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Abstract. The rapid growth in the number and complexity of conver-
sational agents has highlighted the need for suitable evaluation tools to
describe their performance. The main evaluation paradigms move from
analyzing conversations where the user explores information needs fol-
lowing a scripted dialogue with the agent. We argue that this is not a
realistic setting: different users ask different questions (and in a diverse
order), obtaining distinct answers and changing the conversation path.
We analyze what happens to conversational systems performance when
we change the order of the utterances in a scripted conversation while
respecting temporal dependencies between them. Our results highlight
that the performance of the system widely varies. Our experiments show
that diverse orders of utterances determine completely different rankings
of systems by performance. The current way of evaluating conversational
systems is thus biased. Motivated by these observations, we propose a
new evaluation approach based on dependency-aware utterance permu-
tations to increase the power of our evaluation tools.

1 Introduction

The conversational search domain has recently drawn increasing attention from
the Information Retrieval (IR) community. A conversational agent, by definition,
is expected to interact seamlessly with the user through natural language, either
written (i.e. text chat-bots) or spoken (i.e. vocal assistants). Following the de-
velopment of conversational systems, the evaluation of such systems is receiving
a lot of attention. Following the best practices proposed by TREC CAsT [6, 7],
the principal evaluation campaign in the conversational domain, the evalua-
tion process is very similar to the one used in ad-hoc retrieval. It follows the
Cranfield paradigm, with a corpus of passage documents, a set of conversations
representing various information needs, and a set of relevance judgements. Each
conversation is a sequence of utterances – i.e., phrases issued by the user during
the conversation – and the relevance judgements are collected for each utterance.
Several works [1, 9, 19–21, 26, 38] have already recognized the drawbacks of using
traditional evaluation approaches in a (multi-turn) conversational setup. Among
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the difficulties that make traditional evaluation techniques hardly applicable in
the conversational domain, we can list the following: – Lack of generalizabil-
ity [19]: conversations in the current evaluation collections represent a single in-
teraction between a user and the ideal system. Therefore, when we evaluate using
a conversation represented as a sequence of utterances, we consider a snapshot
of reality. Since we have a unique sequence of utterances, we cannot generalize
to conversations on the same topic that could have happened between the user
and the system but are not in the collection. – Lack of comparability [19]: con-
versations have different lengths, they can contain chains of anaphoras or might
have multiple self-contained utterances. Evaluation procedures should account
for such diversity. – Interdependency between utterances [9]: utterances in con-
versational search are intrinsically dependent, differently from topics in ad-hoc
retrieval. Therefore, cannot be treated as independent and identically distributed
events. This work aims at providing a new perspective on the first aspect: low
generalizability. We show a series of experiments meant to demonstrate the poor
generalizability of results obtained using offline evaluation collections. Our work
can be formalized with the following research questions:

RQ1 How can we shuffle utterances of a conversation by maintaining their original
meaning and inter-dependencies?

RQ2 What is the effect of including dependency-aware permuted conversations in
the comparison between systems?

RQ3 Can we improve conversational agents evaluation using permuted dialogues?

By answering the first question, we obtain a sound process to permute ut-
terances of a conversation, producing new conversations to test conversational
systems. We, therefore, use such conversations to compare models under the
current evaluation paradigm, highlighting and measuring its flaws. Finally, we
propose a new strategy to include the permuted conversations in the evaluation
methodology. We do not propose a new evaluation measure – as done for exam-
ple in [9, 19] – but show how, by adapting our current instruments, we could
partially mitigate the limitations associated with the evaluation of the conver-
sational systems. Our main contributions are the following. We show that:

– Modeling a conversation using a single sequence of utterances only favours
some systems, while penalizing others;

– If we consider multiple valid permutations of the conversations, the perfor-
mance of conversational agents moves from point estimations to distributions
of performance (in which the default sequence is an arbitrary point);

– By including multiple permutations in the evaluation, we obtain more reli-
able and generalizable statistical inference.

