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ABSTRACT
Evaluation is a bottleneck in data integration processes: it is
performed by domain experts through manual onerous data
inspections. This task is particularly heavy in real business
scenarios, where the large amount of data makes checking
all integrated tuples infeasible. Our idea is to address this
issue by providing the experts with an unsupervised mea-
sure, based on word frequencies, which quantifies how much
a dataset is representative of another dataset, giving an in-
dication of how good is the integration process. The paper
motivates and introduces the measure and provides exten-
sive experimental evaluations, that show the effectiveness
and the efficiency of the approach.

CCS Concepts
•Information systems → Mediators and data integration; En-
tity resolution; Deduplication;

Keywords
Entity Resolution, Entity Matching, Unsupervised Evalua-
tion, Data Integration

1. INTRODUCTION
Data integration has always been considered as a key need
for both research and industry. Traditionally the focus has
been the integration of structured (typically relational) data
sources where the information is divided into multiple tables.
More recently, the attention paid to artificial intelligence
and machine learning has led to the development of specific
techniques for integrating datasets. From a technical per-
spective, these approaches typically implement a pipelined
architecture, which consists of three major steps: schema
alignment, entity resolution, and data fusion [16].

Despite the effort put by the research community (and par-
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tially reviewed in the Related Work Section), data and data-
set integration is still far from being a solved problem and
it is even less mature when applied in a real production
context. Apart from the intrinsic complexity of the task,
one of the barriers to fully empowering data integration is
the human effort needed for evaluating and tuning the ap-
proaches. Indeed, you need to resort to controlled datasets,
built on top of a manually created ground-truth, in order to
compare your approach against this gold standard and score
it accordingly. This is a long and economically demanding
process, it presents serious challenges for scaling it up at
the huge amounts of data needed in a real business scenario.
Moreover, it is not able to keep pace with the quickly evolv-
ing data sources that you find in a real context and that
call for a repeated over time and/or incremental integration
process.

We address the problem from a completely different point
of view, looking for an unsupervised way to measure how
“good” is an integration process. By “good” we mean how
much a data source is representative of another one, i.e. how
much it preserves the informative content of another data
source. Intuitively, the more a dataset can be represented
by an integrated source, the less there is a loss of informa-
tion when the integrated source is considered in place of the
original one; we call this input representativeness. Vicev-
ersa, the more an integrated source can be represented by
its datasets, the more it is consistent with them; we call this
output representativeness.

Besides being an unsupervised measure, which reduces the
required human effort and is suitable also for highly iterative
and/or incremental real business scenarios, our approach
considers the integration process as a whole and evaluates
its quality after the data fusion step, which is what prac-
titioners and domain experts are confronted with in a real
context. On the contrary, most of the current literature [46,
64, 32] focuses on evaluating just the entity resolution step
by using reference benchmarks and measures like precision
or recall.

Finally, we introduce a technique to rank the elements from
the input datasets and the integrated source according to
their importance in the computation of the representative-



ness measures. The identification of the critical tuples, i.e.,
the tuples from the input datasets which are not adequately
represented in the integrated source and the tuples from the
integrated source which are redundant, allows the designer
to improve the integration process.

This paper extends and consolidates the preliminary results
introduced in [51, 50] by means of: (1) the introduction
of an unsupervised metric for identifying the critical tuples
for the integration process; (2) new experiments 1 based
on shared datasets demonstrating the effectiveness and effi-
ciency of the approach for high-dimensional and iterative /
incremental integration processes; (3) an improved section
of related work providing a deep review of the literature on
the topic.

The paper is organized as follows: Section 2 presents our
approach; Section 3 introduces some relevant scenarios and
reports experiments about them; Section 4 discusses related
works; finally, Section 5 draws conclusions and outlooks for
future work.

2. THE APPROACH
2.1 Motivating Example
Data integration in real scenarios is usually performed via
try and error approaches, requiring several iterations, where
domain experts evaluate the correctness of the integrated
datasets produced at each step. The integration strategy
is improved and tuned at each step until the experts are
satisfied with the result obtained.

Clearly, this is a fully manual and very demanding task in
terms of time, effort, and resources required. We provide
here an example of how this process works in practice to
motivate the need for automatic and unsupervised tools for
supporting it.

We use the popular “Cora Citation Matching” data2 to cre-
ate two datasets of pubblications – D1 and D2 shown in
Table 1 – where each publication is described by a unique
identifier, authors, title, and venue. Table 2 shows some
possible results from their integration. In particular, Ta-
ble 2a shows IP , the perfect integration according to the
Cora ground truth. On the other hand, Table 2b shows
IC , a low-quality integration, obtained by just concatenat-
ing entities for the two sources. As a result, some merges
are missing from it, i.e. some items from D1 and D2 are
not recognized as referring to the same entity; for example,
publication haussler1994 is mapped to two separate enti-
ties – respectively, the second and the last entity– instead
of the same one. Finally, Table 2c shows IM , another low-
quality integration, obtained merging each entity in D1 with
an entity inD2. Five entities in IM are the result of a correct
integration process, since they are also in IP . The remaining
4 entities (which were not merged in IP ) are here randomly
integrated. For example, the last entity, that refers to the
publication kearns1988b, contains also information from the
pubblication kearns1994a, which is therefore not recognized
as a distinct entity.

1See the project github at https://github.com/
softlab-unimore/UEDI
2https://people.cs.umass.edu/~mccallum/data.html

A domain expert would manually assess the quality of IC ,
and IM , by: 1) randomly sampling (or based on “sentinel”
elements defined a priori) a number of entities to check; 2)
verifying their correctness; and, 3) categorizing erroneous
outputs to support the development of improvements in the
integration approach. An expert, analyzing the integrated
dataset IM , may discover that the second entity has been
correctly created while the sixth one contains an error since
it merges two items referring to different real world enti-
ties, i.e. schapire1996 in D1 and schapire1997 in D2. On
the other hand, IC contains two separate entries for the en-
tity kearns1990 which actually refer to the same entity and
therefore are a duplication.

The effort required for performing the error analysis is very
huge due to the large size of the datasets typically involved.
An accurate evaluation requires scanning the entire inte-
grated dataset searching for duplicated and/or wrongly mer-
ged entities and a comparison with the input datasets to ver-
ify that every real-world entity has been included in the final
result. Moreover, since the integrated dataset is obtained
after several try and error iterations, the error analysis is
repeated multiple times. Therefore, an automatic tool for
analyzing the quality of an integration process would largely
reduce the effort required for performing an integration task.

2.2 The Model
We consider a dataset D as a collection of entities D =
{e1, . . . , eN}. The integration of datasets is performed by
means of an entity integration function, defined below.

Definition 1 (Entity Integration process). The Entity Inte-
gration process exploits an Entity Integration function (EI)
to create an integrated dataset of entities I = EI(D) from a
collection of datasets D = {D1, . . . , Dk}. The EI function
defines the logic for matching and merging the entities in
the input dataset collection D.

The integration approaches are usually evaluated with con-
trolled datasets, pre-existing ground truths. Accuracy, and,
more frequently, due to the unbalanced datasets, recall, pre-
cision, and F-measure are used to evaluate the quality of the
integration result.

