 0.3751 0.3380 0.4983 0.6146 LMDir O
stopengpos 0.3751 0.3344 0.5004 0.5903 BM25 O

stoplen 0.3724 0.3364 0.4909 0.6123 LMDir O
stoplen 0.3649 0.3248 0.4894 0.5911 BM25 O

Table 1: Relevance table for S2 ordered by F-Score.

https://lucene.apache.org/core/9_2_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html
https://lucene.apache.org/core/9_2_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html

Run ID F-
Sc

or
e

Pr
ec

is
io

n

Re
ca

ll

nD
C

G
@

5

Si
m

ila
ri

ty

Le
n.

Fi
lte

r

En
g.

Fi
lte

r

St
em

m
er

porterstop 0.4315 0.4856 0.3992 0.8092 Multi Porter
kstemstopengpos 0.4277 0.4804 0.3962 0.7986 Multi O KStem

kstemlenstopengpos 0.4272 0.4792 0.3962 0.7957 Multi O O KStem
kstemstop 0.427 0.4796 0.3956 0.8006 Multi KStem

kstemstoplen 0.4268 0.4788 0.3957 0.7915 Multi O KStem
stop 0.4198 0.4728 0.3881 0.8052 Multi

stopengpos 0.4178 0.4704 0.3864 0.8043 Multi O
stoplen 0.4175 0.4704 0.3859 0.8028 Multi O

kstemstop 0.4098 0.4612 0.3791 0.7963 LMDir KStem
kstemstopengpos 0.4094 0.4608 0.3787 0.7979 LMDir O KStem

kstemstoplen 0.4026 0.4528 0.3727 0.7869 LMDir O KStem
stop 0.4025 0.4544 0.3717 0.7942 LMDir

stopengpos 0.4022 0.454 0.3713 0.794 LMDir O
porterstop 0.4017 0.4528 0.3712 0.8056 LMDir Porter

stoplen 0.4003 0.452 0.3696 0.7889 LMDir O
stop 0.3876 0.4336 0.3605 0.7164 BM25

stopengpos 0.3874 0.4332 0.3603 0.7189 BM25 O
kstemstop 0.3871 0.4316 0.3607 0.7125 BM25 KStem

kstemstopengpos 0.387 0.4316 0.3605 0.7153 BM25 O KStem
kstemlenstopengpos 0.3848 0.4288 0.3586 0.7012 BM25 O O KStem

porterstop 0.3847 0.43 0.3578 0.7141 BM25 Porter
kstemstoplen 0.3826 0.4264 0.3566 0.7016 BM25 O KStem

stoplen 0.379 0.4232 0.353 0.7117 BM25 O

Table 2: Quality table for S2 ordered by F-Score.

6. Statistical Analysis

In this section we conduct a study of the performances of our systems based on the 5 runs
we submitted to CLEF [1] (Table 3). The specific settings of each run are indicated in Table 4.
Furthermore each of these runs also use a lowercase filter and the Krovetz Stemmer (KStem) in
the Analyzer and also skip repeated sentences and sentences too long or too short. Considering
the boxplots of the runs based on Average Precision (AP) Figure 2a and Normalized Discounted
Cumulative Gain at 10 (nDCG@10) Figure 2b, it is possible to see how the medians are similar
among all the runs. To study this phenomenon an analysis of variance (ANOVA) test with a
significance of 0.05 was conducted on the nDCG@10 and Average Precision performances of the
runs. Table 3a and Table 3b show that the test fails to reject the null hypothesis, hence the runs
are not statistically different under the significance level we considered. Figure 3a and Figure 3b
highlight how runs from the two different solutions S1 and S2 compare between them, with runs
from the same solutions being similar between them and runs from different solutions being
more dissimilar between them, particularly when looking at nDCG@10 performance. To confirm
this analysis and also whether the runs are really different in terms of mean performance, so if
the null hypothesis 𝐻0 : 𝜇𝑥 = 𝜇𝑦 for runs x and y holds, we conducted Student’s t test for some
runs groups in Table 5. From the p-values it turns out that 𝐻0 is always failed to reject since
the p-values are always higher than 0.05, hence the means of these runs are not statistically
different.
Another interesting results visible from the boxplots is that the order of run’s performance is
approximately the same, with higher mean performance in S1 compared to S2. Performance per
topic of our system is highlighted in Figure 4 which shows the nDCG@10 for each one of the
50 topics.

