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Abstract

Information Extraction (IE), encompassing
Named Entity Recognition (NER), Named En-
tity Linking (NEL), and Relation Extraction
(RE), is critical for transforming the rapidly
growing volume of scientific publications into
structured, actionable knowledge. This need is
especially evident in fast-evolving biomedical
fields such as the gut-brain axis, where research
investigates complex interactions between the
gut microbiota and brain-related disorders. Ex-
isting biomedical IE benchmarks, however, are
often narrow in scope and rely heavily on dis-
tantly supervised or automatically generated
annotations, limiting their utility for advanc-
ing robust IE methods. We introduce GUT-
BRAINIE, a benchmark based on more than
1,600 PubMed abstracts, manually annotated
by biomedical and terminological experts with
fine-grained entities, concept-level links, and
relations. While grounded in the gut-brain axis,
the benchmark’s rich schema, multiple tasks,
and combination of highly curated and weakly
supervised data make it broadly applicable to
the development and evaluation of biomedical
IE systems across domains.1

1 Introduction

Recent studies increasingly associate gut micro-
biota with neurological and psychiatric disorders
like Parkinson’s, Alzheimer’s, Multiple Sclerosis,
and mood disorders (Carabotti et al., 2015; Ghaisas
et al., 2016; Appleton, 2018; Cryan et al., 2020).
PubMed publications on the gut-brain axis more
than doubled from 2020 to 2025, increasing from
600 to over 1,500 articles annually. This rapid
growth challenges clinicians and researchers to stay
updated, identify, and interpret findings in unstruc-
tured texts. Natural Language Processing (NLP)
methods for Information Extraction (IE) are crucial
in tackling this problem by systematically identify-
ing entities, mapping them to structured knowledge

1This work was accepted to the Findings of EACL 2026.

bases, and extracting semantic relations. Named
Entity Recognition (NER) detects and categorizes
mentions of biomedical entities such as diseases,
chemicals, or anatomical structures. Named En-
tity Linking (NEL) disambiguates these mentions
by linking them to unique identifiers in external
knowledge bases, ensuring semantic consistency
across texts. Relation Extraction (RE) identifies
and classifies relationships between entities, such
as interactions or causal associations. Within RE,
two complementary evaluation settings are com-
monly distinguished. Mention-level RE (M-RE)
targets specific pairs of mentions in text, making
it sensitive to lexical variation and mention bound-
aries. Concept-level RE (C-RE) instead operates
at the level of linked concepts corresponding to
the standard setting adopted by most benchmarks
(Detroja et al., 2023).

Despite their importance, implementing these
tasks in practice requires substantial amounts of
manual annotation, particularly at fine levels of
granularity. As a result, existing biomedical cor-
pora are often narrow in scope, restricted to a lim-
ited set of entity types or relation predicates, con-
fined to sentence-level annotations, and reliant on
distant supervision (Chen et al., 2015; Karp, 2016;
Wang et al., 2022). These limitations hinder the
development of IE systems capable of handling
domains with specialized terminology, diverse con-
cept spaces, and cross-sentence dependencies (Tho
et al., 2024; Park et al., 2024). The gut-brain axis
literature exacerbates these challenges, combining
complex terminology, broad conceptual diversity,
and long-range relations (Liu et al., 2021; Hong
et al., 2025). To deal with these challenges, we
introduce GUTBRAINIE, a new benchmark for
biomedical IE based on more than 1,600 PubMed
documents annotated by biomedical and termino-
logical experts, trained laypersons, and distantly su-
pervised methods (Su et al., 2019). It supports the
four complementary IE tasks outlined above and is



designed both to capture the unique challenges of
the gut-brain axis and to serve as a general resource
for advancing biomedical IE.

The main contributions of this work are:
(1) The first domain-specific corpus focused on the
gut-brain axis with a size consistent with estab-
lished biomedical corpora (cf. Table 2).
(2) Manual and automatic annotations based on
the most comprehensive and fine-grained schema
to date in biomedical IE, organized in a stratified
structure reflecting different levels of expertise and
quality.
(3) Standardized benchmark tasks with competitive
baselines, evaluation scripts, and leaderboards, fa-
cilitating reproducible comparisons across systems.

The benchmark has been validated through inter-
nal experiments with a baseline system and through
a large open public evaluation campaign where
GUTBRAINIE served as the reference dataset. The
dataset is publicly accessible, with training and
development sets released with annotations, and
the test set provided without ground-truth labels.2

For comparability and reproducibility, each task
is hosted on Codabench with official evaluation
scripts and leaderboards, allowing system predic-
tions on the test set to be evaluated against the
hidden ground truth.3 The rest of the paper is orga-
nized as follows: Section 2 details data collection
and curation. Section 3 analyzes the GUTBRAINIE
corpus. Section 4 introduces the benchmark tasks
and discusses its applications. Section 5 reviews
related corpora. Section 6 concludes and outlines
future work.

