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ABSTRACT
Being able to compare Information Retrieval (IR) systems correctly
is pivotal to improving their quality. Among the most popular tools
for statistical significance testing, we list t-test and ANOVA that
belong to the linear models family. Therefore, given the relevance
of linear models for IR evaluation, a great effort has been devoted
to studying how to improve them to better compare IR systems.

Linear models rely on assumptions that IR experimental obser-
vations rarely meet, e.g. about the normality of the data or the
linearity itself. Even though linear models are, in general, resilient
to violations of their assumptions, departing from them might re-
duce the effectiveness of the tests. Hence, we investigate the use of
the Generalized Linear Model (GLM) framework, a generalization of
the traditional linear modelling that relaxes assumptions about the
distribution and the shape of the models. To the best of our knowl-
edge, there has been little or no investigation on the use of GLMs
for comparing IR system performance. We discuss how GLMs work
and how they can be applied in the context of IR evaluation. In
particular, we focus on the link function used to build GLMs, which
allows for the model to have non-linear shapes.

We conduct a thorough experimentation using two TREC collec-
tions and several evaluation measures. Overall, we show how the
log and logit links are able to identify more and more consistent
significant differences (up to 25% more with 50 topics) than the
identity link used today and with a comparable, or slightly better,
risk of publication bias.
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1 INTRODUCTION
Evaluation in Information Retrieval (IR) allows researchers and prac-
titioners to study and compare their systems in order to understand
how to improve them. To this end, sound statistical inference meth-
ods are needed to obtain robust and generalizable insights and to
predict what happens when systems run in a real-world scenario.
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Therefore, statistical analyses, such as bootstrap, randomization
tests [37, 44], t-tests, and ANalysis Of VAriance (ANOVA) [3, 36, 45]
have been widely studied and successfully employed in IR evalua-
tion.

In particular, t-test and ANOVA belong to the family of statisti-
cal methods called General Linear Models (GLiMs), a generalization
of the multiple linear regression, which is based on the following
assumptions: i) independence of the observations, ii) constant vari-
ance of the data, i.e. homoscedasticity iii) normal distribution of the
data, i.e., normality; last but not least and too often overlooked: iv)
linear correlation between experimental conditions and the expec-
tation of the response i.e., linearity. These assumptions allow for
an analytical solution of the model and its practical computation.
Furthermore, the more such assumptions are satisfied, the more ac-
curate is the estimation of the model and the inferences drawn from
it. Previous literature showed great interest in studying the empiri-
cal consequences of using data violating such assumptions, both
from a theoretical standpoint [22, 43], and also considering empiri-
cal IR data [7, 10, 21, 45]. Such works show that, in general, linear
models are resilient to the violation of their assumptions. At the
same time, several works have explored how to make IR data closer
to the GLiM assumptions, e.g. by transforming the data [10, 45].
In all the cases, the ultimate goal is to obtain models which are
capable to better and more reliably distinguish among IR systems.

The Generalized Linear Model (GLM) framework is a generaliza-
tion of the GLiMs that relaxes some of the underlying assumptions
in order to increase models’ applicability. In particular, the data is
no longer required to follow a normal distribution or to have con-
stant variance. Moreover, GLMs also relax the fourth assumption,
allowing the relationship between the expectation of the response
and the experimental conditions – called link – to have different
forms besides the linear one.

In this work, we investigate the application of Generalized Lin-
ear Models to IR evaluation and show how they can help us in
better comparing and distinguishing among systems. More pre-
cisely, we focus on the link function used in the GLMs framework,
investigating the impact of different links on the modelling of the
IR performance. The main contributions of this work are:

• We propose a new visualization of IR data that highlights
linear models’ assumptions. We then illustrate the behaviour
of the IR data using such visualization;

• We instantiate the GLMs framework in the case of IR experi-
mental evaluation, illustrating how to apply it;

• We experimentally compare different links to determine the
most suited to the IR scenario, showing which links improve
the ability of the models to better and more reliably distin-
guish among IR systems.

https://doi.org/11.111/111111.1111
https://doi.org/11.111/111111.1111
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The remainder is organized as follows: Section 2 reports the
main related works. Section 3 describes GLMs and what are the
challenges to applying them in the IR scenario. Section 4 reports
the methodology applied to assess the behaviour of GLMs for IR
evaluation tasks, while Section 5 illustrates the empirical findings.
Finally, Section 6 draws our conclusions and future works.

2 RELATEDWORK
GLMs were proposed by Nelder and Wedderburn [30] in 1972 and,
since then, have been studied and documented extensively [25],
becoming a widely accepted standard in the statistics community.
GLMs have been applied successfully to several scenarios, such as
engineering, biology and medicine [29]. We describe this method
in more detail in Section 3.1. To the best of our knowledge, they
have found very limited application to modelling and comparing
performance of IR systems.

Note that, when it comes to compare system performance, there
are also completely alternative approaches to linear modelling, such
as Carterette [6, 8] who proposes to develop a Bayesian framework
for hypothesis testing. In our work, instead of adopting a completely
different modelling strategy, we remain in the linear modelling
framework but expand it via GLMs.

GLiMs are a specific type of GLMs and they include t-test and
ANOVA which, according to both Sakai [38] and Carterette [9], are
the most widely adopted statistical significance tests in IR evalua-
tion.

2.1 Violation of Assumptions and Response
Transformation

Early work by Saracevic [42] pointed out that IR data do not com-
ply with the assumptions of significance tests and this was stated
again by van Rijsbergen [51, chap. 7], who suggested to use non
parametric tests, such as the sign test, due to the smaller number
of violations to assumptions. On the other hand, Hull [21] studies
several tests, among which t-test and ANOVA, and concluded that,
despite the violation of assumptions, it was of practical importance
to adopt such tests in order to properly validate experimental con-
clusions. More recently, Carterette [7] studied, mostly by using
simulations, the impact of deviations from the assumptions and
concluded that homoscedasticity and linearity matter more than
normality, even if their impact is smaller compared to not adjusting
for multiple comparisons, which is known to be a severe flaw in
many experiments [19, 40].