In business environments, the absence of a ground truth im-
poses to define a different procedure for the evaluation. The
quality of the integration can be assessed through a verifi-
cation and validation process. The verification process aims
to check the formal correctness of the integrated dataset.

Definition 2 (Verified Entity Integrated Dataset). The En-
tity Integrated Dataset I = EI(D), where EI is an en-
tity integration function applied to a collection of datasets
D = {D1, . . . , Dk}, should be:

• total: each entity of every input dataset should be rep-
resented in I, i.e., ∀ei ∈ Dk, ∃ ej ∈ I, s.t. ej and ei refer
to the same real-world entity;

• minimal: I should not contain duplicated entities, i.e.,
∀ei, ej ∈ I, ei and ej refer to different real-world enti-
ties.



Table 1: Source datasets used in the motivating example.

(a) D1: the first data source.

entity id authors title venue
freund1995a yoav freund. boosting a weak ... in proceedings ...
haussler1994 haussler, d ... rigorous learning ... in proc. 7th ...
kearns1987 m. kearns, m. li ... on the learnability ... proceedings of ...
kearns1990 michael j. kearns. the computational ...
kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th ...
schapire1996 r. e. schapire ... learning sparse ... j. of computer ...
kearns1994a michael kearns, ... on the learnability ... proc. of the 26th ...
blum1994 avrim blum .... weakly learning ... in proceedings ...
freund1997a yoav freund... a decision-theoretic ... journal of ...

(b) D2: the second data source.

entity id authors title venue
freund1995a freund, y. boosting a weak ... in ’proceedings ...
haussler1994 haussler ... rigorous learning ... in proceedings ...
kearns1987 m. kearns ... on the learn-ability ... in proc. 19th stoc,
kearns1990 michael ... the computational ...
kearns1993b m. kearns. efficient noise-tolerant ... in proceedings ...
haussler1994a d. haussler, ... bounds on the sample ... machine learning,
kearns1988b michael kearns. thoughts on ... (unpublished),
schapire1997 schapire, r.e ... w.s.: boosting ... proceedings of ...
rivest1989 r. l. rivest ... inference of ... in acm symposium ...

Table 2: Three possible integrated datasets.

(a) IP: the Perfect inte-
grated dataset.

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...
6 schapire1996 ...
7 schapire1997 ...
8 blum1994 ...
9 freund1997a ...
10 haussler1994a ...
11 kearns1988b ...
12 kearns1994a ...
13 rivest1989 ...

(b) IC: low quality inte-
grated dataset (concatena-
tion).

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...
6 schapire1996 ...
7 schapire1997 ...
8 blum1994 ...
9 freund1997a ...
10 haussler1994a ...
11 kearns1988b ...
12 kearns1994a ...
13 rivest1989 ...
14 kearns1987 ...
15 kearns1990 ...
16 kearns1993b ...
17 freund1995a ...
18 haussler1994 ...

(c) IM: low quality inte-
grated dataset (merging).

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...

6
schapire1996,
schapire1997

...

7
blum1994,
rivest1989

...

8
haussler1994a,
freund1997a

...

9
kearns1988b,
kearns1994a

...

The validation process assesses the correspondence of the
informative content of the integrated dataset with the input
sources.

The unsupervided technique for evaluating EI processes pro-
posed in this paper is based on a representativeness function
that scores how much a dataset D1 can be represented by a
second dataset D2 through the loss of information in using
D2 instead of D1. We decided to implement the representa-
tiveness function by analyzing the word frequency distribu-
tion in the datasets.

Definition 3 (Word frequency distribution in datasets). Given
a dataset D, let V be its vocabulary of terms. The word fre-
quency distribution freqD(w) : V → N0 of the dataset D

is a function which associates each term w ∈ V with its
frequency in D.

The simplest approach for the definition of a vocabulary of
terms V for a dataset is to apply a tokenization algorithm
to the concatenation of all tuples in D. Token splitting can
be considered as a solved problem [65] and a large number
of techniques are available in NLP code libraries.

Definition 4 (Dataset representativeness score). Given two
datasets D1 and D2, the dataset representativeness rD1→D2

quantifies the extent to which dataset D1 represents D2

by measuring how much the word frequency distribution
freqD1 approximates freqD2 .

In the next section, we propose a way to measure the ap-
proximation between two word frequency distributions in
the context of a data integration process. The representa-
tiveness score should provide users with an assessment of
how much datasets are represented by integrated sources
by showing if there is any loss of information; vice-versa,
it should quantify how much integrated sources are repre-
sented by the original datasets by showing if there is any
redundancy or irrelevant content.

2.3 Scoring Representativeness
When assessing the quality of the integration process, we
need to consider the two sides of the coin, i.e. how well a
source D is represented by the integration I and, vice-versa,
how well the integration I is represented by a source D.

If the integration process is perfect, we expect that the con-
tent of D is completely “covered” by the content of I. This
means that the vocabulary used in D should be included in
the vocabulary used in I, and the word frequency distribu-
tion of words in D should be less than or equal to the one in
I. The measure of the coverage of these word frequency dis-
tributions can provide a measure of the representativity of an
integration source for a dataset. We call this measure input
representativeness rD→I and we define it in Equation (1).

Definition 5 (Input representativeness). Given two datasets
D and I, where I is the integration of D according to some
EI function, let VD be the vocabulary of D and freqX(w)
be the word frequency distribution of either D or I. We
define the following representativeness score:

rD→I = 1− 1

|VD| ·∑︂
w∈VD

freqD(w)−min(freqD(w), freqI(w))

max(freqD(w), freqI(w))
(1)
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Figure 1: Example of word distributions.

We expect that an integrated dataset contains more enti-
ties than an input dataset, due to the contribution of other
datasets. Nevertheless, excluding stop words and other very
generic words, we can suppose that the distribution of fre-
quencies of words belonging to the intersection of the vocab-
ularies of I and D is close. By measuring this closeness, we
can evaluate how much the dataset can represent its inte-
gration for the shared words. We call this measure output
representativeness, rI→D, and it is defined in equation (2).

Definition 6 (Output representativeness). Given two datasets
D and I, where I is the integration of D according to some
EI function, let VD be the vocabulary of D and freqX(w)
be the word frequency distribution of either D or I. We
define the following representativeness score:

rI→D = 1− 1

|VD| ·∑︂
w∈VD

freqI(w)−min(freqD(w), freqI(w))

max(freqD(w), freqI(w))
(2)

We observe as the output representativeness rI→D is defined
over the vocabulary VD of the dataset D and not on the
vocabulary of the integration I. Indeed, there is an intrinsic
asymmetry in the integration process and we need to keep
the focus on the dataset D, either considering how much it is
represented by the integration I, i.e. rD→I , or how much it
represents the integration I, i.e. rI→D, but without skewing
the scores by including all the terms of VI . Considering the
whole vocabulary VI , and not just its overlap with VD, would
just bring in all the other sources than D, whose vocabulary
may differ a lot from VD, and, as a result, these additional
(and possibly unrelated) terms would mask how much D
and I represent each other.