Run Tag Run ID
S11 seupd2122-javacafe-gamoraHeuristicsDoubleIndex
S12 seupd2122-javacafe-gamoraStandardDoubleIndex
S13 seupd2122-javacafe-gamoraHeuristicsOnlyQueryReductionDoubleIndex
S21 seupd2122-javacafe-gamora_tfidf_kstemstopengpos_multi_YYY
S22 seupd2122-javacafe-gamora_sbert_kstemstopengpos_multi_YYY

Table 3: Run Tags.

Run tag Sol. Sim. Analyzer filters Notes
S11 S1 BM25 All heuristics (query reduction decorators boosting)
S12 S1 BM25 S1 baseline (only java–lucene pipeline no heuristics)
S13 S1 BM25 Only query reduction heuristic
S21 S2 Multi Stopword filter English possessive filter TF-IDF vectorizer for ML reranker
S22 S2 Multi Stopword filter English possessive filter SBERT encoder for ML reranker

Table 4: Run Details.

(a) Average Precision (b) nDCG@10

Figure 2: Boxplots of the 5 runs in decreasing order of mean performance.

Runs P-value
S13 vs 𝑆11 0.2608
S13 vs 𝑆21 0.0680
S21 vs 𝑆22 0.8952

Table 5: Students t test under 𝐻0 among pairs of runs x and y.
𝐻0 : 𝜇𝑥 = 𝜇𝑦 , 𝐻1 : 𝜇𝑥 ̸= 𝜇𝑦

Source SS df MS F Prob>F
Columns 0.0029 4 7.2455e-04 2.0385 0.0896

Error 0.0871 245 3.5544e-04
Total 0.0900 249

Table 6: Anova AP

Source SS df MS F Prob>F
Columns 0.2271 4 0.0568 1.7565 0.1383

Error 7.9184 245 0.0323
Total 8.1455 249

Table 7: Anova nDCG@10

(a) Average Precision (b) nDCG@10

Figure 3: Analysis of Variance of the 5 runs.

Figure 4: nDCG@10 per Topic of S13

7. Conclusions and Future Work

7.1. Discussion

Since the task of our system is, given a query, to retrieve a pair of sentences which have to be
as much related as possible each other and with the query (e.g. they do not contradict each
other), the goal is to find a way to evaluate the quality of two sentences as they would come
from the same argumentation. Indeed, our idea is to integrate a machine learning model in
order to be able to re-rank sentence pairs retrieved by a language model. To achieve this goal,
datasets such as Webis-ArgQuality-20 [7] have been successfully used as training set for sentence
quality evaluation models [10]. However datasets of this size limit both the performance of
a model and the structure a model itself can have since more complicated models that could
achieve better efficiency need more data. Thus, bigger and more diverse datasets on sentence
argumentativeness and quality could lead to more expressive and precise models alike, along
with the employment or creation of ad-hoc neural or natural language processing models for
this task.

The diversity of the task led us not to focus too much on the results of previous years, so
particular manipulations on the documents were not of interest to us, but instead we turned
to operate on the queries, thus creating a kind of pseudo-relevance feedback system in the S1
approach. Staying with the latter, we notice that results are visibly improving during various
attempt, but the system has one significant downside: speed. The fact that we have to create a
second index immediately after performing the first search means that we cannot prepare it
beforehand because we need the query, so creating the index and then performing a second
search after the first one slows down the procedure considerably.

7.2. Conclusion and Future Work

In conclusion, we developed two different systems for this task, a system more focused on
retrieving relevant sentences and a second system that searches for sentences pair of high
argumentative quality. According to relevance judgements the first solution (S1) works better
overall but the strategies employed by the second solution (S2) are close or better in performance
when looking at quality and coherence judgements respectively. For this reason one step forward
for our system could be merging the two strategies we propose. While the solution S1 provides
a more refined set of sentences to choose from, it employs a naive strategy for the scoring
of the couples it creates. In this context, the more thoughtful ranking of S2 that also tries to
leverage the sentence pair quality as a sentence of its own could greatly boost the system’s
overall performance.

References

[1] A. Bondarenko, M. Fröbe, J. Kiesel, S. Syed, T. Gurcke, M. Beloucif, A. Panchenko, C. Bie-
mann, B. Stein, H. Wachsmuth, M. Potthast, M. Hagen, Overview of Touché 2022: Argu-
ment Retrieval, in: Experimental IR Meets Multilinguality, Multimodality, and Interaction.
13th International Conference of the CLEF Association (CLEF 2022), Lecture Notes in
Computer Science, Springer, Berlin Heidelberg New York, 2022, p. to appear.