Our work is organized as follows: Section 2 describes the current state in con-
versational evaluation. In Section 3 we describe our experimental methodology.
Section 4 details on the experimental results observed. Finally, Section 5 de-
scribes the insights of our and outlines the next steps.
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2 Related Work

Conversational agents are commonly divided into chit-chat bots [36, 37] and
task-oriented systems [3, 14, 26]. Chit-chat bots are used to entertain the users,
while the latter guide them to satisfy a goal, such as buy or discover something,
through a dialogue. Task-driven conversational systems can be categorized into
systems that retrieve and rank answers [14, 31, 35] and systems that build them
through summarization techniques such as T5 [27]. While the latter are tradi-
tionally evaluated through traditional NLP and machine translation measures,
such as BLEU [25] or METEOR [2], the former still relies on traditional IR
evaluation measures such as Precision or Normalized Discounted Cumulated
Gain (nDCG) [15], with typically a very small cutoff [6]. Finally, conversational
systems can be divided into single-answer systems and multi-turn conversational
systems. Among the former, we can list current commercial vocal assistants, han-
dling very short - often scripted - sequences of interactions. The latter should
ideally deal with a sequence of interactions of unspecified length. One of the
most peculiar aspects related to the multi-turn conversational task is the role
played by the concept of “context” [18, 23, 33]. The context corresponds to the
system’s internal representation of the conversation state that evolves through
time. Correctly maintaining and updating such internal beliefs is essential to ap-
proach effectively the multi-turn conversational task. In this work, we focus on
the evaluation of Multi-turn Task-driven Conversational search systems. Multi-
turn conversational search is also the main focus of the TREC Conversational
Assistance Track (CAsT) campaign [6, 7]. Currently, the track has reached its
third edition: a further demonstration of the interest shown by the community.
The evaluation aspect of conversational agents is consequently drawing increas-
ing interest [1, 9, 19–21, 26, 38]. Even though several efforts aimed at developing
proper techniques to evaluate conversational systems [9, 38], there is a consensus
on the fact that we still lack the properer statistical tools to correctly evalu-
ate such systems. Faggioli et al. [9] propose to model a conversation through a
graph: utterances in a conversation are linked if they concern the same entities.
Authors argue that current evaluation approaches introduce biases on systems
comparison, by considering utterances as independent events. Faggioli et al. [10]
do not tackle the problem linked to the low generalizability, due to predefined
conversations available in current offline collections. Lipani et al. [19] start the
low generalizability that affects the current offline evaluation of conversational
systems. Lipani et al. [19] propose to simulate users through a stochastic pro-
cess, similarly to what done in [38]. In particular, each topic is modelled as a
set of subtopics (collected manually and using the available experimental collec-
tions). Using crowd assessors, Lipani et al. [19] define a Markov chain process
that should model how users present utterances to the system when interacting
with a conversational agent. This allows producing new simulated conversations.
Such a solution partially solves the low generalizability problem. Nevertheless,
the need for online data makes it infeasible for purely offline scenarios, where no
users are available.
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3 Methodology

In this section, we describe the experimental methodology to answer the re-
search questions. In Subsection 3.1 we describe a permutation process capable
of preserving the dependencies between utterances (RQ1). Finally, Section 3.2
defines a methodology to use ANOVA to evaluate conversational systems, using
permuted conversation utterances (RQ3).

3.1 RQ1: a Dependence-aware Utterance Permutation Strategy

Several works [9, 19, 26, 38] recognize the need of increasing the variety of con-
versations to improve the generalizability of offline conversational evaluation. As
observed by [19], when conversing with a system about a specific topic, distinct
users tend to traverse subtopics in different orders. Generalization would ask
to observe how distinct users interact with the systems to investigate a specific
topic: this is not possible in an offline scenario. A possible approach to simulate
how users would experience a system would be permuting the utterances of a
given conversation, and measuring how it performs. We cannot however permute
utterances completely randomly. In fact, we might lose temporal dependency be-
tween the moment the entity is mentioned in an utterance for the first time and
referenced later. To solve this limitation, we would have to re-gather the rel-
evance judgements to fit the newly defined anaphoras in the randomly built
conversation. This is prohibitive and not suited to an offline evaluation scenario.
A better permutation strategy consists in permuting utterances by respecting
the temporal dependencies. To this end, we could rely on classification labels
(we dub this approach class-based permutation) to identify such dependen-
cies. Similarly to what done in [24], we can manually annotate the data using
three classes of utterances:

– Self-Explanatory (SE) utterances: utterances that do not contain any seman-
tic omission. Non-contextual retrieval systems can answer such utterances.

