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Abstract Query Performance Prediction (QPP) has been studied extensively
in the IR community over the last two decades. A by-product of this research is
a methodology to evaluate the effectiveness of QPP techniques. In this paper,
we re-examine the existing evaluation methodology commonly used for QPP,
and propose a new approach. Our key idea is to model QPP performance as a
distribution instead of relying on point estimates. To obtain such distribution,
we exploit the scaled Absolute Ranking Error (sARE) measure, and its mean
the scaled Mean Absolute Ranking Error (sMARE). Our work demonstrates
important statistical implications, and overcomes key limitations imposed by
the currently used correlation-based point-estimate evaluation approaches. We
also explore the potential benefits of using multiple query formulations and
ANalysis Of VAriance (ANOVA) modeling in order to measure interactions
between multiple factors. The resulting statistical analysis combined with a
novel evaluation framework demonstrates the merits of modeling QPP per-
formance as distributions, and enables detailed statistical ANOVA models for
comparative analyses to be created.
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1 Introduction

The Information Retrieval (IR) community has long recognized the impor-
tance of applying statistical tests to evaluation results. Although best prac-
tices continue to evolve, conference and journal guidelines, and discussion pa-
pers including those of Fuhr (2017) and Sakai (2020) have led the community
to appreciate the importance of a more theoretically grounded evaluation.
Practitioners in IR have been urged over the years to include sound analy-
ses using statistical tests of significance or confidence intervals in submitted
manuscripts. While this has led to higher quality analytical comparisons in
many IR-related fields, not all areas have adopted the practice. An exam-
ple of a common IR problem that might benefit from alternative evaluation
techniques is Query Performance Prediction (QPP).

The goal of QPP is to estimate the effectiveness of a retrieval system in
response to a query when no relevance judgments are available (Carmel and
Yom-Tov 2010). The most widely-used method for evaluating QPP approaches
is based on the strength of a relationship between per-topic prediction scores,
and the actual per-topic system effectiveness as measured using a standard
IR effectiveness metric, usually Average Precision (AP). The association is
measured using a correlation coefficient, with different papers reporting the
Pearson (linear) correlation, Spearman’s rank correlation, or Kendall’s τ . A
QPP approach that achieves a higher correlation value than another is taken to
be the superior approach. This evaluation method compares QPP effectiveness
at a very high level, with the performance of a QPP approach over a whole set
of topics being summarized by a single correlation coefficient as a point value.

In order to statistically validate the results two alternatives are available.
First, we can test whether or not the correlation between a predictor and the
retrieval results is significantly different from zero (He and Ounis 2004; Zhou
and Croft 2006; Cronen-Townsend et al. 2002; Zhou and Croft 2007; Chifu
et al. 2018; Diaz 2007; Zhao et al. 2008; Carmel et al. 2006; Cummins 2014;
Hauff et al. 2008; Mothe and Tanguy 2005; Shtok et al. 2010). However, this
validation approach just tells us how reliable the conclusions are for a single
QPP method, and does not allow two or more QPP approaches to be directly
compared. Second, by relying on repeated randomized topic sampling, we can
test whether or not the correlation coefficients for two different QPP methods
are significantly different from each other. A statistically appropriate method
to test the latter would rely on Fisher’s z transformation of sample corre-
lation coefficients. In fact, this approach was previously suggested by Hauff
et al. (2009) and again more recently by Roitman (2020) to more reliably test
for significant differences in QPP model performance. However, this practice
has not been adopted in published QPP work to date. Instead, a Student’s
t-test for the difference of means of the correlated correlation coefficients is
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currently the preferred approach (Roitman 2018a; Zamani et al. 2018; Zendel
et al. 2019). However, it is important to note that both of these approaches
are fundamentally different from the pair-wise significance test used for sys-
tem retrieval effectiveness, which is now common practice in IR evaluation
exercises.

Motivated by these observations, we re-examine how QPP effectiveness
can be analyzed using a more fine-grained approach – by modeling the perfor-
mance of QPP techniques as distributions. This approach has also previously
been applied successfully in system evaluation exercises. A distribution-based
model can be constructed as follows. First, an estimate of the performance for
each system-topic combination is computed using a traditional performance
measure, such as AP. Then, all of the topics for a collection are used to model
the performance distribution. Note that this is fundamentally different from a
classical QPP evaluation approach. Indeed, even when various sampling tech-
niques (e.g., randomization or bootstrap) are currently used in QPP, this is
a re-sampling of topics, and leads to a new (aggregated) point estimate, e.g.,
Kendall’s τ , for that sample. The different re-samples are then used to compute
an expectation and a confidence interval for the point estimate. In contrast,
when randomization/bootstrap techniques are used for the evaluation of re-
trieval effectiveness (Smucker et al. 2007), it is topics that are re-sampled; for
each topic a performance score such as AP is computed, and a distribution of
performance for that sample is obtained. A summary of this distribution, e.g.,
a mean or a confidence interval, is then computed, and finally the different
re-samples are used to compute a further expectation and confidence interval
for the summary.

In this work, we propose a methodology similar to the latter approach.
Our evaluation approach has several appealing properties: it allows formal
inferential statistics to be applied, which generalizes the results to the en-
tire population of topics; it allows the behavior of a QPP approach to be more
clearly isolated, for example through confidence intervals; and, it enables factor
decomposition, which in turn allows us to measure the relative contributions
to observed effectiveness systematically. In particular, we compare the perfor-
mance with the distance between the rank predicted by a QPP model for a
query and the rank of the query using a given traditional performance mea-
sure. Being a measure of the rank error made by a predictor, we call the above
measure scaled Absolute Ranking Error (sARE). So, we now have a measure of
error for each of the topics, given a specific predictor. To have a measure of the
overall quality of the predictor, we can average sARE over all topics and com-
pute the scaled Mean Absolute Ranking Error (sMARE). We also incorporate
recent work in retrieval effectiveness on query variation and reformulation for
each topic (Bailey et al. 2016, 2017; Benham et al. 2019; Thomas et al. 2017;
Zendel et al. 2019) into our framework, which allows a finer-grained sampling
of retrieval performance, and allows us to estimate interaction between sys-
tems, topics and query formulations, which was not possible using only single
pointwise estimates.

Our work focuses on two closely related research questions:
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– RQ1: How can detailed statistical analysis and testing be applied to QPP
evaluation exercises?

– RQ2: What factors contribute to improving or reducing the performance
of a QPP model?

This is an extended version of (Faggioli et al. 2021), awarded “Best Pa-
per” at the European Conference on Information Retrieval, 2021 which pro-
posed a novel evaluation framework for QPP, based on the sARE measure,
and models QPP prediction performance as a distribution computed over the
evaluation topics. The sARE-based approach is a statistically grounded evalu-
ation methodology that can be used by practitioners to perform comprehensive
comparative analyses of the effectiveness of new QPP prediction techniques.

Novel Contributions. In this work, we present some novel contributions
with respect to Faggioli et al. (2021). We discuss the performance differences
observed at the query level based on different performance characteristics
(“easy” versus “hard” queries determined by system level effectiveness of AP
for example) to demonstrate how predictors might be more comprehensively
studied in the future. We also present, as a new contribution, further examples
of the capabilities and applications of the proposed framework. In particular,
we include an additional ANOVA analysis to show and compare the perfor-
mance of QPP models based on multiple factors. This provides new insights
and observations into how QPP algorithms behave in our original study. It
also allows us to provide practitioners with new techniques to understand, de-
bug and explain the performance of new QPP approaches. Finally, we include
a detailed experimental study of ties as well as a comprehensive analysis of
several alternative formulations to measure the rank error in order to ensure
that we are recommending the most appropriate tie-breaking approach and
rank error formulation.