Example 1. Figure 1 shows a simplified word frequency dis-
tribution for a dataset D1 and its integration I. The x-axis
represents the words found in the data sources and the y-
axis their respective distribution. Note that, for sake of
simplicity, the heights of the frequency histograms are ap-
proximated to three possible values and the actual words are
not reported on the x-axis. The areas A,B,C,D,E repre-
sent the word frequency distribution for D1 and the areas
B,C,E, F,G the one of I. A and G represent words be-
longing only to the input dataset and integrated dataset re-
spectively. The words in B,C,D,E, F are common to both
the sources and: (1) those of B have the same frequency

distribution; (2) those of C and D have frequency distribu-
tion equal to C in the integration and frequency distribution
equal to C +D in the input dataset; (3) those of E and F
have frequency distribution equal to E in the input dataset
and frequency distribution equal to E+F in the integration.
To have a high value of representativeness, (1) the frequency
of the common terms in the datasets should be similar (i.e.
the regions D and F have to be as small as possible), and
(2) a small number of terms should be used in a dataset
only (i.e. the area of region A is limited). This is the be-
havior modeled by equations 1 and 2, which correspond to
rD→I ∝ 1−(A+ D

C+D
), and rI→D ∝ 1−( F

E+F
) when applied

to the scenario represented in Figure 1.

2.4 Representativeness Supporting the Verifi-
cation

The representativeness score can be used to verify an in-
tegration process, where the input representativeness score
measures the totality of the integrated dataset; the output
representativeness score the minimality of the integrated
dataset.

Let I be obtained by the integration of D1 and D2. The in-
put representativeness of I with respect to the input datasets
D1 and D2 is obtained by averaging their input representa-
tiveness scores (i.e. rD1→I and rD2→I). This aggregated
score provides a measure of the totality of the integration
process, since the more I represents the sources D1 and D2,
the more the entities of D1 and D2 are also in I. On the
other side, the output representativeness of D1 and D2 with
respect to I, obtained by averaging rI→D1 and rI→D2 , is a
measure of the minimality of the integration process. In-
deed, if D1 and D2 have high output representativeness, it
follows that I does not contain duplicated entities.

2.5 Representativeness Supporting the Valida-
tion

An integration process can be validated by plotting the rep-
resentativeness scores in a two-dimensional Cartesian plane.
The x-axis reports the input representativeness rD→I , i.e.
the totality, and shows the values obtained by the datasets
with respect to the integration; the y-axis reports the output
representativeness rI→D, i.e. the minimality, and shows the
behavior of the integration with respect to the input sources.
Values closest to the point (1, 1) represent the best perfor-
mance. We call the distance from (1, 1) representativeness
distance and we claim that this is a measure of the valida-
tion of an integration approach. Indeed, the more we depart
from (1, 1), the more the correspondences between entities
in the input and integrated datasets decreases. Note that
only in ideal scenarios, where the entities are represented in
the input datasets with the same property values, the com-
bined representativeness score of a verified and validated in-
tegrated dataset is (1, 1). Often, data representing the same
entities are not the same, due to updates, mismatches and
mistakes. This affects the word frequency distributions of
the corresponding datasets which will have small differences
and make representativeness values departing from (1,1).

Example 2. Figure 2 shows the values of the representa-
tiveness scores obtained for the IP , IC , and IM integrated
datasets, described in Section 2.1. As expected, IP is the
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Figure 2: Input and output representativeness for the sources
of the motivating example.

best integrated dataset, being the closest to the point (1,1).

We observe that IC is the integration that better represents
the input datasets since it has the highest values for the
input representativeness. It is the concatenation of the input
datasets, so the resulting input representativeness value is
1, since the input word frequency distribution is completely
included in the integrated dataset. Nevertheless, IC obtains
the worst value of output representativeness, thus meaning
that it contains duplicated entries. IM shows the highest
results for the output representativeness. IM has been built
minimizing duplicated items (all entries in the input datasets
have been merged). The worst values obtained for the input
representativeness score means that the integrated dataset
does not completely represent the input datasets. This is due
to the wrong entity-merges that we have introduced. Note
that input and output representativeness have to be jointly
evaluated and the values assumed by the ground truth (IP
in the example) do not constitute an upper bound for the
values that input and output representativeness can assume.
In Figure 2, IM and IC are both located in the yellow area,
which includes the elements with representativeness value
greater than the one of the ground truth for at least one
dimension. Nevertheless, even if IM has a higher value of
output representativeness, the quality of IM (as the distance
from (1,1) shows) is worst than the one of IP due to the lower
input representativeness. The same happens for the quality
of IC , which is worst than the one of IP due to the lower
output representativeness.

2.6 Ranking Tuples According to Representa-
tiveness

Being able to identify and analyze the tuples that gener-
ate mistakes in the integration process is helpful to improve
the next iterations of the process itself. In particular, tu-
ples from the datasets which are not represented in the inte-
grated source affect the input representativeness score. To
be able to recognize these tuples allows the integration pro-
cess developers to design broader functions customized for
including the missing tuples in the integration. On the other
hand, duplicated entries in the integrated dataset decrease
the output representativeness. Making the developers aware
of them allows the development of more specialized integra-
tion functions able to recognize duplicated information. We
address this issue by introducing two measures, which are
applied to the input datasets and the integrated source, al-
lowing the ranking of the tuples according to their contribu-
tion to the input and output representativeness, respectively.

Table 3: The use cases considered. T = Textual, D = Dirty,
and S = Structured dataset.

Use
Case

Name Input Datasets
Integrated
Dataset

Shared
Entities (%)

Unique
Entities (%)

U1 T Abt-Buy |D1| = 949− |D2| = 920 |I| = 1174 58.5 41.5
U2 S Amazon-Google |D1| = 1171− |D2| = 1843 |I| = 2232 32.7 67.3
U3 S Beer |D1| = 237− |D2| = 233 |I| = 412 14.1 85.9
U4 S Fodors-Zagats |D1| = 89− |D2| = 238 |I| = 422 24.9 75.1
U5 D iTunes-Amazon |D1| = 272− |D2| = 278 |I| = 450 20.9 79.1
U6 S iTunes-Amazon |D1| = 251− |D2| = 255 |I| = 410 22.2 77.8
U7 D DBLP-ACM |D1| = 2419− |D2| = 2238 |I| = 2511 85.5 14.5
U8 S DBLP-ACM |D1| = 2406− |D2| = 2220 |I| = 2507 84.5 15.5
U9 D DBLP-GoogleScholar |D1| = 2491− |D2| = 9877 |I| = 7959 29.0 71.0
U10 S DBLP-GoogleScholar |D1| = 2488− |D2| = 9286 |I| = 7865 29.0 71.0
U11 D Walmart-Amazon |D1| = 1578− |D2| = 4297 |I| = 5080 14.0 86.0
U12 S Walmart-Amazon |D1| = 1524− |D2| = 4014 |I| = 4784 14.0 86.0

rankD→I(e) = 1− 1

|Ve|
·∑︂

w∈Ve

freqD(w)−min(freqD(w), freqI(w))

max(freqD(w), freqI(w))
(3)

Equation 3, specializing Equation 1 to evaluate tuples, pro-
vides the measure of how much the words in a tuple are
represented in the integrated source. Its application to all
tuples of the input datasets allows to identify the elements
which mostly contribute in decreasing the input representa-
tiveness score (the ones with the score closest to 0).

rankI→D(e) = max
∀D∈D

(1− 1

|Ve ∩ VD| ·∑︂
w∈Ve∩VD

freqI(w)−min(freqD(w), freqI(w))

max(freqD(w), freqI(w))
) (4)

Equation 4, specializing Equation 2 to evaluate tuples from
the integrated source, provides the measure of the extent
to which the words of the integrated source cover the in-
put datasets. Its application to the tuples of the integrated
source allows to identify the elements which mostly con-
tribute in decreasing the output representativeness score.