One of the most widely adopted strategies to bring IR data closer
to the assumptions of linear models is to transform the data by
applying a function to them and, consequently, change their dis-
tribution. Transformations help to obtain more normal and ho-
moscedastic distributions of performance.

Tague-Sutcliffe and Blustein [45] proposed to use the arcsin of
the square root or the rank of the performance scores to make them
closer to a normal distribution. Logit is another widely used trans-
formation, which maps performance scores in the (0, 1) range to
R, making them closer to a normal distribution. This transforma-
tion was originally studied by Cormack and Lynam [10] and later
on employed by Robertson and Kanoulas [35] and Berto et al. [4].
Robertson [34] explores a further smoothed version of the logit

transformation of the Average Precision (AP), which exhibits higher
normality, dubbed “yaAP”. The logit transformation has the limi-
tation of not being defined for values equal to 0 and 1; therefore,
it requires either to ignore them or to resort to some smoothing-
based solution, as proposed by [10, 34]. Robertson [33] compares
the advantages - and disadvantages - of several transformation
strategies, including log and logit ones, including use of Geometric
Mean Average Precision (GMAP) by Voorhees [52].

While the efforts mentioned above focus primarily on the non-
normality of the performance scores, Sakai [39] and, later, Urbano
et al. [49] explore a standardization-based approach aimed at in-
creasing the homoscedasticity of the data. They propose to trans-
form the performance scores into z-scores, as also proposed byWeb-
ber et al. [55] for other purposes, and apply a linear transformation
to such scores to reduce the inter-topic heteroscedasticity.

Both GLMs and response transformation exploit non-linear func-
tions to improve the fitness of the models to the data. Nevertheless,
they represent two completely different approaches regarding as-
sumptions, computation, and interpretation of the predictions, as
we discuss in detail in Section 3.1. This markedly differentiates our
approach based on GLM from previous works in the field based
on transformations. Moreover, while Carterette [7] pointed out
the potential impact of departing from linearity, to the best of our
knowledge, less (or no) attention has been paid to how to address
this aspect, which instead is the focus of our work, by exploring the
link function. Finally, most of the approaches mentioned above fo-
cused just on AP, being the most popular measure in IR evaluation,
while in our work we also study other measures, namely Precision,
Recall, Normalized Discounted Cumulated Gain (nDCG) [23] and
Rank-Biased Precision (RBP) [27].

2.2 Model Factors
Another relevant strand of research about GLiMs, not related to
compliance with assumptions, concerns the factors in the models
and how to increase their ability to distinguish among IR systems.

Tague-Sutcliffe and Blustein [45], first, and Banks et al. [3], later,
compared IR systems using a two-way ANOVA where factors were
topics and systems. Robertson and Kanoulas [35] use simulated data
to add a further factor, i.e. the interaction between topics and sys-
tems. Ferro et al. [18], Voorhees et al. [54] and Ferro and Sanderson
[14] “sharded” a collection by randomly partitioning the documents
and this allowed them to expand the models by including the shard
factor as well as all the the interaction factors between topics, sys-
tems, and shards. Bodoff and Li [5] considered multiple assessors
while Bailey et al. [2] exploited multiple formulations for the same
topic; in both cases, the replicates coming from either multiple
assessors or multiple formulations allowed for estimating the inter-
action between topics and systems. Recently, Culpepper et al. [11]
used topic reformulations and different corpora (not shards of the
same corpus) in order to study the difficulty of topics with respect
to corpora. On a slightly different note, Ferro and Silvello [16, 17],
instead of adding more factors to the models, decomposed the sys-
tem factor into its constituting components (stop list, stemmer, IR
model) in order to study the contribution (and interaction) of these
components to the overall performance.
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Following Tague-Sutcliffe and Blustein [45], we consider GLMs
constituted by the topic and system factors, leaving multi-factor
analyses for future work, since our focus in this work is to take the
first step and understand howGLMs behavewith IR data rather than
making GLMs able to distinguish among more and more systems
by adding more and more factors.

2.3 Assessing a Test
Over the years, several approaches have been developed to assess
significance tests and determine which are most effective.

2.3.1 Number of significantly different pairs. Faggioli and Ferro
[12], Ferro and Sanderson [13, 14], Ferro et al. [18], Voorhees et al.
[54] compared several alternative ANOVA models and considered
superior those able to identify an higher number of statistically
significantly different (ssd) system pairs, relating this improvement
to smaller confidence intervals [14, 54] and to smaller un-modelled
error levels [18]. We will rely also on this approach in our experi-
ments.

2.3.2 Topic splitting. Zobel [57] randomly partitioned topics into
two sets and compared systems across both sets using different
significance tests (ANOVA,Wilcoxon, and t-test). The level of agree-
ment across the two sets is used as an indicator of the superiority of
a test over another one and as a proxy of test errors. This method-
ology was adopted by others: Voorhees and Buckley [53] examined
the impact of topic set size on evaluation consistency; Sanderson
and Zobel [41] studied the sign, Wilcoxon, and t-test; Faggioli and
Ferro [12] compared different approaches for estimating ANOVA,
with/without bootstrapping and different approaches to adjusting
for multiple comparisons.

The definition of agreement between topic sets evolved over time.
Zobel considered agreement when, on both topic sets, a system was
significantly better than another and the sign of the difference was
preserved. Moffat et al. [28], comparing different evaluation mea-
sures (not significance tests), identified five categories of agreement
or disagreement that such a comparison could result in. One form,
called SSA, required the same significant improvement to be found
in both sets, recalling Zobel’s definition; Moffat et al.’s categories
were later on adopted by Faggioli and Ferro [12]. Urbano et al. [48]
created five categories of agreement and the union of two categories
– “Success” and “Lack of power” – aligns with Zobel’s definition.
Recently, Ferro and Sanderson [15] proposed a set of six categories
which consider all the possible cases of agreement/disagreement
and sign difference across the two topics sets and include all the
previous definitions, somehow systematizing them. We will rely
also on this approach in our experiments.