2 Related Work

Retrieval performance can vary widely across different systems, even for a
single query (Carmel and Yom-Tov 2010; Culpepper et al. 2021). This has
resulted in a large body of work on QPP, which is divided into two common
approaches. Pre-retrieval predictors analyze query and corpus statistics prior
to retrieval (Cronen-Townsend et al. 2002; Hauff et al. 2008; He and Ounis
2004; Mothe and Tanguy 2005; Scholer et al. 2004; Zhao et al. 2008) and post-
retrieval predictors that also analyze the retrieval results (Aslam and Pavlu
2007; Roitman 2018b; Shtok et al. 2016; Zamani et al. 2018; Zhou and Croft
2006; Carmel et al. 2006; Cummins 2014; Diaz 2007; Amati et al. 2004). Pre-
dictors are typically evaluated by measuring the correlation coefficient between
the AP values attained with relevance judgments and the values assigned by
the predictor. Such evaluation methodologies are based on a point estimate
and have been shown to be unreliable when comparing multiple systems, cor-
pora and predictors (Hauff et al. 2009; Scholer and Garcia 2009). Hauff et al.
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(2009) demonstrate that higher correlation does not necessarily attest to bet-
ter prediction, and used Root Mean Square Error (RMSE) in their evaluation.
Hauff et al. applied methods from Meng et al. (1992) to compare 2 or more
correlation coefficients, and argued that to test the significance of differences in
correlation between the predictors, Fisher’s z transformation should be used
and the Confidence Interval (CI) should be reported. When computing the
CI for Pearson’s linear correlation in the evaluation using multiple previously
reported pre-retrieval predictors, they found that many of the predictors had
overlapping CIs, and concluded that they were not significantly different from
the best performing predictor. Hauff et al. focused on prediction of normalized
scores that can be compared to AP using linear correlation as measured with a
parametric statistic. In this work, we focus on ranking the queries based on the
retrieval effectiveness, which is analogous to a rank-based correlation given by
Kendall’s τ as our reference for the existing evaluation framework, but many
other alternatives are possible. We chose to use a rank-based correlation as
it is a non-parametric statistical method, and hence makes no assumptions
about the underlying distributions of the data.

Also of interest, recent work using query variations for QPP (Thomas et al.
2017; Zendel et al. 2019, 2021; Di Nunzio and Faggioli 2021) has demonstrated
that the relative prediction quality of predictors can vary with respect to the
effectiveness of the queries used to represent the topics, and we explore such
observation further using advanced statistical instrumentation. One principled
approach that can be used in IR evaluation is ANOVA (Maxwell and Delaney
2004; Rutherford 2011). ANOVA is commonly used to assess the presence of
statistically significant differences in mean performance observed when using
different experimental conditions. This technique can be operationalized as
a General Linear Mixed Model (GLMM), where a response variable, called
Data, is linearly modeled into two parts: the experimental conditions (the
Model) and the Error: Data = Model + Error. The Error represents that
part of the variance in the Data that the Model cannot account for. The
ANOVA approach is particularly useful in our work as it allows us to break
down the variance observed in the data, assigning it to the factors that caused
it (Banks et al. 1999; Carterette 2012; Voorhees et al. 2017; Ferro and Silvello
2016; Ferro et al. 2019; Robertson and Kanoulas 2012; Tague-Sutcliffe and
Blustein 1994; Faggioli and Ferro 2021). The Model often includes a subject
component (which in IR evaluation often corresponds to the topic), one or
more factors, which are the different experimental conditions (either the entire
system, or its components - e.g., the stemmer, the stoplist and the QPPmodel),
and possibly their interactions. If all the possible combinations of factors are
applied to all subjects, this is a Factorial/Crossed Design, and its factors are
called Crossed Factors. Specific factors might be nested inside others: in the
following analyses, query formulations are a nested factor of the topic, since
each formulation represents a single topic and cannot be used to represent
others. To compare the effect size of different factors, which cannot be done
by looking only at the F-statistic or p-value, the Strength of Association (SOA)
is reported, measured as ω2, and is the factor significance, bounded between
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[0, 1]. The larger ω2 is, the greater the impact is of factor levels to the response
variable.

3 Experimental Analysis

In this section we detail the experiments carried out to demonstrate the advan-
tages of using the sARE measure to evaluate QPP models. In Subsection 3.1
we describe the experimental setup. Subsection 3.2 contains details on the
traditional evaluation of QPP models, used as a baseline for the subsequent
analyses. Subsection 3.4 contains the analysis of how the framework behaves
when using several approaches to compute the error and to break ties. In Sub-
section 3.5 we describe how to use the sARE measure to compare systems.
Finally, in Subsection 3.6, we include observations that can now be made on
QPP models and query formulations when performing an evaluation using
ANOVA and the sARE measure.

3.1 Experimental Setup

In our analyses, we use the TREC Robust 2004 (Robust04) Ad Hoc (Voorhees
2004) collection. The Robust04 ad hoc track consists of approximately 528K
documents from TREC disks 4 & 5, minus the Congressional Record from the
TIPSTER corpus, and contains 249 topics with at least one relevant docu-
ment in the original TREC relevance judgments. We enrich the set of queries
for the corpus using publicly available human-curated query reformulations
for each topic (Benham and Culpepper 2017).1 Our experiments use a Grid
of Points (GoP) of runs as described by Ferro and Harman (2010), using 4
different stopword lists (atire, zettair, indri, lingpipe), plus the no stop

(not applying stopword removal) approach and 2 different stemmers, (lovins,
porter) plus a nostem approach. The indexes are constructed from the raw
postings lists created with the Apache Lucene search engine2, and the Com-
mon Index File Format (CIFF) (Lin et al. 2020). All runs were produced
using our own implementation of the query-likelihood model and use Dirichlet
smoothing (µ = 1000), as described originally by Zhai and Lafferty (2001).
Each run was repeated 15 times. We test 16 QPP models (12 + 4 UEF-based
methods) in our analyses, all of which are summarized in Table 1. Our goal
was to choose representative and well known system configurations and QPP
models, and the evaluation framework is not limited to any specific configura-
tion. It can easily be extended by others for further experiments in the future.
In total, 240 different predictor-system combinations were generated for the
Robust04 collection. The pre-retrieval approaches are parameter-free and do
not require tuning. For the parameters of the post-retrieval predictors we used
fixed settings that have been demonstrated to be effective for the Robust04

1 http://culpepper.io/publications/robust-uqv.txt.gz
2 https://lucene.apache.org

http://culpepper.io/publications/robust-uqv.txt.gz
https://lucene.apache.org
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Table 1: A summary of QPP models used in this work.

QPP model Description

Pre-retrieval

SCQ by Zhao et al. (2008) Measures similarity based on cf.idf to the cor-
pus, summed over the query terms.

AvgSCQ by Zhao et al. (2008) SCQ normalized by the query length.
MaxSCQ by Zhao et al. (2008) The query term with maximal SCQ score.
SumVAR by Zhao et al. (2008) Measures the cf.idf variability of the query

terms in the corpus.
AvgVAR by Zhao et al. (2008) Variability normalized with the query length.
MaxVAR by Zhao et al. (2008) The query term with maximal variability.
AvgIDF by Cronen-Townsend et al. (2004) The mean idf value of the query terms.
MaxIDF by Scholer et al. (2004) The query term with maximal idf value.

Post-retrieval

Clarity by Cronen-Townsend et al. (2002) Measures the divergence between the
Language Model (LM) constructed over top
documents in the result list to the LM of the
entire corpus.

NQC by Shtok et al. (2012) Measures the standard deviation of the top
documents scores in the retrieval list.