3. EXPERIMENTAL EVALUATION
We conduct a quantitative (in Sections 3.2 to 3.4) and qual-
itative (in Section 3.5) evaluation of the effectiveness of our
proposed measures. Finally, in Section 3.6, we assess their
efficiency.

3.1 Experimental Setup
We use 12 publicly available use cases (see Table 3) from the
benchmark of the Magellan tool3, that is the main reference
to evaluate entity matching approaches. The use cases con-
sist each one of two datasets of entities and the ground truth
contains pairs of entities, one for each dataset, labelled as
matching and non matching items. According to the litera-
ture [21], we consider entities as referring to the same real
world entity when the matching elements form a clique. In
this case, we adopt a simple merging strategy by randomly
selecting one of the entity as the one resulting from the merg-
ing process. The third and fourth columns in Table 3 show

3https://github.com/anhaidgroup/deepmatcher/blob/
master/Datasets.md
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Figure 3: Verification and validation: measures.

the cardinalities of the input and integrated datasets. The
Table also shows for each use case the ratio of shared entities
(i.e., entities in the integrated dataset which are generated
by merging more input entities) and unique entities (i.e., en-
tities which come from one of the input sources only). The
distribution of these kinds of entities in the ground truth is
typically unbalanced: only in U1 shared and unique entities
have a similar distribution.

We run all experiments on commodity hardware: a server
with 4 virtual cores, 16GB of RAM, 256GB of local (SSD)
storage and that runs Ubuntu version 20.04.

3.2 Verification and Validation of an Integra-
tion Process

We evaluate the extent to which representativeness supports
the verification and validation of an integration process: in-
put representativeness for the totality, output representa-
tiveness for the minimality, and representativeness distance
for the validation. The idea of the experiment is to modify
the datasets in a controlled way and to check if the represen-
tativeness measures vary as expected to reflect the changes.

The first plot on the left of Figure 3 shows how the input
representativeness scores measures the totality of the inte-
gration process. For each use case, a number of integrated
datasets have been created from the ground truth, by se-
lecting an increasing percentage of ground truth entities, as
specified in the x-axis. The input representativeness score
computed with these reduced datasets is shown on the y-
axis. We expect that low input representativeness scores
correspond to integrated datasets composed of a reduced
numbers of entities. This is due to the existence of entities
in the input datasets that do not have any correspondence
in the integration. The first plot in Figure 3 shows that the
score increases with the number of entities included in the
integrated dataset. In a similar way, the second plot shows
on the x-axis the percentage of duplicated entities that we
have introduced in a ”perfect” integrated dataset and, on the
y-axis, the corresponding output representativeness score.
As expected, the higher the number of duplicates, the lower
the value of the output representativeness. Finally, the third
plot on the right of Figure 3 evaluates how well the repre-
sentativeness distance measures the validation of an integra-
tion approach. We alter the datasets by removing and by
duplicating the same percentage of entities; therefore, for
example, a value of 10% on the x-axis means that 5% of
the entities are duplicated and 5% are removed; the y-axis
shows the corresponding value of the representativeness dis-
tance. As expected, the distance grows with the increase
of duplicated and missing entities, providing an overall val-

idation of the process. Note that the slope of the curves is
less sharp than the previous ones. This is due to the joint
contribution of the input and output representativeness in
the definition of this measure. Indeed, an entity duplication
generates both a reduction of the minimality and an increase
of the totality.

Take-away: the input and output representativeness are ef-
fective implementations of the totality and minimality prop-
erties respectively, while the representativeness distance is a
valuable validation measure for an integration process.

3.3 Quality of the Representativeness Scores
3.3.1 Robustness to Randomness in the Data
We assess to what extent randomness affects our proposed
representativeness scores. To this end, for each represen-
tativeness score, we repeat 100 times each of the three ex-
periments reported in the previous Section 3.2 by randomly
and uniformly sampling with replacement the data used in
each configuration of the experiment. In this way, we can
compute mean and standard deviations for each score (i.e.,
the input, output, and distance representativeness) and ver-
ify how often a given score falls in the expected range as
defined in Figure 3. Indeed, the more a score falls in the
expected range using random and equivalent samples of the
same data, the more robust is its predictions, and the less we
would change our conclusions due to the observed sample.

Figure 4 shows the results of this experiment for each rep-
resentativeness score and use case. We considered three
ranges: one standard deviation in blue; two standard de-
viations in orange; and, three standard deviations in green.
Each bar in the histograms indicates which ratio of the 100
scores falls in the blue, orange, or green interval. For ex-
ample, in Figure 4a for use case U1 and a deterioration of
50% of the samples, i.e. 50% of the entities have been re-
moved in this case, we can observe that roughly 70% of the
input representation scores fall in the one standard devia-
tion range (blue bar); 20% in the two standard deviations
range (orange bar on top of the blue one); 10% (or less) in
the three standard deviations range (tiny green bar on top
of the orange one).

In the case of the input representativeness in Figure 4a we
can observe as the scores fall in the one standard deviation
range in 50% to 75% of the cases, indicating a quite stable
measure; almost all the other cases fall in the two standard
deviations range, and just few of them in the three standard
deviations range. We can observe a similar behaviour also
for the output representativeness in Figure 4b and for the
representativeness distance in Figure 4c.

3.3.2 Robustness of the Representativeness Scores Va-
rying the Dataset Size

In this experiment we evaluate if the representativeness mea-
sures vary as the size of the considered datasets varies. The
more the measures are stable, the more the approach is ro-
bust to the randomness of the data in the datasets. This ex-
periment provides a complementary assessment compared
to previous experiments that focused on the variability of
results. We selected samples of increasing size from the
ground truth (equal to 10%, 20%, ...., 100%) and we re-
peated this sampling process 100 times for each target size.
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Figure 4: Ratio of representativeness scores.

0.1 0.3 0.5 0.7 0.9
sample size

0.00
0.02
0.04
0.06
0.08
0.10

in
pu

t r
ep

r. 
RM

SE

0.1 0.3 0.5 0.7 0.9
sample size

0.00
0.02
0.04
0.06
0.08
0.10

ou
tp

ut
 re

pr
. R

M
SE

0.1 0.3 0.5 0.7 0.9
sample size

0.00
0.02
0.04
0.06
0.08
0.10

re
pr

. d
ist

an
ce

 R
M

SE

U1
U7

U2
U8

U3
U9

U4
U10

U5
U11

U6
U12

Figure 5: RMSE between the mean representatives scores
and the ideal score based on the ground truth.