[2] A. Bondarenko, S. Syed, M. Fröbe, T. Gurcke, B. Stein, J. Wachsmuth, M. Potthast, M. Hagen,
Touché Task 1: Argument Retrieval for Controversial Questions, https://webis.de/events/
touche-22/shared-task-1.html, 2022.

[3] Y. Ajjour, H. Wachsmuth, J. Kiesel, M. Potthast, M. Hagen, B. Stein, Data Acquisition for
Argument Search: The args.me corpus, in: C. Benzmüller, H. Stuckenschmidt (Eds.), 42nd
German Conference on Artificial Intelligence (KI 2019), Springer, Berlin Heidelberg New
York, 2019, pp. 48–59. doi:10.1007/978-3-030-30179-8_4.

[4] A. Bondarenko, L. Gienapp, M. Fröbe, M. Beloucif, Y. Ajjour, A. Panchenko, C. Biemann,
B. Stein, H. Wachsmuth, M. Potthast, M. Hagen, Overview of touché 2021: Argument
retrieval, in: [15], 2021, pp. 2258–2284. URL: http://ceur-ws.org/Vol-2936/#paper-205.

[5] E. Raimondi, M. Alessio, N. Levorato, A search engine system for touché argument
retrieval task to answer controversial questions, in: [15], 2021, pp. 2423–2440. URL:
http://ceur-ws.org/Vol-2936/#paper-217.

[6] T. Green, L. Moroldo, A. Valente, Exploring bert synonyms and quality prediction for
argument retrieval, in: [15], 2021, pp. 2374–2388. URL: http://ceur-ws.org/Vol-2936/
#paper-213.

[7] L. Gienapp, B. Stein, M. Hagen, M. Potthast, Webis Argument Quality Corpus 2020 (Webis-
ArgQuality-20), 2020. URL: https://doi.org/10.5281/zenodo.3780049. doi:10.5281/zenodo.
3780049.

[8] L. Gienapp, Quality-aware argument retrieval with topical clustering, in: [15], 2021, pp.
2366–2373. URL: http://ceur-ws.org/Vol-2936/#paper-212.

[9] Y. Ajjour, P. Braslavski, A. Bondarenko, B. Stein, Identifying argumentative questions in
web search logs (2022).

[10] M. Bundesmann, L. Christ, M. Richter, Creating an argument search engine for online
debates., in: CLEF (Working Notes), 2020.

[11] N. Reimers, Sentence bert, 2022. URL: https://www.sbert.net.
[12] S. Bird, E. Klein, E. Loper, Natural language processing with python. o’reilly media inc.,

2009. URL: https://www.nltk.org/book/ch05.html.
[13] C. D. M. Jeffrey Pennington, Richard Socher, Glove: Global vectors for word representation,

2014. URL: https://nlp.stanford.edu/pubs/glove.pdf.
[14] R. Technologies, Gensim-data, 2018. URL: https://github.com/RaRe-Technologies/

gensim-data.
[15] G. Faggioli, N. Ferro, A. Joly, M. Maistro, F. Piroi (Eds.), Proceedings of the Working Notes

of CLEF 2021 - Conference and Labs of the Evaluation Forum (CLEF 2021), number 2936
in CEUR Workshop Proceedings, Aachen, 2021. URL: http://ceur-ws.org/Vol-2936/.

https://webis.de/events/touche-22/shared-task-1.html
https://webis.de/events/touche-22/shared-task-1.html
http://dx.doi.org/10.1007/978-3-030-30179-8_4
http://ceur-ws.org/Vol-2936/#paper-205
http://ceur-ws.org/Vol-2936/#paper-217
http://ceur-ws.org/Vol-2936/#paper-213
http://ceur-ws.org/Vol-2936/#paper-213
https://doi.org/10.5281/zenodo.3780049
http://dx.doi.org/10.5281/zenodo.3780049
http://dx.doi.org/10.5281/zenodo.3780049
http://ceur-ws.org/Vol-2936/#paper-212
https://www.sbert.net
https://www.nltk.org/book/ch05.html
https://nlp.stanford.edu/pubs/glove.pdf
https://github.com/RaRe-Technologies/gensim-data
https://github.com/RaRe-Technologies/gensim-data
http://ceur-ws.org/Vol-2936/

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Parsing
	3.2 Indexing
	3.3 Searching
	3.3.1 S1 solution
	3.3.2 S2 solution

	3.4 Model for query expansion

	4 Experimental Setup
	5 Results and Discussion
	5.1 Comparison about set measures and rank based

	6 Statistical Analysis
	7 Conclusions and Future Work
	7.1 Discussion
	7.2 Conclusion and Future Work