WIG by Zhou and Croft (2007) Measures the difference between the mean re-
trieval score of the top retrieved documents
and the score of the entire corpus.

SMV by Tao and Wu (2014) Scores the queries based on a combination of
the scores standard deviation and magnitude.

UEF by Shtok et al. (2010) Prediction framework that is based on the
similarity of the initial result list with the
list re-ranked using a Relevance Model (RM),
scaled by an estimator of the RM quality.
In this work we scale the RM with the ex-
isting post-retrieval predictors: UEF(Clarity),
UEF(NQC), UEF(WIG) and UEF(SMV).

collection previously (Shtok et al. 2012, 2010; Tao and Wu 2014). We apply
Average Precision (AP) to measure the effectiveness of the different retrieval
pipelines, as our primary goal is to be consistent with previous evaluation ex-
ercises, as AP was the most common effectiveness metric used in prior QPP
work.

3.2 Traditional QPP Evaluation Using Correlations

Prior work on QPP has relied primarily on a single evaluation paradigm. Given
a set of topics (information needs), where each topic is represented by a single
query, a single retrieval method, and a single document corpus, the prediction
quality of the predictors is evaluated as follows:

1. Retrieval effectiveness of the queries is measured with a common IR metric,
usually AP or possibly Normalized Discounted Cumulated Gain (nDCG),
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Fig. 1: Prediction quality of the selected QPP models on Robust04 (Confi-
dence Intervals computed with Kendall’s τ), using either title queries or all
available formulations.

to induce a ranking of the queries. This ordering serves as the ground truth
in the evaluation process.

2. The QPP method is applied to the queries, which generates a candidate
list where the queries are ranked by their prediction values.

3. A correlation coefficient is computed between the ground truth list and the
candidate list produced by the predictor.

4. The correlation coefficients of different predictors are then compared, with
an underlying assumption that a higher correlation value attests to the
superior quality of a predictor.

The correlation coefficient is usually reported as Pearson’s r for linear
correlation, Kendall’s τ , or Spearman’s ρ for the monotonic rank correlation.

Figure 1 shows the performance of 16 different QPP models when using this
common evaluation approach – Kendall’s τ correlation in this case – with 95%
confidence intervals shown as well. In this example, the results are generated
for a specific retrieval pipeline, using the indri stoplist and porter stemmer.
To compute the 95% confidence intervals, we used a bias-corrected and acceler-
ated bootstrap procedure with 10,000 samples. Observe that when using title
queries only (orange bars), there is a large degree of overlap between the differ-
ent QPP approaches. Similar results were observed when using all of the other
pipelines described in this work. Conducting pairwise comparisons on the data
from Figure 1 (title queries only), a bootstrap hypothesis testing (Efron and
Tibshirani 1994) shows that 57 pairs of predictors are statistically significantly
different at significance level α = 0.05, out of 120 total pairs of QPP models
(47.5%). In particular, among the best performing predictors, UEF(Clarity) is
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not statistically different from UEF(WIG), UEF(NQC), UEF(SMV), Clarity
and NQC. A large number of statistical “ties” between different QPP models
may be caused by one of the following two reasons: i) methods are in fact
equal and there has been little to no improvement since Clarity was proposed
by Cronen-Townsend et al. (2002); or ii) our current evaluation strategy is
not powerful enough to measure any difference between the models. We are
more inclined to believe our second hypothesis, which is inline with the obser-
vations of Hauff et al. (2009). That is, using confidence intervals can make it
difficult to conclusively determine which QPP system is the best performing
one. Figure 2 shows a heat-map plot of the pairwise ranking similarities be-
tween the different QPP methods. The similarity is measured with Kendall’s
τ correlation (Kendall 1945). Given two sorted lists of real values, the original
Kendall’s τ (Kendall 1938)3 is defined as follows:

τ =
number of concordant pairs− number of discordant pairs

total number of pairs
(1)

Defining C as the proportion of concordant pairs, we can show that (see
Appendix A):

C =
τ + 1

2

which is an intuitive approximation of the ratio of agreement. Note there are
later formulations of Kendall’s τ which do account for ties. This distinction is
discussed in greater detail in the appendix.

For example, for τ = 0.6, C = 0.8; means that 80% of the topic pairs are
ranked identically using either pair of predictors. Figure 2 further supports this
result as all of the UEF based predictors show no significant differences from
each other in the current setup. However, the noticeable drop in the similarity
of the NQC and Clarity methods when compared to UEF(Clarity) suggests
that a more powerful statistical analysis may yield a different outcome. This
is a key motivation for our work and will be examined in greater detail.

In addition to using the traditional title queries, we also explore the sce-
nario of using multiple query formulations for a topic, which allows us to
produce replicas for the same experimental conditions (i.e., the retrieval sys-
tem or the QPP model used) on the same subject (i.e., the topic). While the
correlation is generally lower when using multiple topic formulations (the blue
bars shown in Figure 1), there is a high degree of similarity between the or-
dering of the QPP models for multiple query formulations to the ordering for
title-only (Kendall’s tau correlation between using title-only versus multiple
queries per topic is 0.98, p < 0.0001). Notice that, to prevent the number
of formulations for each topic from influencing the result, we randomly sam-
ple each topic using 5 different formulations. Overall, the statistically induced
bootstrap intervals are substantially larger if a traditional title-only evalua-
tion approach is used, which makes it less suitable for determining if any single

3 The original formula has no adjustments for ties in the rankings, it is mentioned here
for its simplicity.
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Fig. 2: The Kendall’s τ correlation coefficient computed between several dif-
ferent QPP predictors. The correlation is calculated over topics, which are
represented by TREC title queries on the Robust04 indri-porter pipeline.

system is a clear winner, while using multiple queries does induce smaller in-
tervals and better discriminative power between the QPP approaches. Even
if, as shown, using query variants does not dramatically impact the rank-
ing of QPP models, it is nevertheless important to consider whether adding
variants has an impact on the distribution of the raw AP scores. The Mean
Average Precision (MAP) values are 0.211 and 0.254 for the set of all query
formulations and title queries only, respectively, and thus are quite consistent.
Figure 3 shows the Probability Density Function (PDF) for the AP scores for
the two scenarios – title-only (red line) and multiple queries per topic (blue
line). The Kullback-Leibler Divergence (KLD), a measure of the distance the
two distributions, is 0.039, which suggests there is a high similarity between
the two distributions. In summary, the distributions are similar and thus the
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Fig. 3: A comparison of the AP score distributions of the title-only queries
and multi-query topic formulations.

introduction of the multiple query formulations does not appear to skew the
overall AP score distribution.

3.3 ANOVA Modeling and Analysis of QPP

To support a more detailed analysis of QPP methods and associated factors,
we now explore the use of ANOVA, which can be achieved by modifying steps
3 and 4 of the traditional QPP evaluation process shown above. Instead of
computing the correlations between the complete lists, we measure the differ-
ence, for each query, in the rank position assigned by a QPP method and the
ground truth rank position assigned by AP. Ties in ranks are broken using
the average of the ranks span, as is the default in many statistical applica-
tions (Gibbons and Chakraborti 2011). Since the choice of tie breaking rule
could have an impact on the results, several possible approaches are evaluated
and discussed in greater detail in Subsection 3.4. Observe that this approach
transitions us from point estimates of a single correlation value for the two lists
over a whole set of topics to a distribution of the rank differences between the
two lists for each query in the set. In order to scale the scores to the range [0, 1]
we divide them by the number of samples. The error, labeled as AP induced
scaled Absolute Rank Error (sARE-AP) , for each query is:

sARE-AP(qi) :=
|rpi − rei |

|Q|
, (2)

where rpi and rei are the ranks assigned by the predictor and the evaluation
metric respectively for query i; Q is the set of queries. If we need the single
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Fig. 4: Prediction quality when measuring correlation with Kendall’s τ and
sMARE-AP for Robust04 title-only queries and 15 different system configu-
rations. The line inside the interquartile range (IQR) is the median, and the
white square is the mean.

point estimate of the prediction quality for each predictor P, we can calculate
the AP induced scaled Mean Absolute Rank Error (sMARE-AP) as follows:

sMARE-AP(P) :=
1

|Q|
∑
qi∈Q

sARE-AP(qi). (3)

Note that sMARE-AP can be seen as a derivation of Spearman’s Footrule dis-
tance, making it a distance metric for the full rankings instead of a correlation.
Among the properties of Spearman’s Footrule distance, Diaconis and Graham
(1977) list that it is bounded between [0, ⌊0.5n2⌋], where n is the length of the
ranking. Since both sARE-AP and sMARE-AP are normalized by the number
of queries, sMARE-AP is bounded between [0, 0.5].