2 Data Collection

The GUTBRAINIE benchmark features a large-
scale biomedical corpus with manual and automatic
annotations for entities, concept-level links, and re-
lations across PubMed documents. It covers 13
entity types, including both widely used biomedi-
cal categories (e.g., anatomical location, bacteria,
drug) and entities specific to the gut-brain axis
(e.g., microbiome and dietary supplement). To ac-
count for the frequent occurrence of experimental
scenarios in documents, we also introduced spe-
cific categories related to medical experiments (e.g.,

2The full benchmark, including code and datasets,
is publicly available at: https://zenodo.org/records/
16845409

3https://github.com/MMartinelli-hub/
GutBrainIE/blob/main/TestData/codabench_
competitions.md

biomedical technique and statistical technique).
For what concerns RE, GUTBRAINIE features

17 relation predicates, many of which are over-
loaded, meaning that the same predicate can link
different combinations of entity types depending
on context. For example, the predicate adminis-
tered can connect a chemical, drug, dietary sup-
plement, or food to either a human or animal en-
tity. Similarly, the same pair of entity types can be
linked through multiple predicates. For instance,
a chemical can be linked to a microbiome entity
through either impact or produced by. This many-
to-many design originates 55 unique relation triples.
For NEL, GUTBRAINIE links annotated mentions
to 6 standardized biomedical vocabularies and a
custom-defined ontology for unmatched mentions.

Given the specialized nature of the gut-brain axis,
we relied on an in-house team rather than external
crowdworkers. This enabled targeted training, reg-
ular feedback, and higher annotation consistency.
The team comprised 40 trained master’s students in
terminography serving as lay annotators and 7 ex-
perts, including computer scientists, terminologists
specialized in the medical domain, and biomedi-
cal specialists with prior experience in evaluation
campaigns.

The manual curation of GUTBRAINIE followed
a four-stage workflow to ensure annotation quality
and consistency (illustrated in Figure 2). The prepa-
ration involved document retrieval from PubMed
and the design of the annotation schema and guide-
lines. The first annotation phase combined NER
pre-annotations with expert curation. The second
annotation phase refined NER with contributions
from both experts and trained lay annotators. Fi-
nally, the NEL phase mapped the set of expert-
annotated entity mentions to standardized biomedi-
cal vocabularies.

The Preparation Phase began with the re-
trieval of domain-specific documents from PubMed
using two targeted queries, identified by ex-
ternal biomedical experts: "gut microbiota"
AND "Parkinson" and "gut microbiota" AND
"mental health". Two retrieval rounds were con-
ducted on May 9th and October 31st, 2024, result-
ing in 1,662 documents. After filtering out dupli-
cates and low-relevance documents from earlier
publication years (2013-2020), the final collection
included 1,647 unique documents.

Following retrieval, we employed an iterative,
brainstorming approach for defining the annotation

https://zenodo.org/records/16845409
https://zenodo.org/records/16845409
https://github.com/MMartinelli-hub/GutBrainIE/blob/main/TestData/codabench_competitions.md
https://github.com/MMartinelli-hub/GutBrainIE/blob/main/TestData/codabench_competitions.md
https://github.com/MMartinelli-hub/GutBrainIE/blob/main/TestData/codabench_competitions.md


schema and guidelines. Initially, a representative
subset of 100 PubMed abstracts was selected and
carefully analyzed by a focus group of expert an-
notators in collaboration with biomedical domain
experts and terminologists, leading to the identi-
fication of a core set of domain-specific defini-
tions, based on which we drafted a first annotation
schema, defining the entities and relations of inter-
est. This schema was further refined by extending
the analysis to the full set of retrieved documents,
resulting in a finalized structure comprising 13 en-
tity types and 17 fine-grained relation predicates
(see Figure 3 and Tables 6-7 in the appendix).

After these stages, the expert annotators’ team
defined a detailed set of annotation guidelines, with
the final goal of obtaining high-quality annota-
tions that are consistent through different anno-
tators and documents. Inspired by prior works such
as BioRED (Luo et al., 2022), BC5CDR (Li et al.,
2016), and BioASQ-QA (Krithara et al., 2023),
these guidelines detail the end-to-end annotation
process to be followed for each document, includ-
ing labeling rules, edge case handling, and exam-
ples of typical annotations and mistakes.4 Before
starting the manual annotation phases, a hands-
on training session was conducted with all expert
annotators, during which they jointly annotated a
set of abstracts for both entity mentions and rela-
tions while reviewing and refining the guidelines
to ensure consistent interpretation and resolve any
ambiguities early on. Two additional sessions were
conducted with biomedical experts, following the
same process and providing domain-specific feed-
back for further guidelines adjustments.