2.3.3 Simulation. Wilbur [56] exploits simulations of IR data to
compare non-parametric and parametric tests, finding the former to
be superior. Robertson and Kanoulas [35] develop a bootstrap based
simulation approach to model the intra-topic variance, showing its
effect when modelling IR performance. Urbano et al. [50] adopt a
simulation process, previously defined by Urbano and Nagler [47],
capable of jointly modelling both the system’s internal variance and
its covariance with another system via copulas. More recently, Para-
par et al. [31, 32] model new runs as a stochastic process capable of

simulating significantly different runs. Nevertheless, the proposed
simulation process does not include the topic-system interaction.

Every simulation above produces IR-like data, more or less ap-
proximated depending on the underlying assumptions and the gen-
eration procedure. We do not use simulated data in our study to
avoid possible biases due to either the approximation of the simu-
lated data or inter-dependencies between the assumptions underly-
ing simulations, on the one side, and GLMs, on the other side.

3 METHODOLOGY
3.1 Generalized Linear Models
Parametric statistical tests, such as t-tests or ANOVA, rely on the
assumption that data can bemodelled using a linearmodel. Focusing
on the IR scenario, we typically have a set of𝑚 systems applied to
a set of 𝑛 topics. Given a system 𝑠 and a topic 𝑡 , we can compute
a measure, e.g. AP, that quantifies how well 𝑠 performs on 𝑡 . To
align with previous work in the GLMs domain, we refer to such a
score as 𝑦𝑡𝑠 and call it response. The response 𝑦𝑡𝑠 is a realization of
a random variable 𝑌 that represents the score achieved by a system
on a topic. The experimental conditions – the topic and the system
used in our case – are somehow correlated with the response, and
therefore we refer to them as covariates. Using traditional linear
models, the expectation of the response 𝐸 [𝑌 ], is modeled as a linear
combination 𝜂 of the covariates as follows:

𝐸 [𝑌 ] = 𝜂 = 𝜇 + 𝜏1𝑡1 + ... + 𝜏𝑛𝑡𝑛 + 𝛼1𝑠1 + ... + 𝛼𝑚𝑠𝑚 (1)

where 𝑡𝑖 and 𝑠 𝑗 are respectively the dummy coding variables for the
topic and systems considered, 𝜏𝑖 is the effect due to the 𝑖-th topic,
𝛼 𝑗 is the effect due to the 𝑗-th system. The intercept 𝜇 represents
the grand mean of our data.

When we instantiate𝑌 to a real observation𝑦𝑡𝑠 , we must include
the error 𝜀𝑡𝑠 , i.e. what the model is not able to explain:

𝑦𝑡𝑠 = 𝜇 + 𝜏1𝑡1 + ... + 𝜏𝑛𝑡𝑛 + 𝛼1𝑠1 + ... + 𝛼𝑚𝑠𝑚 + 𝜀𝑡𝑠

Under this framework, a t-test used to determine if system 𝑖 is
better than system 𝑗 corresponds to verifying that the coefficient
𝛼𝑖 is statistically significantly greater than 𝛼 𝑗 . Similarly, ANOVA
is equivalent to check that at least one among the 𝛼 coefficients is
statistically significantly different from the others. In both cases,
to compute the linear model and grant its inferences, we assume
𝑌 ∼ N(𝜂, 𝜎2) and thus 𝜀 ∼ N(0, 𝜎2) – 𝑌 distributes normally and
has the same variance 𝜎2 everywhere (homoscedasticity).

Note that, without losing generality, we can say that we model
𝑔(𝐸 [𝑌 ]) = 𝜂, where 𝑔 is the identity function 𝑔(𝑥) = 𝑥 . In this
sense, 𝑔 is the function that links 𝐸 [𝑌 ] to 𝜂. Summing up, fitting a
linear model requires to define the following elements:

(1) a linear combination 𝜂 of the different explanatory variables;
(2) a link function 𝑔 to connect 𝐸 [𝑌 ] to 𝜂;
(3) a distribution for 𝑌 .
Under this framework, the traditional linear model GLiM is a

particular case where, as aforementioned, 𝑔 is the identity function,
and𝑌 distributes following a Gaussian distributionwith expectation
𝜂 and constant variance 𝜎2.

A visualization of an ideal linear model is depicted in Figure 1a.
We assume to have a set of systems, each with a set of performance
scores. For each system, the distribution of the scores is depicted in
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(a) The “traditional” linear model: an identity link and a Gaussian distribution
of the response. Red lines represent the distribution of the explained variable 𝑌 ,
while the blue line, the model, tries to describe how 𝐸 [𝑌 ] (green lines) changes.
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(b) 𝐸 [𝑌 ] is not directly proportional to the system, thus a different link should
be used: instead of modeling 𝐸 [𝑌 ] wemodel𝑔 (𝐸 [𝑦 ] ) , where𝑔 is the log function.
𝑌 distributes still normally, only 𝐸 [𝑌 ] has changed.

Figure 1: Visual description of what changes when we change the link function in a GLM.

red. All the distributions are normal and homoscedastic. According
to eq. (1) the focus of the linear modelling is the expectation of
the explained variable, represented in Figure 1a by the green lines.
Since all the expectations follow a straight line, we model the data
using a traditional linear model (depicted in blue).

Compared to a traditional linear model, a GLM relaxes the as-
sumptions for item 2 and 3. First, it models 𝑔(𝐸 [𝑌 ]), where 𝑔, the
link, can be any monotonic continuous function. Secondly, the
response 𝑌 can follow a distribution 𝑓 (𝜃 ) that is not necessarily
Gaussian. As a consequence, the homoscedasticity assumption is
relaxed as well, since the variance can change with the expected
mean. Thus, a GLM can be expressed in the following form:

𝑔(𝐸 [𝑌 ]) = 𝜂, with 𝑌 ∼ 𝑓 (𝜃 )

The chosen probability distribution 𝑓 (𝜃 ) must be a member
of the exponential distributions family. A location parameter 𝜃
characterizes distributions belonging to the exponential family -
e.g., the normal distribution’s mean. If we observe that 𝑔(𝐸 [𝑌 ]) = 𝜃

for a given distribution of 𝑌 , then we say that 𝑔 is the canonical
link of such a distribution. The canonical link has some advantages
related to the optimization and the speed of convergence of the
model parameters. Nevertheless, choosing which link function to
use depends just on the data and their characteristics, often relying
on empirical observation.