To demonstrate the agreement between the proposed evaluation method
with existing evaluation practices from a high-level (point estimate) perspec-
tive, we use the QPP methods over the Robust04 title queries. Figure 4 plots
the ranking of the predictors, based on the median of the point estimates for
each predictor for all 15 system configurations (which is simply the median of
the Kendall’s τ correlation for the traditional evaluation approach), and the
median of sMARE-AP for our evaluation approach. Each predictor consists
of 15 values that represent the prediction quality. Though the directionality
of the two approaches is inverted, the ranking of the predictors clearly agrees
on the overall rank ordering. The corresponding box-plots also demonstrate
the similarity of the variance estimate. In order to validate the agreement we
computed the Pearson’s correlation coefficient over the point estimates for the
predictors for each of the 15 system configurations. The resulting correlations
coefficients were all −0.99 or higher (p < 0.0001 for each).
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3.4 Computing the Measure of Deviation of an Optimal Rank Ordering

When defining a measure to accurately represent the distance between the rank
of a query w.r.t the rank of all queries when sorted in decreasing order by their
AP score and their associated QPP score, two choices need to be made: the
tie-breaking strategy and the approach used to quantify the deviation from
the optimal rank.

Tie-breaking strategies The sMARE framework is based on computing differ-
ences between the expected and observed ranks. The expected rank corre-
sponds to the rank that the query achieves if we sort them by performance.
The observed rank, on the other hand, is the rank assigned considering the
prediction of a given QPP approach. Since we are considering rankings in-
duced by scores for either observed or predicted performance, we can expect
that two or more queries will obtain the same observed / predicted scores. In
such cases, we must decide how to assign the value of the rank for each of the
queries. Let Qt be a set of queries that includes either identical QPP or AP
scores, s. Given also rk the rank of the query with the maximal score such
that sk < s, we can define the following tie-breaking strategies, using the list
(0.1, 0.2, 0.2, 0.3) as an example:

– average (1, 2.5, 2.5, 4): the rank for all the queries in Qt is the average
rank in the set, equal to (2rk + |Qt| + 1)/2. The main advantage of this
method is that the sum of the ranks equals to the sum of the ranks when
no ties exist.

– min (1, 2, 2, 4): all the tied queries have the lowest rank in the tie set, equal
to rk + 1.

– max (1, 3, 3, 4): all the tied queries have the highest rank in the tie set, equal
to rk + |Qt|.

– first (1, 2, 3, 4): ties are sorted “alphabetically” or “lexicographically”,
according to the order of appearance in the ranked list: where all possible
values between 1 and |Q| are associated to a query. Note that this is similar
in spirit to tie-breaking in the trec eval tool which breaks ties by sorting
on the document ID. However here we are sorting by query score and not
scoring ranked documents.

– dense (1, 2, 2, 3): similar to the min approach, the rank of all the queries in
the set of ties will always be rk+1, but the rank between groups will always
increase by 1. This means that, given n ≤ |Q| unique scores associated to
queries in a ranked list, every possible value between 1 to n will be assigned
to at least one query.

To further highlight the importance of the analysis on the number of ties,
we also report in Figure 5 the number of ties observed. The blue line shows the
mean number of ties over all 13 QPP models, and the shaded area represents
the 95% confidence interval. Note that, even if we consider as many as 6 digits,
we still have on average more than 500 ties. Note that we have used 6 significant
digits in the subsequent experiments for each raw observation, and more than
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Fig. 5: The average number of ties observed between QPP methods, when the
number of significant digits differs. Note that, even when using 6 significant
digits, we can observe more than 500 ties on average.

is common practice, and only because it reduces the number of observed ties
to a more conservative level – making them less likely to influence any of the
observations being made.

Error measures Given rpi , the rank observed for the query i in the ranked list
sorted by QPP score, and rei , the rank observed in the ranked list sorted by
AP, four possible measures can be defined to quantify the distance from the
optimal rank:

– scaled Absolute Rank Error (sARE) , as defined in Equation 2;
– sRE (scaled Rank Error) which uses the signed distance between the two

ranks, scaled by the number of queries, and is defined as

rpi − rei
|Q|

.

For the case of no ties, or using the first or average rank strategy for
ties, the sum over all queries would be 0, as it is equal to

∑
Q

rpi − rei
|Q|

=
1

|Q|
∑
Q

rpi −
∑
Q

rei .

This approach is not particularly useful for our needs, but may be useful
for other studies.
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– sSRE (scaled Square Rank Error) is the square of the difference between
the two ranks, normalized by the number of queries and is defined as(

rpi − rpi
|Q|

)2

.

– sRSRE (scaled Root Square Rank Error) the root of the squared difference:√
(rpi − rei )

2

|Q|
.

As shown in Equation 3, each of these measures can be aggregated by com-
puting the mean of all queries for each predictor, to obtain a “mean” version.

(a) Tie-breaking strategies

(b) Ranking error computations

Fig. 6: The top panel (a) shows a comparison between multiple tie-breaking
strategies (average, min, max, first and dense approaches, respectively) for
both sARE and sMARE. The bottom panel (b) shows the different aggre-
gation algorithms (s(M)ARE, s(M)RE, s(M)RSRE, S(M)SRE, respectively)
using average tie-breaking, in term of score density distributions.

Figure 6 compares all of the tie-breaking strategies and formulations for
the ranking error of the distribution of the scores for using one possible re-
trieval pipeline (indri stoplist and porter stemmer). Figure 6a shows the
tie-breaking comparison. Note that, we have artificially inflated the number of
ties by truncating the AP and QPP scores to 2 decimal points. Using higher
precision scores, the tie-breaking strategies used are all nearly identical, due to
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proportionally fewer ties. For our tie-breaking strategy comparison, we show
only the results observed using sARE – and its averaged version, sMARE – as
deviation measure. All other measures discussed exhibit similar behavior. Fig-
ure 6b shows the comparison between the different approaches of computing
the deviation of the QPP prediction from the ideal rank. For this comparison,
ties-breaking uses the average strategy since our earlier experiment shows no
appreciable differences between tie-breaking strategy when using our experi-
mental data. For each possible setting, we compute the measure of interest for
each topic-predictor pair, and plot the probability density distribution of such
scores (blue lines). Furthermore, we compute the mean of the scores over all
topics for each predictor (orange line). This statistical measure will be used
later in our ANOVA experiments when we compare the QPP predictors.

For tie-breaking strategies, we observe that the average, min, max, and
first tie-breaking strategies all exhibit similar behavior with sARE, with the
exception of dense tie-breaking which produces much more widely dispersed
results. Observe, for example, the additional peak in the distribution when
using the dense approach. This peak corresponds to the small peaks observed
in the other tie breaking strategies, but is inflated in size, when compared to
the others. The dense approach is strongly influenced by the number of ties
present in the ranking list. This causes the results to be unpredictable since
they depend on the randomly observed magnitude (the quantity of ties), which
is not correlated with the magnitude of our goal – the performance of QPP.
As a result, we recommend against using the dense approach, since it may
overly inflate performance differences between systems.