– Utterances that depend on the First Topic of the conversation (FT): they
contain an - often implicit - reference to the general topic of the conversation,
subsumed by the first utterance.

– Utterances that depend on a Previous Topic (PT): the previous SE utterance
contains the entity to solve the semantic omission in the current one.

Using this utterance classification, we define a sampling process to randomly
permute utterances of a conversation, while preserving temporal dependencies.
We define the following rules for the generation of utterance permutations:

– The first utterance in any conversation expresses the main topic of the con-
versation. It cannot be moved to other positions.

– SE utterances, being independent by definition, can appear in any order
inside the conversation.
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– PT utterances have to appear immediately after their SE utterance. More in
detail, after a SE utterance, in CAsT 2019 conversations, we have an arbitrary
number of PT utterances (usually between 0 and 4): such utterances can
appear in any order, as long as they occur after the associated SE utterance.

– FT utterances, depending on the global topic of the dialogue can be issued
at any moment, since the first utterance cannot be moved.

3.2 RQ3: Exploiting Permuted Conversation Utterances

As a final methodological remark, we show how to embed utterances permu-
tations in the evaluation. To have a common ground with current evaluation
strategy, we consider to compare different retrieval models using ANalysis Of
VAriance (ANOVA). If we were to apply ANOVA in the current evaluation
setup, we would likely rely on the following model:

yik = µ.. + τi + αk + εik (MD0)

Where yik is the mean performance of all utterances for the conversation i,
using the retrieval model k. µ.. is the grand mean, τi is the contribution to the
performance of the i-th conversation, while αk is the effect of the k-th system.
Finally, εik is the unexplained portion of the performance variation using the
ANOVA model MD0. This is the traditional two-way ANOVA model used on
IR data to recognize statistical differences between systems [5, 13, 34].

If we also include multiple permutations for each conversation, Model MD0
cannot be applied satisfactorily anymore. The different permutations behave
as a nested factor. We need to resort to a three-way ANOVA, that includes
the different permutations. A specific permutation is, trivially, a permutation
only of one conversation: we cannot treat it as a permutation of others. The
variation in the performance due to a permutation should contribute only to the
variation in performance of the conversation it represents. Including multiple
permutations, which behave as replicates [28], allows computing the interaction
factor between retrieval models and conversations in the ANOVA model. In ad-
hoc retrieval, such interaction has a medium-to-large size effect [4, 12, 34] and,
if included, allows more powerful inferential analyses. We leave this analysis for
future works. We use the following ANOVA model:

yi(j)k = µ.. + τi + νj(i) + αk + εijk (MD1)

Where, compared to Model MD0, νj(i) represent the effect of the j-th per-
mutation of the i-th conversation.

4 Experimental Analysis

In our experimental analysis, we consider the Conversational Assistance Track
(CAsT) 2019 [6]. Such collection contains 50 multi-turn conversations, each com-
posed of 9 utterances on average. The utterances in their original formulation
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contain semantic omissions - anaphoras, ellipsis and co-references. Among the
50 conversations, 30 were used for training and have smaller pools of relevance
judgements. The remaining 20 are the test set. In our subsequent analyses, we
consider only test conversations, being their relevance judgements much more
significant. The corpus is composed of approximately 38 million paragraphs from
the TREC Complex Answer Retrieval Paragraph Collection (CAR) [8] and the
MS MARCO collection4. Regarding the relevance judgements, CAsT 2019 con-
tains graded judgements on a scale from 0 to 4. We adopt nDCG with cutoff at 3,
being the most widely diffused evaluation measure for this specific scenario [6].
To ease the reproducibility the code is publicly available5.

4.1 Conversational Models

As commonly done [10, 11, 19], we select as baselines a set of models that
represent different families of approaches to the multi-turn conversational task.
Notice that, for all the rewriting strategies, we used BM25 as ranker.

Non-contextual baseline Models We consider three non-contextual baseline mod-
els, used as a comparison with other approaches. We compute the runs using the
okapi BM25 model with default terrier parameters (k = 1.2 and b = 0.75). The
second baseline is Query Language Model with Bayesian Dirichlet smoothing
and µ = 2500. Finally, we include results from a Pseudo-Relevance feedback
RM3 rewriting model [22], which considers the 10 most popular terms of the 10
documents ranked the highestd.