Figure 1b shows a scenario where a traditional linear model is
not suited anymore, since 𝐸 [𝑌 ] does not follow a straight line We
therefore resort to use GLMs. As shown in Figure 1a, the perfor-
mance distributes normally with equal variance for all the systems,
but the expectation 𝐸 [𝑌 ] appears to follow an exponential line.
Therefore, to bring it back to a linear space, we can transform 𝐸 [𝑌 ]
using the log link. Thus, our model becomes log(𝐸 [𝑌 ]) = 𝜂 or,
equivalently 𝐸 [𝑌 ] = exp(𝜂).

Notice that, in Figure 1b, data are not transformed, only the link
between the expectation of the response and the model is. If data
were transformed, the 𝑌 axis, as well as the response 𝑦𝑡𝑠 predicted
by the model, would have changed. On the contrary, the response
remains on the same scale: what changes is just the model’s shape.
Therefore, fitting a GLM is substantially different from transform-
ing the response in a non-linear space, as the approaches discussed
in Section 2.1 do instead. Indeed, when we apply a non-linear trans-
formation 𝑔 directly to the response 𝑌 , we assume that, in the

new space, 𝐸 [𝑔(𝑌 )] is linearly correlated with the covariates and
𝑔(𝑌 ) follows a normal homoscedastic distribution. In this sense,
𝑔(𝑌 ) should comply with the linear modelling assumptions, as well.
When instead, as in the case of our work, we choose to use a GLM,
we believe that the linear correlation is between the predictors
and the transformation 𝑔(𝐸 [(𝑌 )]). Transforming the response also
means that predictions 𝑦𝑡𝑠 – and errors 𝜀𝑡𝑠 – are in the transformed
space and no more directly comparable; on the other hand, when
using a GLM, predictions and errors remain in the original scale.
As a final observation on the difference between transforming the
response and using a GLM, we can note that, in general:

𝑔(𝐸 [𝑌 ])︸    ︷︷    ︸
use of a GLM

≠ 𝐸 [𝑔(𝑌 )]︸    ︷︷    ︸
response transformation

To carry out statistical inference and test whether a system is
significantly different from another, we need two elements: i) the
difference between the effects of the systems ii) and the Standard
Error (SE) associated with their comparison. Both elements rely on
the concept of contrasts [20]. A contrast is a linear combination
of the coefficients of a linear model using a vector c, where c ∈
R𝑘×1, with 𝑘 the number of possible coefficients and

∑
𝑗 c( 𝑗) = 0.

Contrasts allow to model comparisons between (groups of) factors.
Each contrast corresponds to a specific hypothesis that we are
interested in testing. For example, in IR we are usually interested
in carrying out pairwise comparisons between systems. In such a
case, the contrast vector to compare 𝑖-th and 𝑗-th systems is:

c𝑖 𝑗 (ℎ) =

1, if ℎ = 𝑖

−1, if ℎ = 𝑗

0, otherwise

Then, calling 𝜶 the systems coefficients vector, we can compute
the pairwise difference between effects as Δ𝑖 𝑗 = c𝑖 𝑗 · 𝜶 . Using
the procedure mentioned above, we can define all the pairwise
contrasts and obtain all the differences between pairs of systems.

The SE for a pairwise contrast between coefficients 𝛼𝑖 and 𝛼 𝑗 is
computed as:

𝑆𝐸𝑖 𝑗 = �̂�2 (𝛼𝑖 ) + �̂�2 (𝛼 𝑗 ) − 2𝜌 (𝛼𝑖 , 𝛼 𝑗 ) (2)

where �̂�2 (𝛼𝑖 ) is the variance associated with the coefficient 𝛼𝑖
(which should not be confused with the sample variance of the
scores observed for system 𝑖). Similarly, 𝜌 (𝛼𝑖 , 𝛼 𝑗 ) is the covariance
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Table 1: Link functions considered.Φ andCauchy are theCumulative Density
Function (CDF) of a Standard Normal and Cauchy Distribution respectively.

name function inverse

identity 𝑔 (𝑥 ) = 𝑥 𝑔−1 (𝑥 ) = 𝑥

log 𝑔 (𝑥 ) = log(𝑥 ) 𝑔−1 (𝑥 ) = 𝑒𝑥

exp 𝑔 (𝑥 ) = 𝑒𝑥 𝑔−1 (𝑥 ) = log(𝑥 )
tanh 𝑔 (𝑥 ) = tanh(𝑥 ) 𝑔−1 (𝑥 ) = arctanh(𝑥 )
logit 𝑔 (𝑥 ) = log

(
𝑥

1−𝑥
)

𝑔−1 (𝑥 ) = 1
1+𝑒−𝑥

probit 𝑔 (𝑥 ) = Φ−1 (𝑥 ) 𝑔−1 (𝑥 ) = Φ(𝑥 )
cauchit 𝑔 (𝑥 ) = Cauchy−1 (𝑥 ) 𝑔−1(𝑥 ) = Cauchy(𝑥 )

between the coefficients 𝛼𝑖 and 𝛼 𝑗 . These values can be obtained
from the covariance matrix. The (asymptotic) covariance matrix
for a GLM is the inverse of the negative of the matrix of the second
derivative of the log-likelihood function.