Turning our attention to the first tie-breaking approach, even though it
has a roughly similar distribution to the other strategies, it also introduces a
bias as the queries are sorted in an arbitrary order. Such an order does not
depend on the actual performance. This problem is particularly relevant when
we have large number of ties. In general, if we have many queries and small
groups of ties, then the bias does not heavily impact sARE. Nevertheless, we
recommend against using it, in order to minimize any possible corner cases.
Based on these experimental results, in the remainder of our experiments we
will use the average tie-breaking method, as it is the most common method,
and was the best performing method in our experimental analysis.

With respect to ranking error, we observe that both sARE (scaled Absolute
Rank Error) and sRSRE (scaled Root Square Rank Error) have similar density
distributions, but sARE is in the [0, 1] interval. Similarly, sSRE is bound by a
[0, 1] interval. Overall, the shape of the distribution is quite similar to sARE
for our collection, but has two distinguishing differences: it has lower values
on average, and it has a smaller range of values. Since differences are squared,
sSRE tends to be higher when there are large differences between predicted
and observed ranks. Conversely, sARE is larger when there are many errors,
even when many of them are small. The smaller values of sSRE when compared
against sARE suggests that the QPP models tested tend to make many small
errors, and not too many large errors. That is, sSRE is less discriminative.
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To investigate this further, we compare the two approaches using sensitiv-
ity. Using the paired bootstrap test described by Sakai (2006), the Achieved
Significance Level (ASL) is computed for each pair of QPP methods using
the title queries and the bootstrap with 10, 000 samples. The outcome of our
pairwise comparisons is presented in Figure 7. While in general the patterns
are similar, sARE does appear to be more sensitive, identifying 74/120 statis-
tically significantly different pairs (61.7%), compared with 68/120 (56.7%) for
sSRE. Note that when using this approach, both methods identify more pairs
of predictors which are significantly different (where the significance level is
α = 0.05) than when using the Kendall’s τ correlation measured with boot-
strap resampling. Both lead to the SMV predictor being added to the cluster of
best performing methods. As discussed previously, sMARE can be associated
with Spearman’s footrule distance, sMSRE (scaled Mean Squared Rank Error)
on the other hand can be associated with Spearman’s coefficient of association
ρ. While both sARE and sSRE have valuable statistical properties (Diaconis
and Graham 1977), sARE appears to be more sensitive, and is more useful in
our ANOVA analysis, as we want to perform a detailed comparative analysis
of methods. The sRE (scaled Rank Error), despite being on a larger interval
scale ([-1, 1]), is not useful when computing a mean, here called sMRE (scaled
Mean Ranked Error), and is always equal to 0. This is easily explainable since
the sum over the ranking errors (using the average and first tie-breaking
strategies) will always be equal to 0. So, based on our desiderata, we have
adopted the use of sARE /sMARE since: i) they are bounded between 0 and
1;4 and ii) sMARE is not always equal to 0.

3.5 Comparing Systems Using sMARE-AP

We are now in a position to introduce our first ANOVA model which will
enable a more comprehensive experimental analysis of the results:

yiqrs = µ+ τi + γq + δr + ζs + εiqrs (MD0micro)

where: yi... is the performance (sARE-AP ) on the i-th topic (using the spec-
ified QPP pipeline); µ is the grand mean; τi is the effect of the i-th topic
(represented with the title query formulation); γq , δr , and ζs are the effect
of the q-th stoplist, the r-th stemmer, and the s-th QPP model; εiqrs is the
error component. Table 2 summarizes the ANOVA results of our first experi-
ment. It can be seen that the stoplist, the stemmer, and the QPP model have
a small effect size, while the topic effect is large, indicating that most of the
performance of the QPP depends on the chosen topic.

Based on these results, we next ran a Tukey’s Honestly Significant Differ-
ence (HSD) post-hoc analysis to test for pairwise comparisons. Figure 8 shows
the Tukey’s HSD confidence intervals for sMARE-AP over the different QPP

4 The values of sSRE are bounded as well, and sMSRE ∈ [0, 1
3

), or [0, 1√
3

) if the squared

root is applied on the mean.
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Fig. 7: ASL value comparison showing the sensitivity of the sSRE and sARE
deviation measures. Values above the diagonal show ASL values for sSRE
and the ASL values for sARE are below the diagonal. Computing the sARE
pairs result yields ASL < 0.05 : 74/120 (61.7%) and the sSRE pairs yield
ASL < 0.05 : 68/120 (56.7%)

models. Comparing Figure 1 (orange bars) and Figure 8, we can observe that
there is less overlap between the CIs, in particular computing the p-values for
the pairwise comparisons, out of 120 pairs of predictors, 96 of them are signif-
icantly different (80.0%). The outcomes observed when using the bootstrap-
based approach resulted in 68.4% 5 more statistically significant differences
between predictor pairs when compared against the original data, and the
top performing cluster consists of UEF(WIG), UEF(SMV), UEF(NQC), and
UEF(Clarity).

5 (96− 57)/57 = 0.684, where 96 is the number of statistically significantly different pairs
found now, and 57 pairs were found using the bootstrap based approach.
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Table 2: MD0micro ANOVA on the Robust04 collection. Topics are repre-
sented with the title queries. SS: Sum of Squares; DF: Degrees of Freedom;
MS: Mean Square; F: F statistics.

Source SS DF MS F p-value ω̂2
⟨fact⟩

Topic 876.524 248 3.534 168.136 <0.001 0.410
Stoplist 1.185 4 0.296 14.095 <0.001 0.001
Stemmer 5.218 2 2.609 124.108 <0.001 0.004
QPP model 46.569 15 3.105 147.691 <0.001 0.036
Error 1250.538 59490 0.021

Total 2180.034 59759

Fig. 8: Confidence Intervals of sMARE-AP from MD0micro for the QPP mod-
els on the Robust04 title queries.

The “Topic” factor, as Table 2 suggests, is responsible for the largest part
of the variance; this is in line with results from IR effectiveness evaluation
(see for example Tague-Sutcliffe and Blustein (1994)). Thus, the estimate of
the performance for a specific QPP model can vary significantly as it is de-
pendent on properties of the underlying collection (performance differences in
topics/queries). By removing the contribution of the topics from the global
variance, ANOVA removes any volatility in the underlying experimental data,
therefore allowing the relative performance of predictors to be compared more
precisely. When using only correlations aggregated across all topics, such in-
formation is lost, while an ANOVA analysis facilitates more discriminative
performance comparisons between systems by systematically accounting for
each factor separately.

Figure 9 shows the main effects observed for different factors and levels
when using ANOVA with MD0micro . From Figure 9a we can see that, in line
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(a) topics

(b) stoplists (c) stemmers

Fig. 9: Main effects for topics, stoplists and stemmers of sMARE-AP from
MD0micro for the QPP models on the Robust04 title queries. We also report
the confidence interval for stoplists and stemmers. We do not report CI for
the topics, for the sake of image readability.

with Table 2, the topic factor exhibits a very large variance. The topics ‘356’
and ‘679’ present a very large sMARE (0.832 and 0.753 respectively). The
title formulation for topic ‘356’ is “postmenopausal estrogen Britain”,
while for topic ‘679’ it is “opening adoption records”.