For each type of representativeness score, Figure 5 shows the
Root Mean Square Error (RMSE) between the score com-
puted using the entire ground truth and the mean score com-
puted over the samples related to a target sample dimension.
The representativeness metrics do not show significant vari-
ations: only for use cases containing small datasets there
are higher variations, although never greater than 0.1. This
demonstrates their robustness even when significant changes
in the size of the involved datasets are applied.

3.3.3 Robustness to the Selected Merging Approach
We evaluate how much the behaviour of our representa-
tiveness measures depends on the actual merging strategy
adopted to perform the integration of the matching enti-
ties. Ideally, we would like to observe some differences in
the scores but not drastically different behaviours, other-
wise, we could not reliably compare alternative integration
processes. To this end, we repeat the experiment of Sec-
tion 3.2 but we use two different alternatives for merging.
Figure 6a shows the results for the first approach which
randomly selects which entities to merge. Figure 6b shows
the results for the second approach which randomly selects
the values of the merged attributes. In both figures, we can
observe a trend which is consistent with all the previous
experiments.

3.3.4 Robusteness of the Ranking
To evaluate if Equations 3 and 4 can really detect the mis-
taken tuples, we build five integrated datasets for each use
case where we have modified 10%, 20%, 30%, 40%, and 50%
of tuples to introduce mistakes. In particular, we removed
tuples to evaluate the input representativeness, and we in-
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(b) Random Values.

Figure 6: Verification and validation of the representativeness
measures against random merging strategies.

serted duplication to evaluate the output representativeness.
Then we applied Equations 3 and 4 and we evaluated the
percentage of really mistaken tuples in the first ten highest-
scored tuples (precision at 10, p@10), in the first thirty
(p@30) in the first fifty (p@ 50), in the first eighty (p@80),
and in the first one hundred (p@100). Figure 7 shows the re-
sults of our experiment, where missing columns denote the
absence of enough errors to perform the computation. In
most of the configurations, our measures demonstrate high
precision levels making them really able to detect mistakes.

Take-away: the proposed representativeness scores are quite
robust to different types of deterioration and randomness in
the data, have a good predictive accuracy, and they are not
biased by the considered data fusion techniques. Moreover,
simple variations of the scores as the ones in Equations 3
and 4 allows the detection of mistaken tuples, thus making
the developer able to design improvements in the integration
process.

3.4 Alternative Techniques for Measuring In-
put Representativeness

In Section 2.3 we proposed a specific way of computing rep-
resentativeness based on word frequency distributions com-
puted on the whole dataset. These distributions can be in-
accurate for describing entity similarities, computed at the
tuple level.

In this section, we consider the following alternatives for
computing the input representativeness score: the jaccard-
based similarity as a baseline, for its simplicity; the bleu-
score [57] as a reliable unsupervised measure for evaluating
the quality of machine-translated text; finally, embeddings
largely used in NLP tasks to capture both syntactic and
semantic similiarity.

Jaccard and Bleu score-based representativeness. Firstly, we
tokenize the entries in the input and the integrated datasets
and then we measure the similarity between input and inte-
grated entities. For each input entity, we consider the max-
imum value computed. The mean of all maximum values
is the representativeness measure for the considered input

data source.

Embedding-based representativeness. We applied three dif-
ferent techniques (word2vec [45], fasttext [7], and glove [59])
for computing the embeddings of the tokenized entries of
input and integrated entities. We measured the similarity
between input and integrated entities through the cosine
similarity. For each input entity, we consider the maximum
value computed and we average the results for all the entities
as before.

3.4.1 Alternatives for the Representativeness Distan-
ce

We conduct the experiment described in Section 3.2 com-
paring the representativeness distance obtained with the al-
ternative measures. Figure 8 shows the results obtained. As
expected, the representativeness distance increases as the
deterioration of the datasets increases. Nevertheless, the
measure defined in Equation 1 assumes the highest values
in the majority of the scenarios, indicating that it better
recognizes the errors in the integrated dataset.

Take-away: our measure outperforms alternative representa-
tiveness metrics based on syntactic and semantic similarities.

3.4.2 Alternatives for Input and Output Representa-
tiveness

We compare alternative representativeness measures on the
basis of how they react to possible errors in the integration
process. We consider two error types: items in the input
dataset which are merged even if they represent different
entities and items referring to the same real world entities
which are not merged. Note that this experiment may re-
semble the one of Section 3.2 but here we operate directly on
the input datasets and on the different categories of entities.

Let us consider the ”merge errors”. We defined as unique
entities those entities in the input datasets which are not
to be merged with other entities in the integration process.
When we erroneously merge unique entities with other en-
tities, the dimension of the integrated dataset decreases as
well as its totality, since there are input entities which are
not represented in the integrated dataset, i.e. the wrongly
merged ones. As a consequence, this kind of error will af-
fect the input representativeness. To evaluate the impact of
these errors, we created variations of the use case datasets,
where different amounts of errors have been introduced in
the ground truth, and we measured the difference of the in-
put representativeness score measured with respect to the
ground truth. The results of the experiments are shown
in Figure 9, where for each use case, selected percentages
of wrong merged entities have been introduced. The input
representativeness (independently from the approach used
for its computation) decreases when the error increases in
all use cases and with all the approaches. Nevertheless, we
observe that our measure introduced in Equation 1 better
represents these mistakes, by showing the largest variations.
Note that Figure 9 shows the results on the overall dataset,
not only on the portion of the dataset composed of unique
entities. The unbalanced distribution of unique entities (see
Table 3) can introduce different amounts of wrong merges
in the use cases. Table 4 shows the “real” impact of the per-
turbations introduced in the ground truth, by showing the
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Figure 7: Evaluation of the equations for finding mistakes.

percentage of missing unique entities for each experiment.
We see that the variation in use cases U7 and U8 are less
marked since the reduced number of wrong entities intro-
duced. The plots describing U3, U11, and U12 are those
with the largest variations, and this is consistent with the
perturbed integrated entities.

Table 4: Percentage of unique entities removed from the in-
tegrated dataset for each experiment.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
0.2 8.26 13.44 17.23 15.17 16 15.61 2.91 3.07 14.19 14.16 17.22 17.18
0.4 16.52 26.88 34.47 30.09 31.56 30.98 5.81 6.18 28.4 28.35 34.41 34.36
0.6 24.96 40.41 51.46 45.02 47.56 46.83 8.72 9.29 42.58 42.52 51.63 51.55
0.8 33.22 53.85 68.69 59.95 63.11 62.2 11.63 12.41 56.79 56.71 68.82 68.73
1 41.48 67.29 85.92 75.12 79.11 77.8 14.54 15.48 70.98 70.87 86.04 85.91

We conduct a similar analysis for the second issue, i.e. du-
plicated entities. We called shared entities those entities

obtained from merging multiple input entities. In this case,
errors in the shared entities result on items in the integrated
dataset which are not merged and this will affect the out-
put representativeness. As before, we create a controlled
deterioration of the ground truth, where we introduce er-
rors on 20%, 40%, ...100% of the shared entities. Figure 10a
shows the difference of the output representativeness score
with respect to the ground truth: the more the decrease,
the more errors in shared entities are detected. Note that,
as before, Figure 10b is needed to support the analysis. It
shows the percentage of new entities introduced with the
perturbation: U7 and U8 show the largest amount of entity
introduced. This is consistent with the results in the figure
that show the largest variation.