Once we have the SE for each contrast, to test if the performance
of systems 𝑖 and 𝑗 are different, we compute our test statistics as:

𝑡𝑖 𝑗 =
Δ𝑖 𝑗

𝑆𝐸𝑖 𝑗
(3)

𝑡𝑖 𝑗 can be compared to the proper critical value according to the
chosen distribution or used to obtain the p-value. This is a general-
ization of the traditional 𝑡 statistics and can be used to carry out
several inferential tests, including t-test, ANOVA, and F-test. By
comparing 𝑡𝑖 𝑗 with the proper value Q from the Studentized range
distribution, we can carry out the Tukey’s Honestly Significant Dif-
ference (HSD) [46] test, correcting for the multiple comparisons
problem.

3.2 Using GLM in IR scenarios
As pointed out in the previous section, to fit GLMs, we need to
select the link function and the response distribution. Any possible
monotonic continuous function can be a suitable link. The choice of
which link to use depends on the shape of the data. In our analyses,
we focus on the most popular link functions, reported in Table 1.
Notice that the inverse of the link describes how the expectation of
the response changes. For example, as shown in Figure 1b, the log
link suits scenarios where 𝐸 [𝑌 ] appears to follow an exponential
pattern. We include the log, exponential and hyperbolic tangent
(tanh) functions in our experiments. We also experiment with a
series of sigmoidal functions: logit, probit and cauchit. Such func-
tions have similar shapes with different steepness and are typically
used for data that can be interpreted as probabilities.

Previous works on transforming AP [4, 10, 34, 35] observed that
the logit transformation renders the score distribution more normal
but it has the drawback of making observations for which AP is
zero or one unusable. GLMs based on the logit link, on the other
hand, by transforming the expectation of the response rather than
the response itself, avoid such corner cases. However, when even
the expectation of a system’s performance is close to zero, using
log-based links – e.g., log and logit – determines a high variance of
the coefficients associated with such a system. As a consequence,
according to eq. (2), a larger variance increases the standard error
which, in turn, decreases the test statistics of eq. (3) used for com-
paring systems; overall this causes us to detect fewer significantly
different pairs. In the literature, it is therefore suggested to remove
outliers with close-to-zero expected performance.

Concerning the distribution, as aforementioned, we are limited
to distributions drawn from the exponential family which includes
Gaussian, Bernoulli and Binomial, Poisson, Gamma, and Inverse
Gaussian. Except for the Gaussian, which has R as domain, all the
other distributions have a domain which differs from the one of IR
measures. The Binomial is defined over the natural numbers, up
to a given threshold – the Bernoulli is a special case, where the
threshold is 1. The Poisson distribution is defined over N. Finally,
both the Gamma and Inverse Gaussian are defined on R+, therefore
excluding 0, which is a possible value for most of the IR measures.
By adequately changing the IR measure, it might be possible to
use different distributions besides the Gaussian. Nevertheless, as
observed by [7, 22, 43, 45], most of the tests are typically resilient
to the violation of the normality assumption. Furthermore, we are
interested in investigating the impact of the links alone. Therefore,
we focus on the Gaussian distribution, leaving the study of other
distributions to future work.

Finally, to investigate the GLMs, we use a series of models always
consisting of the system and topic factors but changing the links.
We leave models comprising more factors, e.g. shards, as future
work.

4 EXPERIMENAL APPROACH
4.1 Deviance
GLiMs are commonly fit using the Ordinary Least Squares (OLS)
approach that minimizes the sum of squares of residuals (RSS) and
this allows for comparing different models by their RSS. On the
other hand, GLMs are fit using maximum likelihood instead of OLS
and, therefore, comparing the RSS is not suitable.

The most common goodness-of-fit statistics under the GLM
framework is the deviance [26], which is analogous to RSS under
the GLiM framework. Deviance is defined as:

𝐷 = 2 ∗ (𝐿𝐿𝑠 − 𝐿𝐿𝑚)
where 𝐿𝐿𝑠 is the log-likelihood of the saturated model – a model
with a parameter for each observation – and 𝐿𝐿𝑚 is the log-like-
lihood for the fitted model. Similarly to the RSS, the lower the
deviance, the better a model fits the data.

4.2 Number of Significantly Different Pairs
As done in previous work (see Section 2.3.1), we consider the total
number of ssd pairs as a first indicator of the ability of a model to
distinguish among systems. In general, the higher, the better.

From a practitioner perspective, being able to identify more ssd
pairs is essential: correctly individuating which system performs
better allows us to invest on more promising solutions that might
have been discarded otherwise.

4.3 Topic Splitting
We consider the agreement measures defined by Ferro and Sander-
son [15], following also previousworks [12, 28, 48] (see Section 2.3.2).

We assume to have two non-overlapping splits of topics, a sta-
tistical test based on a given link, and a pair of systems - 𝑆1 and
𝑆2. According to the decisions taken on each topic subset, we have
the following possibilities: Active (A-) decisions – the test con-
siders the difference between 𝑆1 and 𝑆2 statistically significant
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(a) robust 04 - Systems (b) core 18 - Systems

Figure 2: Figures show that, for both the Robust 04 and the core 18 collection i) the distributions of the AP scores (red lines) are not normal for a given system
(and they hardly have the same variance) ii), the expectation is not linear.

on both topic sets; Passive (P-) decisions – none of the topic sets
provides enough evidence to determine if 𝑆1 is statistically better
than 𝑆2; Mixed (M-) decisions – only one of the topic sets allows
to say that 𝑆1 is statistically better than 𝑆2. Furthermore, it might
be possible that the topic sets agree (Agreement -A) or disagree
(Disagreement -D) on considering 𝑆1 to have a greater effect than 𝑆2.
This classification determines six possible scenarios: Active Agree-
ments (AA); Active Disagreements (AD); Passive Agreements (PA);
Passive Disagreements (PD); Mixed Agreements (MA); Mixed Dis-
agreements (MD). The more AA decisions, the more a test is able to
distinguish among systems and the more consistent is its outcome
about what is significantly different. Conversely, AD indicates op-
posite inference on what is significantly different and represents
the worst outcome. Both MA and MD indicate that a test is not able
to confirm its conclusions and, therefore, the smaller the better; MD
is a bit more severe than MA, since there is also swap in the order
of the two systems, but not as severe as AD. PA and PD both indi-
cate that a test confirms its outcomes on what is not significantly
different, even if in the latter case there is also a swap between the
two systems.