Figure 9b shows the main effect for the different stoplists included in our
analysis. It is interesting to observe that the variance over the different stoplists
is very small – changing from the best stoplist (atire) to the worst (nostop)
only leads to an increase of approximately 1.5%. Furthermore, post-hoc anal-
ysis shows that atire and zettair are not statistically significanlty different,
while indri, lingpipe and nostop are statistically significantly worse then
atire. Furthermore, all the stoplists help QPP models in predicting perfor-
mance more accurately.

Figure 9c highlights the main effect for the stemmer component. Note
that the stemmer selected has a bigger impact than the stoplist. Using the
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Table 3: Summary table for ANOVA using model MD0micro and representing
topics with multiple formulations.

Source SS DF MS F p-value ω̂2
⟨fact⟩

Topic 1653.019 248 6.665 214.777 <0.001 0.151
Stoplist 0.405 4 0.101 3.266 0.0110 <0.001
Stemmer 12.726 2 6.363 205.028 <0.001 0.001
QPP model 349.503 15 23.300 750.795 <0.001 0.036
Error 9264.609 298530 0.031

Total 11280.263 298799

best stemmer allows us to predict the performance of the queries more easily.
In more detail, we observe that Porter’s stemmer performs best, followed by
Lovins’s stemmer. The worst approach is to not use stemming. All pairs of
stemmers show a statistically significant difference in performance.

3.6 ANOVA Modeling of Multiple Queries and Interactions

To more fully explore the impact of the query formulations on the performance
of QPP predictor, we use the ANOVA model MD0micro in a multiple query for-
mulation setting. We randomly sample 5 formulations6 to represent the topics.
In total, 1,245 different queries were used. Then, we compute the sARE score
for each query-predictor pairing. The ANOVA summary table computed using
the model MD0micro of multiple formulations of topics is shown in Table 3.
Comparing Table 3 to Table 2, we can see that the introduction of multiple
query formulations and model MD0micro results in a reduced topic effect size,
with the originally observed large-size effect becoming a medium-to-large sized
effect. The introduction of the multiple formulations increases the variance of
each topic, so the possible score differences between the topics tend to be
smaller, smoothing the effect size. The QPP model factor effect is similar for
both models. The large Sum of Squares (SS) for the Error component indicates
that this model is not suitable if we wish to study/explain any variance in the
data. To do this, the model complexity must be increased in order to fit the
data more tightly.

To help the model more fit the data more closely, one possible solution is
to include a query Formulation factor in the ANOVA. This allows the partial
modeling of the additional variance due to the multiple formulations for each
topic. Therefore, we now propose another alternative as an ANOVA model:

yijqrs = µ+ τi + νj(i) + γq + δr + ζs + εijqrs (MD0fmicro)

The model MD0fmicro extends model MD0micro by including νj(i), the effect of
the j-th formulation of the i-th topic. Note that Topic, Stoplist, Stemmer, and

6 The topic with the minimal number of query formulations had 5 formulations.



22 G. Faggioli et al.

Table 4: Summary table for ANOVA using model MD0fmicro and representing topics with
multiple formulations.

Source SS DF MS F p-value ω̂2
⟨fact⟩

Topic 1653.019 248 6.665 260.704 <0.001 0.177
Formulation(Topic) 1657.578 996 1.664 65.093 <0.001 0.176
Stoplist 0.405 4 0.101 3.965 0.0032 0.000
Stemmer 12.726 2 6.363 248.871 <0.001 0.002
QPP model 349.503 15 23.300 911.343 <0.001 0.044
Error 7607.031 297534 0.026

Total 11280.263 298799

QPP model are crossed since each of them can be used in combination with
all the others. This is not the case for the multiple formulations of a topic. A
formulation can represent only the topic used to create it. Therefore, we cannot
treat the formulation as a crossed factor, and so query formulations are nested
for each Topic factor. This ensures the variance produced by different query
formulations contribute only to the variance of the topic they represent.

Table 4 presents the results of the ANOVA when using model MD0fmicro . In
order to differentiate the case where a Formulation factor is nested in a Topic
from our previous models, we use the term “Formulation (Topic)”. When ex-
amining Table 4, observe that the effect of the performance of both the Topic
and Formulation is a large-sized effect. For formulations of a topic, a good
formulation can dramatically change the performance of a QPP model. The
effect of the QPP model observed in Table 4 is still small-sized, but has a
relative increase of 22.2% when compared against Table 3. Such observations
highlight the importance of introducing query formulations into the analysis,
both in our data and in the ANOVA model, allowing us to learn more about
a predictor. Note that the model MD0fmicro still results in a high SS error.
This indicates that the model may benefit from further modification to model
the data more tightly. However, this will require additional efficiency improve-
ments to be made for running multi-factor ANOVA algorithms on large data
collections. The current techniques used to compute the models in this work
already require substantial memory and computational resources, and suc-
cessfully increasing the complexity of the model, or using additional data, is
unlikely using any of the currently available hardware and software at either
of our universities. We run the above-describe ANOVA via Matlab (version
2017b) on a server with 72 Intel(R) Xeon(R) Gold 6140M CPU 2.30GHz. The
largest analysis occupied 250GB of RAM and it required approximately 200
hours to fit the whole model.

One of the most interesting aspects of our framework is the ability to com-
pute the effect size for the interactions between factors. This is possible since
the relative performance of a QPP model for each topic can be computed using
sARE , and multiple query formulations were introduced as a nested factor.
The resulting ANOVA model MD1micro includes component level interactions,
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Table 5: MD1micro ANOVA applied on Robust04 collection. ω2 for non-
significant factors is ill-defined and thus not reported. When compared
against Faggioli et al. (2021), a different set of random formulations for the
topics is used: which leads small differences in the results – the Sum of the
Squares being the largest. Nevertheless, the magnitude of the effects and the
p-values, which are the focus in an ANOVA, are the same as those in Faggioli
et al. (2021).

Source SS DF MS F p-value ω̂2
⟨fact⟩

Topic 1653.019 248 6.665 1186.233 <0.001 0.496
Formulation(Topic) 1657.578 996 1.664 296.182 <0.001 0.496
Stoplist 0.405 4 0.101 18.041 <0.001 0.001
Stemmer 12.726 2 6.363 1132.393 <0.001 0.008
QPP model 349.503 15 23.300 4146.715 <0.001 0.172
Topic*Stoplist 39.333 992 0.040 7.057 <0.001 0.020
Topic*Stemmer 147.087 496 0.297 52.776 <0.001 0.079
Topic*QPP model 2297.031 3720 0.617 109.892 <0.001 0.575
Frm.*Stoplist 85.596 3984 0.021 3.824 <0.001 0.036
Frm.*Stemmer 292.736 1992 0.147 26.154 <0.001 0.144
Frm.*QPP model 3215.366 14940 0.215 38.302 <0.001 0.651
Stoplist*Stemmer 0.041 8 0.005 0.918 0.5000 —
Stoplist*QPP model 0.840 60 0.014 2.492 <0.001 <0.001
Stemmer*QPP model 4.509 30 0.150 26.749 <0.001 0.003
Error 1524.492 271312 0.006

Total 11280.263 298799

and is defined as:

yijqrs = µ+ τi + νj(i) + γq + δr + ζs + (τγ)iq + (τδ)ir + (τζ)is

+ (νγ)j(i)q + (νδ)j(i)r + (νζ)j(i)s + (γδ)qr + (γζ)qs + (δζ)rs + εijqrs
(MD1micro)

This model extends MD0fmicro to include all possible two-way interactions.
Table 5 presents the ANOVA summary statistics for the model MD1micro .

The table empirically shows that the largest differences in QPP performance
are due to the topics, and their formulations. While the importance of topics
is a well-known phenomenon, our model is able to explicitly quantify the mag-
nitude of this effect. The effect for the QPP factor is medium-sized (medium-
sized effects are associated with ω2 between 6% and 14%). It is important
to note that the dimension of the effect is due to the wide variety of QPP
models (and their performance) that are taken into account. For example, a
practitioner wishing to evaluate new QPP models may observe a smaller ω2

for the QPP model factor if the relative performance differences between the
models being compared is less substantial.