3.4.3 Joint Effect of Duplication and Merging Errors
We analyze variations of both the input and output represen-
tativeness scores resulting from the increase of wrong merged
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Figure 8: Comparison among the measures introduced for computing the representativeness distance.
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Figure 9: Impact of wrongly merged entities on the input representativeness.
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(a) Output representativeness variation in
case of non-merged entities.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
0.2 21.55 12.46 4.13 8.77 7.33 7.07 30.63 30.55 16.15 15.04 5.45 5.33
0.4 37.56 22.49 8.01 14.69 12.67 11.46 54.4 53.45 30.66 28.2 9.78 9.62
0.6 49.66 29.48 10.92 20.85 16.89 16.1 71.64 70.68 42.73 38.88 12.93 12.86
0.8 56.64 33.29 12.62 22.99 19.78 20.24 82.04 80.93 51.84 46.68 15.02 15.07
1 59.2 35.04 14.08 24.88 22.22 23.41 85.46 84.52 55.4 49.7 15.65 15.76

(b) Percentage of duplicated entities introduced in the inte-
grated dataset for each use case.

Figure 10: Impact of errors on shared entities on the input
representativeness.

entities and wrong duplicated entities in the datasets. Fig-
ures 11 and 12 show the results of our experiments. Green
arrows show the variations on the primary component (input
representativeness in the first case and output representa-
tiveness in the second one). Red arrows show the secondary
component. The longer the arrow, the higher the variation
in the score. The scores range from -1 to 1. They represent

the difference between the value assumed by the represen-
tativeness measured in the experiment and the one in the
ground truth.

In Figure 11, green arrows are associated with the input rep-
resentativeness, red to the output representativeness. The
perturbations of the datasets are generated by introducing
wrong merged entities. As already shown in Figure 11, the
input representativeness decreases with the increase of the
errors. This is shown by the green arrows which become
longer and tend to -1 in correspondence of the largest per-
turbations. We observe that the red arrows have an opposite
behavior: they increase when the wrong merged entities in-
crease. This is due to the fact that increasing the number
of wrong merged entities increases the minimality of the in-
tegrated dataset.

In Figure 12 we show the results of the experiments with
datasets where duplicated entities have been introduced. In
this case, the green arrows show the output representative-
ness, which is the measure subject to the largest variations.
As in Figure 10, in correspondence of the largest perturba-
tions, the values assumed by the output representativeness
are closer to -1. In this situation, even if less marked, we can
observe an increase of the input representativeness. This is
due to the fact that an increase of duplicated entities in the
integrated dataset increases also its ability to represent the
input sources.

Take-away: by examining the variations of input and output
representativeness, we understand the nature of the error af-
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Figure 11: Representativeness variations at different unique entity error rates.
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Figure 12: Representativeness variations at different sharing entity error rates.

fecting the integration task. A predominant variation of the
input representativeness indicates the presence of errors in
the recognition of the no-match class. Errors in the match
class produce a more marked variation in the output repre-
sentativeness.

3.5 Controlled Data Integration Scenarios
Creating the datasets. For each use case in Table 3 we gener-
ate four datasets, D1, D2, D3 and D4. D1 has a cardinality
double than D2 which has the same cardinality as D3. D2

contains a subset of the entities of D1. D3 contains enti-
ties that are not in D1. D4 concatenates D2 and D3. We
evaluate the datasets in three controlled scenarios. The first
column in Table 5 shows the cardinalities of the datasets and
the associate vocabularies. The datasets are experimented
in three controlled scenarios.

Scenario 1: Datasets describing the same entities. We con-
sider D1 and D2, which describe same entities. Since D1

is a superset of D2, it can be considered as a possible inte-
gration, called IM = D1 in Figure 13a. IC is the integra-
tion obtained by a concatenation of the tuples in D1 and
D2. Let us consider for example use case U10: we know
the ground-truth and it is thus possible to compute the er-
ror rate, which is 0 for IM , and 0.333 for IC . Our measure
shows that, from a dataset perspective, the concatenation IC
is the best integration scenario, since it does not generate
any loss of information. This is clear in Figure 13a, where
IC assumes the maximum value of input representativeness
on the x-axis. Nevertheless, concatenation introduces data
duplication (D1 is a superset of D2) and this is the reason
why in Figure IC has an output representativeness value on
the y-axis lower than IM . The plot clearly shows that IM is

a better integration than IC , as we can expect by analyzing
the data sources.

Scenario 2: Datasets describing different entities. We con-
sider D1 and D3, which describe different entities. As in the
previous scenario, we consider D1 also as integration and
we call it IM in Figure 13b. IC is the integration obtained
by the concatenation of D1 and D3, which does not contain
duplicates in this case. In this scenario, IC should be the
best integration since all entities are included in this source.
This is confirmed by the error rate, 0.5 for IM and 0 for IC .
This is also clear by our measure applied to U10 (see Figure
13b), comparing the coordinates of IC and IM in the Figure.
IC has coordinates (1, 0.79). This means the maximum in-
put representativeness value. IM has coordinates (0.73,0.9).
The output value is due to the low representativeness value
for D3 in IM (0.46). Note that even if IM does not con-
tain the entities described in D3 the representativeness is
not zero since there is still a low number of words in D3

which are contained in IM anyway. The high level measured
from the integration perspective is because IM completely
includes D1 which has twice the cardinality of D3.

Scenario 3: Datasets describing common entities. We con-
sider D1 and D4 which contain a half common and a half
different entities. IP in Figure 13c is generated by concate-
nating D1 and D3. This is a perfect integration since it in-
cludes all entities described by the D1 and D4 datasets. IM ,
as in the previous scenarios, is D1 only which, in this case,
does not describe half of the entities in D4. Finally, IC is ob-
tained by the concatenation of D1 and D4. This integration
suffers from redundancy, generated by the duplicated enti-
ties of D1 contained in D4 and included twice in IC . The



error rates of these integrations are 0.5 for IM and IC , and
no error rate for IP . Figure 13c shows our measures applied
to U10 and correctly reflects the datasets included in the
integration, by showing the input representativeness values
on the x-axis of IP and IM close, but not equal to 1, thus
meaning that there is some loss of information in the inte-
gration. In IC , the input representativeness values are equal
to 1, since the datasets are completely represented, but the
integration suffers from redundancy as shown by the lowest
output representativeness value on the y-axis.
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Figure 13: The scenarios applied to use case U10.