Concatenation-Based Models A simple approach to enrich utterances with con-
text to address the multi-turn conversational challenges consists in concatenating
them with one (or more) of the previous ones. We propose three concatenation-
based strategies, previously adopted as baselines in the literature [24]:

– First Utterance (FU): each utterance uj is concatenated with u1, the first
utterance of the conversation.

– Context Utterance (CU): each utterance uj is concatenated with u1 and uj−1,
the previous utterance.

– Linear Previous (LP): we concatenate uj with uj−1 linearly weighting the
terms: qj = λ ∗uj +(1−λ) ∗uj−1, with λ ∈ [0, 1]. In particular, we observed
empirically the best results for λ = 0.6.

Pseudo-Relevance Feedback Based Models We consider two approaches based on
pseudo-relevance feedback (PRF) that account for the “multi-turn” aspect:

– RM3-previous (RM3p): it concatenates the current utterance and the RM3
expansion of the previous one (using BM25 as first stage retrieval model).

4 http://www.msmarco.org/
5 https://github.com/guglielmof/utterance permutations
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Table 1: Number of unique permutations that can be observed for each conversation
in CAsT 2019, according to the class-based permutation.

Conv. id 31 32 33 34 37 40 49 50 54 56

unique perm. 72 15184 720 720 240 120 5039 120 25676 720

Conv. id 58 59 61 67 68 69 75 77 78 79

unique perm. 720 121 720 289 4996 480 721 48 48 241

– RM3-sequential (RM3s): it takes the relevance feedback considering the ranked
list retrieved for the previous utterance, and uses it to expand the current.

The difference between the two models is that, for RM3p, the ranked list depends
only on the previous utterance and the one at hand. Conversely, the latter con-
siders the sequence of utterances observed up to the current one. In both cases,
for the first query, we apply directly BM25, without rewriting it.

Language Model-Based Models Among the neural language models, we consider
coref-spanBERT (anCB). This method relies on the Higher-order Coreference
Resolution model, as defined in [17], but employs the spanBERT [16] embed-
dings to represent the words. In particular, we use the pre-trained version of the
approach available in the AllenNLP framework6.

4.2 RQ1: Permuting Conversations

Following the sampling process described in Subsection 3.1 we randomly permute
the CAsT 2019 conversations. Table 1 reports the number of unique permuta-
tions obtained for each of the conversations in CAsT 2019.

The majority of the conversations have the class-based permutations in
the order of tens to thousands. There are two main exceptions: conversations
54, 32. The larger number of permutations is due to the different structures
of such conversations. For example, conversation 54 contains 3 SE utterances
plus the first utterance and 5 FT utterances. Given these characteristics, we
need to enforce only the first and third constraints to obtain valid class-based

permutations, producing a larger space of valid permutations7.

4.3 RQ2: Conversational Systems Performance on Permuted
Conversations

Table 2 reports the nDCG@3 observed for the different archetypal conversational
retrieval baselines either by considering only the original order of the utterances

6 https://docs.allennlp.org
7 If we consider all the random permutations, for an average 9-utterances conversa-
tion, we would have approximately 3.6× 105 permutations: 10 times more than the
maximum number of permutations observed using the class-based strategy.
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Table 2: Performance measured with nDCG@3 for the baselines and PRF conversa-
tional models. Baselines results do not depend on the order of the utterances. We report
the mean for both standard order of the utterances, and over all permuted conversa-
tions. Concerning permuted conversations, we also report the minimum and maximum
mean over all conversations that can be observed, using different permutations.

nDCG@3
orig. order permutations

model min mean max.

baselines
BM25 0.0981 0.0981 0.0981 0.0981
DLM 0.0794 0.0794 0.0794 0.0794
RM3 0.1064 0.1064 0.1064 0.1064

concatenation-based
FU 0.1692 0.1692 0.1692 0.1692
CU 0.1687 0.1185 0.1481 0.1809
LP 0.1464 0.0906 0.1279 0.1671