The effect sizes of different stoplists and stemmers are both small, but
still significant. This suggests that stemmers and stoplists may affect overall
prediction quality, and practitioners should consider all possible factors when
comparing and contrasting QPP performance for a corpus.
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(a) topics (b) predictors

(c) stoplists (d) stemmers

Fig. 10: Main effects observed using model MD1micro with multiple topic for-
mulations.

We are now in a position to explore the interaction between topics (and
their query formulations) and the predictors. The large effect size indicates
that important differences between QPP model performance exist within re-
formulations of a single topic. Identifying the QPP model where interactions
are smallest is valuable in practice, as this corresponds to be choosing a model
that is the most robust to query reformulation. Additionally, this approach
enables a series of additional analyses, such as a failure analysis for topics to
determine which QPP model has the largest interactions with another factor.

There are many additional factors that can influence the performance of the
QPP method, beyond the ones tested in the current model. For example, other
ranking algorithms or evaluation measures can also be used with sMARE,
and could provide new experimental evidence and insights into performance
differences between various QPP models in the future.

Figure 10 shows the main effects observed using the multiple formulations.
Comparing the plot with Figure 9, we can see that overall, the results tend
to be more uniform when multiple formulations are included. Formulations
tend to have large performance variability: such variability is responsible for
the flattening of relative predictor performance. Nevertheless, they give addi-
tional power to statistical techniques, allowing the obtaining of more precise
results that better generalize to reality. Comparing Figure 10a to Figure 9a
we observe that the main effects for the topics tend to be more stable, with a
smaller variance. We still have two outliers – the biggest outlier is ‘356’, which
also had the biggest effect in MD0micro . The second is ‘344’, with the title
formulation “Abuses of E-Mail”. These two topics have sMARE of 0.6463
and 0.6016, respectively. Observing that the topic ‘356’ remains particularly
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complex suggests that the problem is likely linked to the semantic gap between
the topic formulations and the relevant documents for that topic. In contrast
to what was observed in Figure 9a, the topic ‘679’ is not an outlier anymore.
This corroborates what was observed in Table 5, showing the importance of
the query formulations: different formulations might help the predictors to
estimate the query difficulty.

Figure 10b shows an interesting pattern when compared to Figure 8. In
particular, we observe that the distribution of the main effects contains much
more evident steps if we include multiple query formulations. While the overall
order of predictors is close to the one that we observed previously, using multi-
ple formulations we are better able to distinguish between clusters of systems.
In particular, SCQ performance suggests that it belongs to its own cluster of
quality. VAR, avgSCQ, avgIDF and maxIDF form a distinct cluster, and so do
maxSCQ, avgVAR and maxVAR. We then have two clusters of post-retrieval
predictors: the first includes the original form of all the predictors, while the
second includes the UEF version.

Figures 10c and 10d show the main effect for stoplists and stemmers re-
spectively, when multiple formulations are included in the analysis. The post-
hoc analysis shows that all the stoplists are statistically significantly different
from the no-stop approach, indicating the importance of applying a stoplist
in the QPP scenario. Nevertheless, they are all in the same equivalence class.
This empirically suggests that what makes the difference in the QPP setting
is either removing stopwords or not, but the stoplists are overall equivalent.
Similar conclusions can be drawn for stemmers: in Figure 10d) both stemmers
(Porter’s and Lovins’) are statistically better than the no-stemming approach,
but the two stemming approaches do not differ statistically significantly.

Figure 11 shows the interaction plots for the model MD1micro . We report
the interaction between the predictors and topic, stoplist and stemmer factors.
The predictors are further separated into pre- and post-retrieval approaches,
shown one the left and right, respectively. Figures 11a and 11b describe the in-
teraction between topics and predictors. Note that, to ease the readability, we
report the interaction of the systems with 50 randomly sampled topics. Simi-
lar results where observed with different topic samplings. Both plots exemplify
the strong interaction between the predictors and the topics, showing several
cross-overs between lines and lines tending not to be parallel. This in general
confirms what was observed in Table 5. Nevertheless, we observe that lines for
the post-retrieval predictors (Figure 11b) are more stable (a similar conclusion
can be reached also by looking at Figure 10b). This means that i) different
post-retrieval predictors tend to perform more similarly than pre-retrieval pre-
dictors; and ii) the interaction between topics and post-retrieval predictors is
lower compared to that between pre-retrieval predictors and topics.

Concerning the stoplist and stemmer components, Figures 11c and 11e
illustrate how much they interact with the pre-retrieval predictors. In both
cases, the interaction between the component and the predictor is light, with
parallel lines overall. The only exception to this is avgIDF and maxIDF, which
show a swift drop in performance when used in combination with the nos-
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(a) topics – pre-retrieval predictors (b) topics – post-retrieval predictors

(c) stoplists – pre-retrieval predictors (d) stoplist – post-retrieval predictors

(e) stemmers – pre-retrieval predictors (f) stemmers – post-retrieval predictors

Fig. 11: Interaction effects observed using model MD1micro with multiple topic
formulations. We report interactions between pre-retrieval (left) and post-
retrieval (right) models, with topics (top), stoplists (center) and stemmers
(bottom).

tem approach. Figure 11d reports the interaction between the different post-
retrieval QPP models with the stoplist component. The choice of stoplist does
not interact particularly with the post-retrieval methods, as also shown in Ta-
ble 5. The QPP approach most affected by the different stoplists is Clarity,
both in its traditional and UEF versions. This indicates that, if the practi-
tioner intends to use Clarity, it is important to validate its performance over
different stoplists. On the other hand, the WIG model (both traditional and
UEF versions) is the most stable. Concerning the choice of stemmer, Figure 11f
shows that the stemmer interacts slightly with predictor performance, similar
to what was observed for pre-retrieval QPP approaches. All of the QPP models
appear to be overall stable across different stemmers, with small interaction
with the stemmer used. In particular, most QPP models suffer when query
terms are not stemmed. The traditional version of WIG is the most stable
QPP approach for this: it does not benefit if the stemmer is used or not.
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(a) AP with sARE.

(b) nDCG@10 with sARE.

Fig. 12: Scatter plot of error (sARE) versus effectiveness (AP and nDCG@10),
using only title queries.

4 Potential Applications

The evaluation approach presented in this paper supports a range of new
possible performance analyses. As an example of what might be done in the
future, we conduct a preliminary analysis to explore the relationship between
query effectiveness and the quality of prediction. For several years, there has
been a well-known problem observed in the QPP community where a deep
measure such as AP tends to be amenable to high quality predictions which
early precision measures, such as nDCG or Expected Reciprocal Rank (ERR),
with a cutoff of, say, 5 or 10, tend to have worse overall performance when
compared directly in a single collection. Indeed, we can see a somewhat similar
trend when looking at performance per query. Figures 12a and 12b present
several scatter plots for sARE when using AP and nDCG@10, respectively.
Using only the title queries, we can observe different trends across different
QPP methods, indicating that the effectiveness of the query has a varying
effect on different QPP methods. Specifically, the SCQ method which has the
worst prediction quality, tends to make greater errors on queries with higher
effectiveness (measured both by AP and nDCG@10). On the other hand NQC,
which has a significantly better prediction quality, shows the opposite trend,
tending to make smaller mistakes on queries with high effectiveness.