Extended evaluation. Table 5 summarizes the results of the
experiments performed on all datasets in the benchmark.
The second column reports the scenarios, and the other
columns outline the measures obtained by considering the
IM , IC , and IP integrations. The bold values are the best
ones, i.e. the closest to the point (1,1). According to the
previous discussion, we expect IM to be the best integra-
tion in Scenario 1, IC in Scenario 2, and IP in Scenario 3.
The measure performs correctly in almost all evaluations.
Wrong best integrations in U1, U7 and U8 have all a very
close distance to the best one. The mistakes are due to the
sparse vocabularies (and the low cardinalities in the second
dataset).

Take-away: the representativeness scores offer a fine-grained
explanation on why an integration strategy can be preferred
to another one.

3.6 Efficiency
The time performace has been evaluated on integration pro-
cesses involving datasets with increasing dimensionality (1K,
10K, 50K, 100K, 500K and 1M). These datasets have been
obtained by applying sampling with replacement to the data
contained in use case U10 (the largest one). The experiment
was repeated 5 times and Figure 14 shows the average times.
All embedding-based approaches show the same time perfor-
mance, since they adopt the same algorithm for mapping the
datasets into the vector space of embeddings and for com-
puting the similarity. Moreover, they could not be applied
to the largest datasets since they overcame the maximum
time (48 hours) we fixed for the duration of the experiment.

Our approach shows the best performance in all configura-
tions: it takes less than 2 minutes to compute the representa-
tiveness of the largest dataset. The vectorized implementa-
tion of the cosine similarity makes the embedding-based ap-
proaches fast, but for running on datasets larger than 100K
entities it requires more memory than the one available in
our system. The approach based on Jaccard’s similarity has
a poor performance since it cannot be vectorized for per-

Table 5: The evaluation of the scenarios in other datasets.

Use case params Sc. IM IC IP

U1 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=4776, |V2|=1431, |V3|=2258, |V4|=3092)

1 (0.83, 0.83) (1.0, 0.71)
2 (0.80, 0.89) (1.0, 0.73)
3 (0.7, 0.92) (1.0, 0.73) (0.93, 0.77)

U2 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=1664, |V2|=1139, |V3|=986, |V4|=1699)

1 (0.91, 0.89) (1.0, 0.66)
2 (0.75, 0.91) (1.0, 0.76)
3 (0.78, 0.95) (1.0, 0.68) (0.92, 0.85)

U3 (|D1|=50, |D2|=25, |D3|=25, |D4|=50,
|V1|=208, |V2|=120, |V3|=136, |V4|=235)

1 (0.9, 0.94) (1.0, 0.70)
2 (0.62, 0.97) (1.0, 0.89)
3 (0.70, 0.97) (1.0, 0.76) (0.92, 0.92)

U4 (|D1|=100, |D2|=50, |D3|=50, |D4|=100,
|V1|=375, |V2|=192, |V3|=192, |V4|=347)

1 (0.98, 0.95) (1.0, 0.65)
2 (0.65, 0.96) (1.0, 0.88)
3 (0.78, 0.98) (1.0, 0.72) (0.98, 0.92)

U5 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=697, |V2|=433, |V3|=462, |V4|=736)

1 (0.92, 0.87) (1.0, 0.65)
2 (0.72, 0.93) (1.0, 0.79)
3 (0.75, 0.94) (1.0, 0.70) (0.95, 0.85)

U6 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=503, |V2|=293, |V3|=335, |V4|=529)

1 (0.95, 0.89) (1.0, 0.61)
2 (0.71, 0.93) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.67) (0.98, 0.85)

U7 (|D1|=2100, |D2|=1050, |D3|=365, |D4|=1415,
|V1|=7359, |V2|=4854, |V3|=1790, |V4|=5460)

1 (0.96, 0.87) (1.0, 0.59)
2 (0.87, 0.79) (1.0, 0.7)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U8 (|D1|=2100, |D2|=1050, |D3|=388, |D4|=1438,
|V1|=7396, |V2|=4858, |V3|=1863, |V4|=5509)

1 (0.98, 0.87) (1.0, 0.59)
2 (0.87, 0.80) (1.0, 0.70)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U9 (|D1|=2300, |D2|=1150, |D3|=1150, |D4|=2300,
|V1|=5993, |V2|=4119, |V3|=3979, |V4|=6364)

1 (0.92, 0.89) (1.0, 0.67)
2 (0.72, 0.91) (1.0, 0.8)
3 (0.76, 0.95) (1.0, 0.71) (0.93, 0.86)

U10 (|D1|=2200, |D2|=1100, |D3|=1100, |D4|=2200,
|V1|=5802, |V2|=3905, |V3|=3632, |V4|=5939)

1 (0.92, 0.89) (1.0, 0.66)
2 (0.73, 0.90) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.96, 0.86)

U11 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=2875, |V2|=2096, |V3|=1694, |V4|=3195)

1 (0.86, 0.91) (1.0, 0.71)
2 (0.72, 0.93) (1.0, 0.80)
3 (0.73, 0.96) (1.0, 0.73) (0.88, 0.89)

U12 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=2152, |V2|=1713, |V3|=1231, |V4|=2453)

1 (0.88, 0.91) (1.0, 0.69)
2 (0.74, 0.96) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.88, 0.88)
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Figure 14: Computing representativeness: efficiency.

forming our computation. For this reason, the execution
time grows quadratically with the size of the datasets.

Take-away: the developed approach is efficient in evaluating
high dimensional data integration scenarios.

4. RELATED WORK
4.1 Data Integration and Entity Resolution
Data integration is one of the most challenging and long-
lasting issues that the research community is confronted
with for the last 30 years. The focus of the research com-
munity in the last years was mainly oriented to Entity Res-
olution (ER), the task concerning the development of tech-
niques for detecting and merging entities. A number of“inte-
gration functions” to discover and match the different struc-
tures that represent the same real-world entity have been
proposed [46, 64, 32, 3, 52, 49, 20, 69, 35]. Among these,
rule-based and machine learning (ML) techniques are the



most common ones. Regardless of the use of ML or not, ER
approaches require either careful manual configuration by
domain experts or a large amount of labeled data [48]. To
cope with the first issue, methods have been proposed for
the fine tuning of parameters such as [53], but all proposals
require some human supervision. Regarding to the second
problem, many semi-supervised approaches in the field of
active learning [4] and crowd-sourcing [68] have been intro-
duced. The fundamental idea behind these techniques is to
limit the validation intervention required by domain experts
to a minimum or to resort to crowd-workers. However, these
methods suffer from a poor quality control mechanism: in-
deed, the former approach focuses on optimizing recall while
ensuring a user-specified precision level [12, 21], while crowd-
based solutions are affected by uncertain labels provided by
inexperienced workers [15].

4.2 Evaluating Data Integration and Entity
Resolution

The effectiveness of ER and data integration processes is
typically measured against ground truths. The availability
of labeled data is a problem in real scenarios, where experts
have to manually assess the results obtained. This is also
a problem for the evaluation of the approaches proposed
by the research community since most of the techniques
are evaluated against the same small number of sources
(typically the benchmark made available by the Magellan
tool4) with few hundreds of labeled data. This makes pos-
sible the development and promotion of approaches overfit-
ting on those sources (which can have features really dif-
ferent from the ones in sources available in real scenarios).
To the best of our knowledge, only recently [41] addressed
this issue, by proposing techniques for providing samples on
datasets guaranteeing a fair evaluation. Similarly to other
techniques [54, 28], our approach is part of this human-
machine cooperation framework, but it mainly focuses on
supporting analysts in the unsupervised evaluation of the
integration process.