Following Ferro and Sanderson [15], we also consider Bias as
the likelihood of a researcher publishing a significant result when
in fact a significance test on a different topic set would have pro-
duced either no significance (MA, MD) or a significant result in the
opposite direction (AD):

𝐵𝑖𝑎𝑠 = 1 − 𝐴𝐴

𝐴𝐴 +𝐴𝐷 + 𝑀𝐴
2 + 𝑀𝐷

2

Note that 𝐵𝑖𝑎𝑠 represents an error, thus we subtract the fraction
from 1.

5 EXPERIMENTAL ANALYSIS
5.1 Experimental Setup
We consider two collections for ad-hoc retrieval: TREC 13 Robust
04 [52] and TREC 27 Core 18 [1]. Robust 04 relies on disks 4 and
5 of the TIPSTER corpus minus the Congressional Records, has
249 topics and 110 runs, amounting to 5,995 pairwise comparisons.
Core 18 relies on the Washington Post document collection, has 50
topics and 72 runs, amounting to 2556 pairwise comparisons.

As discussed in Section 3.2, systems whose mean performance
is very close to 0 can challenge the logit link. Since this happens
in the case of Core 18, we also consider a second version of it,

where we remove eight outlier runs, performing extremely low in
terms of their Mean Average Precision (MAP). Following Laurikkala
et al. [24], we define “outliers” those runs having MAP 1.5 times
the inter-quartile range lower than the lowest quartile. We dub the
reduced version of Core 18 without outliers “Core 18-wo”. It has 64
runs that lead to 2016 pairwise comparisons.

All the collections have ternary relevance judgements with pos-
sible values {0, 1, 2}, that indicate respectively, not relevant, partially
relevant and highly relevant documents. As performance measures,
we use Average Precision (AP), Precision with cutoff 10 (P@10), Re-
call (R), Normalized Discounted Cumulated Gain (nDCG) [23], and
RBP with persistence of 0.95 [27]. In Section 5.5, we repeat the topic
sampling 1000 times. The code is publicly available to allow for
reproducibility1.

5.2 Fitting Linearly IR Data
Figure 2 illustrates what happens when we plot the data from both
the Robust 04 (Figure 2a on the left) and the Core 18 (Figure 2b
on the right) collection. We plot the MAP, i.e. the expectation of
the response, for each system using a blue line while the red lines
represent the distribution of the AP scores of a system; we display
just a subset of available systems for the sake of visualization.

By looking at Figure 2, we can note that, for both Robust 04 and
Core 18, the blue line representing the expected performance is not
straight. As a consequence, the identity link may not be the most
appropriate to describe the underlying the IR data. Moreover, as
also noted in the literature, the distributions of the observations
(red lines) are far from being normal. Therefore, a GLM, thanks to
its relaxed assumptions, might better fit IR data2.

When it come to Core 18 in Figure 2b, besides the general be-
haviour already discussed, we can note how the eight outliers, all
submitted by the same group, have a completely different distri-
bution from the other runs, extremely skewed towards low per-
formance, and this explains why they have been removed in Core
18-wo version.

1To be released upon acceptance
2For the sake of completeness, the actual linear model fitted on the IR data is more
complex. There is a dimension for each system and thus we have a hyper-plane instead
of a single “blue line”. Nevertheless, this representation gives the idea of how far we
are from the ideal scenario to apply a linear model.
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Table 2: Deviance. In bold minimum value, i.e. best fit. The color indicates optimal (green), average (white) or low (red) results.

Robust 04 Core 18 Core 18-wo

link AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP

identity 356.79 901.51 622.67 467.98 381.62 52.48 156.32 99.05 69.21 75.90 44.93 135.61 74.46 59.89 63.23
log 334.06 886.42 646.34 471.87 368.30 40.90 132.00 91.57 61.73 59.00 40.76 128.12 75.36 60.18 57.76
exp 387.52 955.56 719.93 505.65 400.98 61.31 219.01 159.33 90.92 98.80 49.19 160.79 79.90 64.29 72.55
tanh 348.91 894.19 640.07 467.54 376.76 50.30 147.13 95.89 66.00 71.15 43.81 132.13 75.84 59.80 61.00
logit 329.46 882.14 593.82 458.04 366.89 40.50 132.77 85.47 60.51 59.44 40.36 128.52 72.21 58.93 58.12
probit 330.36 882.66 590.87 458.05 367.65 40.71 133.26 85.52 60.63 59.81 40.57 128.84 72.13 58.99 58.42
cauchit 332.49 884.67 627.34 463.81 367.40 40.87 132.24 86.80 60.63 59.03 40.73 128.42 74.05 59.05 57.81

5.3 Deviance
Table 2 illustrates the deviance measured for different GLMs using
several link functions, IR measures, and experimental collections.

The traditional GLiM approach based on the identity link, (cor-
responding to the current evaluation methodology) presents a low
goodness-of-fit, given its high deviance compared to other links.
This evidence supports the idea of investigating and using GLMs
instead.

The exponential link is the worst, systematically underperform-
ing on all experimental conditions and its high deviance indicates
poor goodness-of-fit compared to all the other links. Its poor capa-
bility in fitting IR data leads to overall instability, especially con-
cerning shallow performing systems, and to convergence problems
when fitting the model – highlighted by the increased iterations to
reach convergence, not reported here due to space constraints. The
degraded performance seems to be correlated with the presence of
low performing systems; in fact, when we consider Core 18-wo, the
degradation in terms of goodness-of-fit due to the exponential link,
still being the worst one, is lower than the Core 18 where the eight
exceedingly low performing runs are present instead. Given the
unsuitable behaviour of the exponential link, we exclude it from
further experimentation.