Figure 13 shows the corresponding scatter plots when all query variants are
used. Overall, the observed trends are slightly smaller for AP, and almost com-
pletely erased for nDCG@10. However, we can observe an interesting difference
in the distribution of the points in the two evaluation measures. Interestingly,
a visual comparison of these plots side-by-side for multiple predictors consis-
tently exhibit the performance difference trend between AP and nDCG@10
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(a) AP with sARE .

(b) nDCG@10 with sARE .

Fig. 13: Scatter plot of the error (sARE ) versus the effectiveness (AP and
nDCG@10).

alluded to previously. The “dips” in the graph w.r.t the evaluation measure
are where the median score for all the queries occur. Since this is the mid-
point of the rank ordering, the mid error can never be greater than 0.5 at
this point. That is, a rank ordering error can only be 1.0 for queries at the
top or the bottom of the ranking, as they are the ones that can be inverted
(i.e., an AP query with a score of 1.0 might be predicted to be the worst
query in the set, and such cases are where the error is the greatest). Consider
the following concrete example: For (a,b,c) the errors for each item would be:
a ∈ {1/3, 2/3}, b ∈ {1/3}, c ∈ {1/3, 2/3} in that case b is the median query
and the maximal error it can achieve is 0.5 ∗ maximal error. The median
nDCG@10 is 0.3718 and AP is 0.1491.

When studying the AP plots, we can see a strong trend where the per-
formance gets better as AP increases. However, for nDCG@10, this is not as
consistent. So, we can see that for nDCG@10 the predictors can have very
poor performance for high and low performing queries more often. In fact
there are a number of reasons such a trend might exist related to differences
in gain function in the measures. Overall, while we cannot say why such be-
havior exists in current predictors, it is a valuable start in a comprehensive
failure analysis in QPP prediction behavior. What we can say is that such
performance differences warrant further study, and we intend to explore this
problem in greater detail in the future. Here, we wanted one small example of
what is possible using the framework introduced in this paper.

The new methodology also allows us to determine which topics are “harder”
for QPP methods. In Figure 14 we plot the topics that had the “worst” query
variants, as measured by sARE. In order to visualize this, we extract 1% of all
queries that have the highest absolute error (sARE ) for each predictor (if the
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Fig. 14: Heat map of the hardest 1% of all query variants (by sARE-AP value),
grouped by topic. For readability, the plot is constrained to show the 1/3 of
the full set of topics that had the highest number of hard queries.

boundary query was tied, then all queries with the same tied error level were
included). So, for each predictor we show at least 32 queries with the largest
error. Next, the queries are grouped by topic, and for each topic we count the
number of the queries that appear in the worst 1% list. Finally, the topics are
ordered by the total number of queries for all of the predictors.

In Figure 14, we can see that some topics immediately stand out – which
represent the topics with many hard queries for all predictors. This indicates
that some topics are indeed harder than others to accurately predict. This
further corroborates the results of our ANOVA analysis, where the topic factor
was found to have a large effect size. Similar to previous observations, the two
topics that stand out as the “hardest” for the majority of the QPP methods
are topic number 344 and topic 356. These trends will be explored further in
future work.

5 Conclusion

In this paper we have presented a novel evaluation framework for QPP. The
framework estimates the performance of QPP on every topic as the distance
between its predicted rank (computed using a particular QPP approach) and
the expected rank (measured using AP, or any other traditional IR effective-
ness measure). Such approaches allow us to obtain a distribution of perfor-
mance for the QPP over the different topics. Furthermore, our framework can
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leverage multiple query formulations for each topic to enhance the power of
the analysis. Together, the use of multiple query formulations and the distri-
butional representation of the performance enables carrying out more precise
studies. In particular, we show that it is possible to rely on the statistical
properties of ANOVA and additional post-hoc procedures such as Tukey’s
HSD test to better identify statistically significant differences between QPP
approaches. The proposed framework also enables the analysis of interaction
effects for QPP models and topics, supporting failure analyses and a deeper
understanding of how a QPP model works. Our framework can be extended
and adapted to different investigation needs. For example, in an academic
setting, it may be useful to add further factors to the model such as tok-
enizers, query expansion components, or ranking functions, to further deepen
the investigation into the factors that influence QPP performance. In indus-
trial deployment settings, comparisons between competing QPP techniques
may require an ANOVA model consisting of only two factors: topics and QPP
approaches. This simple two-way ANOVA is sufficient to determine if QPP
models are significantly different, and has the added benefit of relying on a
statistically sound and easy to deploy framework. In future work, we plan to
study additional components of the evaluation framework, such as the impact
of using different ranking methods to establish “ground truth” performance;
new factors that influence QPP systems such as the ranking approach used in
the post-retrieval QPP approaches; and the effects of using multiple corpora,
in order to more comprehensively model and understand corpus and QPP
interactions. To support the reproducibility of our results, the code for our
evaluation framework has been made publicly available.7

Acknowledgments

The work is partially funded by University of Padova Strategic Research In-
frastructure Grant 2017: “CAPRI: Calcolo ad Alte Prestazioni per la Ricerca
e l’Innovazione”. This work was also partially supported by the Australian
Research Council’s Discovery Projects Scheme (DP190101113).

References

Amati G, Carpineto C, Romano G (2004) Query Difficulty, Robustness, and Selective Ap-
plication of Query Expansion. In: Proc. ECIR, pp 127–137

Aslam JA, Pavlu V (2007) Query Hardness Estimation Using Jensen-Shannon Divergence
Among Multiple Scoring Functions. In: Proc. ECIR, pp 198–209

Bailey P, Moffat A, Scholer F, Thomas P (2016) UQV100: A Test Collection with Query
Variability. In: Proc. SIGIR, pp 725–728

Bailey P, Moffat A, Scholer F, Thomas P (2017) Retrieval Consistency in the Presence of
Query Variations. In: Proc. SIGIR, pp 395–404

Banks D, Over P, Zhang NF (1999) Blind Men and Elephants: Six Approaches to TREC
data. Information Retrieval 1(1-2):7–34

7 https://github.com/Zendelo/QPP-EnhancedEval

https://github.com/Zendelo/QPP-EnhancedEval


sMARE: a New Paradigm to Evaluate and Understand QPP Methods 31

Benham R, Culpepper JS (2017) Risk-Reward Trade-offs in Rank Fusion. In: Proc. ADCS,
pp 1:1–1:8

Benham R, Mackenzie J, Moffat A, Culpepper JS (2019) Boosting Search Performance Using
Query Variations. ACM Trans Inf Syst 37(4)

Carmel D, Yom-Tov E (2010) Estimating the Query Difficulty for Information Retrieval.
Morgan & Claypool Publishers, USA

Carmel D, Yom-Tov E, Darlow A, Pelleg D (2006) What Makes a Query Difficult? In: Proc.
SIGIR, p 390–397

Carterette BA (2012) Multiple Testing in Statistical Analysis of Systems-Based Information
Retrieval Experiments. ACM Trans Inf Syst 30(1):4:1–4:34
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A Kendall’s τ formulation derivation

Given the formulation of Kendall’s τ as defined in 1, if we define C and D as:
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C =
number of concordant pairs

total number of pairs
,

D =
number of discordant pairs

total number of pairs
;

The general Kendall’s τ formula (as defined in eq. 1) becomes:

τ =
number of concordant pairs

total number of pairs
−

number of discordant pairs

total number of pairs

And therefore:

τ = C −D,

C + D = 1;

We can observe that:

C = τ + D,

D = 1 − C;

Thus C = τ + (1 − C) = τ + 1 − C. Therefore, 2C = τ + 1 and thus C = τ+1
2

Note that this is the original version of Kendall’s τ (Kendall 1938), the actual formula
applied in the correlation calculations throughout the paper is a later version, which is
commonly known as τb (τs in the original paper) (Kendall 1945). The correlation coefficient
τb is extending the original formula to treat ties.
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