To assess the most commonly adopted evaluation framework
in recent years, we survey works accepted to the main con-
ferences and journals in the last six years. We considered
scientific papers published in the following journals: IEEE
Transactions on Knowledge and Data Engineering (TKDE),
Journal of Data and Information Quality (JDIQ), SIGMOD
Records. Furthermore, we took into consideration the sub-
sequent international conferences: International Conference
on Extending Database Technology (EDBT), International
Conference on Database Theory (ICDT), IEEE International
Conference on Data Engineering (ICDE), International Con-
ference on Very Large Data Bases (VLDB), International
Conference on Information and Knowledge Management-
(CIKM). Among the papers selected, we consider only those
containing in the title one or more of the following words:
entity resolution, deduplication, matching, linkage, integra-
tion. In total, 73 papers satisfied the criteria mentioned
above. We further select only papers involving some form
of experimental evaluation. This further reduces the num-
ber of considered papers to 57. Table 6 reports the list of

4https://github.com/anhaidgroup/deepmatcher/blob/
master/Datasets.md

surveyed related work, divided by task addressed.

0 2 4 6 8 10 12 14 16 18 20 22 24
Use cases considered

0

5

10

15

Nu
m

be
r o

f p
ap

er
s

mean: 5.39

Figure 15: Number of use cases used to evaluate the proposed
approaches by surveyed papers.

Figure 15 reports the distribution of the number of use cases
considered by the 57 recent works in the data integration
domain. The mode of considered use cases is 3, while on
average 5.39 datasets are taken into account. [46, 31] present
the highest number of use cases considered – respectively
23 and 24. They focused on the 24 use cases available in
the Magellan repository. Among works that do not employ
any publicly available dataset, they either propose a new
evaluation framework [54, 32] or employ only synthetic and
private datasets [27]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Use cases

0

5

10

15

20

25

Nu
m

be
r o

f u
sa

ge
s

mean: 2.95

Figure 16: Number of times different use cases have been
used to evaluate.

Figure 16 reports, for each use case included in the above-
mentioned papers, how frequently it has been used (among
the surveyed papers). In total, 26 use cases have been ap-
plied only once among the surveyed papers. This, while
allowing to test each method in the most suited scenario,
increases the risk of producing results that are not compa-
rable with different works. To the other extreme, we have
specific use cases, such as those derived from the Magellan
repository (14 usages) and those derived from the JedAI



Table 6: Surveyed related work divided by Data integration task addressed. Notice that, several works appear in more than one
category.

Task References

Schema Alignment [10, 39, 27]
Duplicate Search Space [30, 36, 29, 19, 24, 72, 5, 1, 70, 25, 71, 11, 13, 46, 43, 56, 62, 18]
Duplicate Recognition [47, 30, 61, 74, 66, 26, 55, 19, 9, 8, 52, 3, 22, 12, 76, 5, 1, 70, 25, 6, 71, 67, 10, 44, 11,

13, 46, 73, 43, 41, 2, 21, 64, 18, 34, 33, 37, 58, 38, 40, 39, 63, 19, 27]
Clustering [74, 67, 23, 2, 21, 17]
Data Fusion [14, 60, 75, 27]
Debugging and / or complete cycle [54, 31]

Table 7: Frequency of usage for the measures by task.

Entity resolution
Schema
alignment

Duplicate
search space

Duplicate
recognition

Clustering
Data
fusion

Complete
cycle

P 2 11 19 2 2 2

R 2 16 23 3 2 2

F1 3 13 36 4 1 3

AUC — — 1 — — —

MAE — — 1 — 1 —

Accuracy — — 1 — — —

GMD — — — 1 — —

MCC — — — — 1 —

KL divergence — — — — 1 —

Reduction Ratio — 4 — — — —

Cost — 1 3 1 — 1

Time 1 12 15 2 2 1

Memory — 2 — — — —

toolkit (29 usages) that have been used in a large num-
ber of scenarios. Among the most popular use cases, the
Cora Dataset [42] is one of the most popular, with 19 usages
among the surveyed papers.

Concerning the measures used, we observe that the most
popular evaluation approach is based on computing the F1
score. 41 papers among those surveyed adopt F1 to mea-
sure the effectiveness of the proposed approach. Similarly,
27 and 34 papers report respectively the precision and recall.
Another approach often used to evaluate quantitatively the
effectiveness of the proposed strategies is the pair compari-
son reduction ratio, which corresponds to the ratio between
the numbers of pairs of records to be compared with and
without applying a blocking strategy. The pair comparison
reduction ratio is adopted in 4 of the surveyed works. A
second important aspect that is measured in several works
is the efficiency of the approaches. Among the considered
works 23 measure the time efficiency, 4 evaluate the cost
of crowd-sourcing labels to apply supervised record linkage
strategies and 2 monitor the memory efficiency of the pro-
posed strategy.

Table 7 reports measures usage by task – notice that some

papers consider multiple tasks. We recognize three main cat-
egories of measures - task-agnostic effectiveness measures,
task-specific effectiveness measures, and efficiency measures.
In all scenarios, the most commonly used measures are those
belonging to the first category, namely precision, recall and
F1-score. Interestingly, depending on the task at hand, ad-
hoc measures have been also employed. To evaluate the per-
formance of a system on the Duplicate Search Space identifi-
cation, besides task-agnostic measures, the most commonly
used task-specific measure is the Reduction Ratio [26, 55,
72]. If we consider the Duplicate Recognition domain, task-
specific measures used include Area Under the ROC Curve
(AUC) [63], Mean Average Error (MAE) [3] and Accuracy
[3]. For the Clustering task, one domain-specific measure
adopted in the past is the Generalized Merged Distribution
(GMD) [17]. GMD is defined as the minimal number of
splits and merges required to transform the clustering into
the real-world classification. Finally, when it comes to the
Data Fusion tasks, considered task-specific measures include
MAE [60], Matthews correlation coefficient (MCC) [14] and
KL-divergence [75]. MCC is used to evaluate classification
performance in a particularly unbalanced scenario [14]. Fi-
nally, KL-divergence is used to evaluate the Bayesian learn-



ing approach proposed by [75], which is evaluated by com-
paring the fitted probability distribution with the real one.
If we consider the efficiency analyses, the most commonly
evaluated aspect is the time one. This is particularly evident
concerning the Duplicate Search Space identification task,
with 60% of the papers that address this task analysing the
temporal requirements of the proposed approach. A second
aspect that is often considered is the Cost. The definition
of cost slightly changes depending on the task at hand, but
in general, it corresponds to the number of annotations that
need to be collected to either finalize the task or construct
a learning set large enough to provide sensible results.

5. CONCLUSION
We introduced the representativeness score, an unsupervised
measure to evaluate the quality of an integration process by
analyzing the word frequency distributions of the datasets
involved. The experimental evaluation showed that the rep-
resentativeness is able to provide a means for verifying and
validating an integration process.
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