The log link shows improved goodness-of-fit compared to iden-
tity one, especially for the Core 18 collection (both with and without
outliers) when adopted with measures not depending on the recall
base – P@10 and RBP –, where it appears to be the most suited
model, given its minimum deviance. The tanh link exhibits an inter-
mediate behaviour in all scenarios: it appears slightly better than
the identity without providing substantial improvements. The logit
link has the best goodness-of-fit in most cases, achieving the low-
est deviance. Logit, probit and cauchit links tend to perform quite

similarly. This behaviour is somehow expected since their shapes
are overall very similar.

5.4 Number of Significantly Different Pairs
Table 3 contains the number of statistically significantly different
(ssd) pairs detected by the GLMs based on different links, using
Tukey’s HSD [46] test.

On Robust 04 collection, all the links outperform the traditional
modelling strategy – i.e., identity link – using AP, P@10, and RBP as
performance measures. Logit is the best-performing link: it detects
7.9%, 8.9%, and 7.0% more ssd pairs compared to identity, when
regarding AP, P@10, and RBP, respectively. On the other hand,
considering Recall and nDCG, log and tanh fail to identify more
pairs than identity, while logit, probit and cauchit increase the
number of ssd pairs found. nDCG tends to be the measure that
benefits the least from the new links, with the logit link providing
only 1.9% more pairs. As a general consideration, the fact that logit,
probit, and cauchit obtain good results suggests that their sigmoidal
shape is well suited to model IR data.

Concerning the Core 18 collection, Table 3 confirms what we
pointed out in Section 3.2 about log-based links: when used in
presence of low-performing outliers, they tend to underperform
compared to the identity link. In particular, we observe that log, logit
and cauchit almost always fail to outperform the identity baseline.
Indeed, in our specific case almost all the ssd pairs lost with respect
to the identity link correspond to the eight outlier runs3 submitted
by a single group. As shown also in Figure 2b, these runs have
extremely low mean performance, being their MAP between 0.003
and 0.007. As discussed in Section 3.2, the lower the expectation
of the response, the higher is the variance of the coefficients, and

38 runs appear in 540 pairwise comparisons.

Table 3: Number of statistically significantly different pair. In bold maximum value. The color indicates optimal (green), average (white) or low (red) results.

robust 04 - (5995 systems pairs) core 18 - (2556 systems pairs) core 18-wo - (2016 systems pairs)

link AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP

identity 3427 2347 3848 3704 2837 1210 1054 1115 1270 1247 789 596 427 786 803
log 3556 2383 3622 3550 2946 925 934 672 1097 1220 878 635 384 748 941
tanh 3509 2354 3639 3641 2905 1301 1130 1086 1283 1361 843 633 380 766 892
logit 3700 2557 4018 3773 3035 976 1034 1267 1251 1257 926 713 594 818 929
probit 3693 2541 4027 3766 3034 974 1079 1304 1340 1341 926 710 597 815 928
cauchit 3682 2552 3929 3764 3016 848 739 877 872 968 796 713 597 823 937
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Table 4: Agreement over two topic sets for different links.

125 50 25 10

collection identity log logit identity log logit identity log logit identity log logit

robust 04

AA 2332.45 2491.36 2616.35 1229.23 1415.57 1542.27 489.06 533.35 705.29 62.22 12.49 65.08
MA 633.34 675.22 703.57 665.41 766.20 797.01 616.21 787.56 836.24 280.01 214.32 454.29
PA 2593.33 2345.11 2215.39 3399.18 3027.13 2907.45 3909.39 3594.09 3415.37 4236.23 4246.35 3993.31
PD 435.20 479.27 455.52 700.32 780.13 741.49 979.24 1073.27 1028.08 1415.34 1517.12 1470.24
MD 1.07 4.44 5.36 1.26 6.38 7.17 2.29 7.53 10.42 2.39 5.12 13.28
AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.120 0.120 0.120 0.213 0.214 0.207 0.387 0.427 0.375 0.694 0.898 0.782

core18-wo

AA — — — — — — 300.12 247.56 318.50 66.04 11.57 43.23
MA — — — — — — 268.29 362.37 410.22 163.35 116.39 207.22
PA — — — — — — 1161.31 1138.24 1013.13 1386.25 1481.43 1360.08
PD — — — — — — 286.04 266.10 271.49 398.21 404.59 401.16
MD — — — — — — 1.04 2.12 3.05 2.15 2.03 5.51
AD — — — — — — 0.00 0.00 0.00 0.00 0.00 0.00
Bias — — — — — — 0.310 0.424 0.393 0.556 0.837 0.711

thus the standard error, causing a reduction in the number of ssd
pairs detected. Concerning Recall, both logit and probit yield more
ssd pairs than the identity. The mean Recall for the eight outliers
ranges between 0.01 and 0.02, one order of magnitude greater than
in the previous case of AP. These runs are still outliers compared
to the rest of the distribution, but they are not so close to zero
to cause issues for the logit and probit links. Finally, probit, even
though similar to logit and cauchit, outperforms the identity on all
the measures except AP. This might be due to the shape of the link
functions. The cauchit function is the steepest and thus the most
vulnerable to outliers. Logit function has intermediate steepness,
exhibiting medium vulnerability to outliers. Finally, probit is the
least steep and the more resilient to outliers.

Finally, we consider Core 18-wo collection, where we removed
the eight outlier runs: all the new links obtain a consistent improve-
ment over the identity baseline for what concerns AP, P@10, and
RBP. Logit and probit links are the best, gaining 17.4% new pairs on
the AP. Logit, probit and cauchit perform well also with Recall and
nDCG. Similarly to Robust 04, both tanh and log links lose several
ssd pairs with respect to identity when using Recall and nDCG.

Overall, nDCG is the measure that benefits the least from the new
links, gaining only 5% of pairs at most. This lower increase in ssd
pairs found is likely due to the distribution of the nDCG scores. The
plots for the nDCG like those of Figure 2, omitted for space reasons,
tend to be closer to the assumptions of the linear model compared
to other measures. The lower increase in the number of ssd pairs
thus highlights two insights: i) nDCG violates less the assumptions
underlying linear models; ii) other measures, by departing more
from the assumptions, produce worse comparisons and thus GLMs
help in mitigating this phenomenon.