PRF-based
RM3p 0.1451 0.1019 0.1353 0.1709
RM3s 0.1639 0.1108 0.1482 0.1857

neural LM based anCB 0.1640 0.1410 0.1553 0.1645

as defined in CAsT 2019 or considering the average over multiple permutations
for each conversation. To grant a fair comparison between different conversations,
since they can have a different number of valid class-based permutations, we
sample only 100 permutations for each of them. The most interesting insight
that Table 2 is that the best performing system is the “First Utterance” (FU).
We explain this because the first utterance of the original conversation is often
the most generic. If we concatenate it with other utterances it can boost their
recall, helping them obtain better results. The FU approach obtains the same
results even when we permute conversations. Since we forced the first utterance
to remain in its position, the order does not influence this algorithm. There-
fore, we do not include it in subsequent analyses that measure the impact of
permutations on conversational models. If we consider the result achieved with
permuted conversations, we observe a general decrease in the average perfor-
mance, due to the increased variance caused by the permutations. If we consider
the maximum performance achievable, interestingly, all the methods can out-
perform the results achieved with the original order, indicating that there are
situations in which different orders are preferable. The change in performance
occurs due to the different information flow. The conversational models selected
– as the majority of common conversational strategies – exploit the context to
solve the anaphoras and rewrite the utterances. Such context derives from pre-
vious turns. By changing the previous turns, we also change the context, and
thus the information used by the system. This aims at mimicking a real-world
scenario, where we do not know if previous utterances provided good context.
Furthermore, such context might change depending on the path followed by the
user.
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Fig. 1: Distributions of the average systems performance over different permutations of
the conversations, considering original CAsT 2019 utterances. The yellow diamond is
the average performance achieved using the original order of utterances. Observe that,
in most cases the original order of the utterances does not have the best performance.

Table 3: Maximum distance observed between models, using different permutations.
On the diagonal, the maximum average distance from all other systems. The absence
of negative numbers indicates that it is always possible to make any model “the best”.

model CU LP RM3p RM3s anCB

CU 0.0727 0.1030 0.0958 0.0810 0.0882
LP 0.0644 0.0432 0.0460 0.0470 0.0805
RMp 0.0646 0.0577 0.0396 0.0476 0.0803
RMs 0.0955 0.1226 0.1147 0.0937 0.1148

anCB 0.0420 0.0668 0.0593 0.0402 0.0250

Figure 1 plots, for each CAsT 2019 conversation, the distribution over the
permutations of the average performance of all systems. The yellow diamond
represents the mean performance using the default order of the utterances. It is
insightful noticing that the default order rarely gives the best performance: using
a different order of utterances strongly influences performance. Such a pattern
is also observable for each system singularly8.

To further investigate the effect of permutations, we select the permutation
that maximizes the difference in nDCG@3 between each pair of systems. We re-
peat this for each conversation. We also select the permutation that maximizes
the average difference in performance between a system and all the others. Ta-
ble 3 reports the results of such analysis. It is always possible to cherry-pick
conversations permutations to make any model the best in a pairwise compar-

8 We do not report the figure for each system, to avoid clutter.
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Fig. 2: Conversation-wise comparisons between pairs of systems. Number of times the
row system is preferred over the column one, over different permutations of the conver-
sation. Permuting the utterances order changes what system is deemed better: limiting
ourselves to only one permutation might lead us to wrong conclusions. 12 out of 20
Conversations have been randomly selected, for the sake of presentation.

ison. When using a collection with a single sorting of the utterances for each
conversation, we need to ask ourselves: is a system better than another or is it
an artefact of the collection at hand? Can we trust our results to be generalizable
on previously unseen conversations? The difference can be as large as 12%: it is
huge if we consider the scale of our performance - see Table 2. Not only it is pos-
sible to make any model the best in a pairwise comparison, but we are also able
to maximize the distance in terms of performance from any other model, to make
an arbitrary system the best in absolute (see diagonal of Table 3). Figure 2
describes how often, conversation by conversation, we would change our opin-
ion over which system is the best, if we present them with different utterances
permutations. More in detail, for each conversation, in each cell we report how
often the row system is deemed better than column one, over different utterances
permutations. When we consider pairwise comparisons between systems, there
is seldom a clear winner. For example, consider Conversation 59; in the majority
of the pairwise comparisons, there is a 50% chance that one model is better than
the other if we select a specific permutation of the utterances. A system wins
over another on every permutation only in a few cases.



A Dependency-Aware Utterance Permutation Strategy 11

Table 4: Summary statistics for ANOVA MD0. This models considers only one per-
mutation for each conversation (the original one, presented in CAsT 2019). Different
models do not show significant differences. ω2

model is not reported, being ω2 ill-defined
for non-significant factors.

Source SS DF MS F p-value ω̂2
⟨fact⟩

topic 1.052 19 0.055 17.454 0.0000 0.758
model 0.010 4 0.002 0.762 0.5532 —
Error 0.241 76 0.003

Total 1.302 99

4.4 RQ3: Comparing Systems via ANOVA

Relying on the methodology proposed in Subsection 3.2, we now describe the
ANOVAs on different conversational models, when either we consider or not
multiple permutations of the utterances for each conversation. Notice that, since
we are interested in evaluating the effect of the permutations and FU is not
influenced by them, we exclude it from subsequent analyses.

Table 4 reports the summary statistics for ANOVA when applied to CAsT
2019 conversations, using the Model MD0. For each factor, we report the Sum
of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F
statistics, the p-value and the Strength of Association (SOA), measured accord-
ing to the ω2 measure.

We observe that the effect of the “conversation” factor is significant and
large-sized (ω2 ≥ 0.14). This pattern is often observed in many IR scenarios,
such as ad-hoc retrieval [4, 13, 34] or Query Performance Prediction (QPP) [10].
Conversely, the effect of the Model factor is not significant: none of the models
is significantly the best. We are not particularly surprised by that: both Table 3
and Figure 2 have shown that considering only a single permutation of the
utterances, we would likely say something false by saying that a specific system
is the best! This indicates the low discriminative power associated with this
evaluation approach. If we were to consider state-of-the-art systems, possibly
even more complex (and similar) than the ones we used, would we be able to
state which system is statistically the best? Being able to discriminate between
systems is a fundamental requirement for any evaluation approach [29, 30, 32]:
could we deem ourselves satisfied with what we can achieve with the current
evaluation setup in multi-turn conversational search?

Table 5 reports the summary statistics for ANOVA with model MD1. By
looking at Table 5 we can see the first huge advantage of including permutations
in our evaluation framework: the Model factor is now significant - although small
(0.01 < ω2 < 0.06). As a side note, Tukey’s post-hoc analysis shows that anCB is
the best model, followed by RM3s which belong to the same tier. Subsequently, we
have RM3p and CU, which again are statistically not different from each other, but
worse than the previous ones. Finally, LP is the only member of the worst-quality
tier. We have moved from having all models equal in Table 4 to a four-tiers
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Table 5: Summary statistics for ANOVA MD1. This models considers 100 unique
permutations for each conversation plus the original one. Observe that now all the
factors have a significant effect.

Source SS DF MS F p-value ω̂2
⟨fact⟩

topic 38.594 19 2.031 657.983 >1e-3 0.722
perm(topic) 2.438 940 0.003 0.840 0.999 —
model 0.472 4 0.118 38.230 >1e-3 0.030
Error 11.842 3836 0.003

Total 53.347 4799

sorting of the models in Table 5. The Permutation factor is not significant. This
suggests that there is not a single permutation that allows every system to work
better, but rather there is an interaction between the systems and permutations:
distinct models behave differently according to the permutation at hand. Table 5
shows that, if we use the permutations as additional evidence of the quality of
a model, we discriminate better between them. Furthermore, we do not know in
which order the user will pose their utterances. Including permutations allows
us to model better the reality: what we observe in our offline experiment is
likely to generalize more to a real-world scenario. Permutations allow robust
statistical inference, without requiring to gather new conversations, utterances
and relevance judgements.

5 Conclusions and Future Works

In this work, we showed that traditional evaluation is seldom reliable when ap-
plied to the conversational search. We proposed a methodology to permute the
utterances of the conversations used to evaluate conversational systems, enlarg-
ing conversational collections. We showed that it is hard to determine the best
system when considering multiple conversation permutations. Consequently, any
system can be deemed the best, according to specific permutations of the conver-
sations. Finally, we showed how to use permutations of the evaluation dialogues,
obtaining by far more reliable and trustworthy systems comparisons.

As future work, we plan to study how to estimate the distribution of systems
performance without actually having the permutations and the models at hand.
We plan to investigate how to use the performance distributions to compare
multi-turn conversational models.
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