In the next two sections, for space reasons, we focus our anal-
yses just on AP and the log and logit links, being their behaviour
consistent with the other cases.

5.5 Topic Splitting
We consider the following topic set sizes {125, 50, 25, 10}: all of them
in the case of Robust 04; only {25, 10} for Core 18, since it consists of

50 topics only. For each size, we re-sample the topic sets 1000 times.
In Table 4, we report average performance over these samples.

For all the links, the number of AA decreases as the topic set
size decreases, since the less evidence available causes the total
number of ssd pairs to decrease; for example, for logit on Robust
04, it drops from 43.64% of the total ssd pairs at 125 topics to 1.09%
at 10 topics. Logit always has the highest AA, with the exception of
Core 18-wo when using 10 topics. The increments range between
4.60% and 44.21% with respect to the identity link; in particular, with
50 topics, the typical size adopted in experimentation, logit gains
25.47% more pairs than identity and AA is 25.73% of the total ssd
pairs. The behaviour of the log link is mixed: on Robust 04 it gains
with respect to the identity between 125 and 25 topics, achieving
15.16% more pairs at 50 topics; on the other hand, at 10 topics it
loses 79.93% of the pairs with respect to identity (same behaviour on
Core 18-wo). The logit always performs better than the log, gaining
between 5% and 32% more pairs for 125 and 25 topics on Robust 04,
and an astonishing 421% more pairs at 10 topics.

For all the links, AD is zero under all circumstances, indicating
that all the models never reach severely inconsistent conclusions.
Both the logit and the log links havemoreMApairs than the identity
one, the logit being a bit higher than the log. For example, the logit
achieves between 11.09% and 62.24% more pairs than identity on
Robust 04, ranging between 7.58% and 13.95% of the total ssd pairs.
This indicates that they need less evidence to consider two systems
as ssd but that this may also lead to inconsistencies. When it comes
to MD, the number of pairs is generally very low, between 0.02%
and 0.22% of the total ssd pairs, but logit and log have between 2
and 4 times more than identity, suggesting possible inconsistencies.

"Not significant" decisions (PA and PD) tend to be more frequent
for the identity link in most cases, being it the most conservative.
In this regard, by making fewer decisions, the identity link is the
most likely to prevent false positives, but also the one with the most
considerable risk of incurring false negatives.

Let us now consider the significance indicators all together and
examine the risk of publication bias when using the differentmodels.
We can observe that on Robust 04 all the links behave very similarly,
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Figure 3: Comparison between decisions taken by different links. Each square represents a pair of systems. System A (y axis) has a higher MAP than System B (x
axis). M1* and M2* indicate a significant decision taken only by the identity link and log or the logit links respectively.

the logit being just a bit better (-2.82% bias) than identity at 50 topics
and 25 topics (-3.10% bias). On the other hand, at 10 topics, as well
as on Core 18-wo, identity performs better than logit, achieving
between -12.62% and -27.88% bias. It should be noted, however,
that small topic set sizes (25 and 10) incur in quite high bias for all
the models, between 0.31 and 0.90, confirming, as known from the
literature, that they are insufficient sizes.

Overall, we can conclude that at typical topic set sizes, i.e. 50 (or
more) topics, the logit and log links provide a sizeable improvement
in the number of AA pairs with a comparable risk of publication
bias with respect to the identity link.

5.6 Visual Comparison of the Decisions Taken
Figures 3a and 3b compare the identity link and log and logit ones
respectively on Robust 04 using all the topics. Note that while
in the topic splitting case we compare the same model on two
different topics sets and breakdown its “agreement” into the dif-
ferent counts, here we compare two different models on the same
topic set (the whole corpus) and we use the previous count to ana-
lyze their “agreement”. The axes represent all the possible systems
sorted by MAP, comparing each system against all the systems
that performed worse; therefore, only the upper triangular area of
the matrix is coloured. The cell color indicates the kind of agree-
ment/disagreement in the decisions taken. We do not observe any
MD or AD, being the majority of the observations either "not sig-
nificant" decisions (PD and PA) or AA.

Looking at Figure 3a, the identity link identifies some more ssd
pairs in the upper part of the system ranking (M1A, light orange).
On the other hand, the log link gains several ssd pairs for middle
and low performing systems (M2A, dark green). This behaviour
of the log link might be useful to identify which system performs
better on a set of particularly hard queries.

When it comes to logit in Figure 3b, it identifies more ssd pairs
(M2A dark green) across all tiers of system performance and it also
distinguishes better among the top-tier systems.

6 CONCLUSIONS AND FUTUREWORK
We studied Generalized Linear Models (GLMs), an extension of the
traditional linear models typically used in IR evaluation to compare
systems. GLMs overcome the main reasons of departure of IR data
from assumptions underlying linear models: non-normality and
heteroscedasticity of the data and non-linearity of the empirical
mean. In this work, we focused on the latter and studied how to
address it using different link functions, since the former two tend
to have less severe impact.

We proposed a new visualization of the IR data, capable of high-
lighting the empirical link and the performance distribution. When
it comes to the links, using different evaluation measures and collec-
tions, our experiments indicate that the exp link should be avoided,
because of its worse fitting to the data while the log, logit, tanh,
prob, and probit provide general improvements with respect to
the identity link used today. We then dug into the log and logit
links, which were the most promising ones, and we found out that
they are able to detect a sizeably greater number of consistent ssd
pairs than the identity link with a comparable, or slightly better,
risk of publication bias. In particular, the logit link delivers these
improvements all over the range of system performance while the
log link is a bit more focused on the middle and lower range. On
the other hand, some care has to be put in using these new links,
since systems with average performance exceedingly close to zero
hamper their functioning and should be removed.

As future work, we plan to regard distributions other than the
Gaussian one used in this work, in order to deal with both the
non-normality and the heteroscedasticity of the data.
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