First Annotation Phase. Before starting the
actual curation, we adopted an automatic anno-
tation support strategy for entity mentions to re-
duce the manual effort required from annotators
and accelerate the annotation process (Ganchev
et al., 2007; Greinacher and Horn, 2018; Mikulová
et al., 2023). We began by selecting a representa-
tive sample of ten documents and asked two ter-
minologists to manually annotate all entity men-
tions. We then selected a competitive zero-shot
NER model – GLiNER (Zaratiana et al., 2024)
– and systematically experimented with different
pre-trained checkpoints, temperature values, and
post-processing strategies, comparing the model’s
predicted mentions with the manually annotated

4The annotation guidelines are available at:
https://zenodo.org/records/16845409/files/
GutBrainIE_2025_Annotation_Guidelines.pdf

ones. Based on these experiments, we selected the
NuNER Zero checkpoint and adopted a temperature
value of 0.8 to obtain a higher recall and minimize
the number of entity mentions annotated by ter-
minologists but missed by the model (Bogdanov
et al., 2024). To preliminarily assess the impact of
these pre-annotations, we asked the same terminol-
ogists to annotate ten additional documents using
the GLiNER-generated pre-annotations. Without
pre-annotations, they needed around 30 minutes
per document to fully annotate its entity mentions.
With pre-annotations, the time dropped to 10-15
minutes, depending on the document’s complexity.

All pre-annotated documents were annotated
with MetaTron, a free and publicly available web-
based annotation platform (Irrera et al., 2024). In
this first annotation phase, only expert annotators
were involved. Each of them received 20 unique
documents along with a shared set of 5 “honeypot
documents”. The latter were introduced to com-
pute Inter-Annotator Agreement (IAA), enabling
direct comparison of annotations across annotators
and the assessment of their agreement and consis-
tency. To avoid bias or information leakage, we
instructed annotators not to consult with each other
until all their annotations were completed (Alonso
and Marchionini, 2019).

In computing IAA, two annotations agree only
if their text spans, labels (and predicates, in the
case of relations) exactly matched. Using Fleiss’
κ (Fleiss, 1971) and Mean Pairwise Cohen’s κ
(Cohen, 1960) as metrics, we observed strong
agreement for NER (0.89 and 0.88, respectively),
aligned with previous biomedical datasets such as
BioRED (Luo et al., 2022) and NLM-Gene (Isla-
maj et al., 2021). Agreement on RE was lower
(0.43 for both metrics) but consistent with prior
works involving complex relation annotation, re-
flecting the semantic difficulty of the gut-brain axis
domain (Kim et al., 2013).

To complement the IAA analysis, a subgroup
of two expert annotators, selected for domain ex-
pertise and prior annotation experience, manually
revised all the documents annotated during this
phase. This step led to the correction or removal of
204 entities and 135 relations. For entities, roughly
one-third of edits were due to incorrect text spans,
another third to mislabeling, and the rest to overly
generic mentions that violated annotation guide-
lines. For relations, about one-third were revised
for incorrect directionality, another third for wrong

https://zenodo.org/records/16845409/files/GutBrainIE_2025_Annotation_Guidelines.pdf
https://zenodo.org/records/16845409/files/GutBrainIE_2025_Annotation_Guidelines.pdf


predicate assignment, and the remainder for insuf-
ficient textual support. This review also allowed
for the identification of issues in the annotation
guidelines, which were refined accordingly. All an-
notations were then retroactively updated to align
with the updated guidelines.

Second Annotation Phase. Prior to the second
phase, we fine-tuned GLiNER on the final revised
annotations from the first phase to improve the
quality of pre-annotations.

In this second phase, each expert annotator la-
beled 40 new documents, while layperson annota-
tors were introduced and assigned 24 documents
each, divided into four batches. In each batch,
one honeypot document previously annotated by
experts was randomly inserted. Laypeople were
required to annotate a minimum of one full batch,
ensuring that each of them was labeling at least one
honeypot document.

To assess the quality of layperson annotations,
we computed Cohen’s κ on their annotated hon-
eypot documents against the reference version cu-
rated by experts (Cohen, 1960). Agreement for
NER was moderate and acceptable (0.50), indi-
cating that with adequate training and supervision
non-expert annotators can contribute reliable entity
annotations. In contrast, RE agreement was low
(0.17), largely due to the annotation of relations
against the guidelines.

At the end of this phase, expert annotators con-
ducted a final review meeting to evaluate the second
batch of annotated documents, addressing any un-
resolved issues and making corrections to ensure
consistency across the full collection.

Named Entity Linking Phase. We performed
entity linking on expert annotations only, as laypeo-
ple and automatic mentions often lack the precision
required for reliable concept mapping.

We applied normalization based on heuristics
derived from manual analysis of expert-curated an-
notations. This involved removing HTML tags and
special symbols, using regular-expression substitu-
tions to handle terminological variants and expand
common acronyms into their full forms. Then, we
implemented a three-stage linking approach. For
each annotated mention at first we attempted ex-
act string matching against the reference biomedi-
cal vocabularies defined for the entity’s label. Re-
sources were queried sequentially in a predefined
priority order for each entity type, aiming to prior-
itize linkages to the largest and most established

biomedical vocabularies. If no exact match was
found, we computed the embeddings with Biomed-
BERT and then calculated the cosine similarity
between the mention and all possible candidates in
the reference vocabularies (Gu et al., 2021). Only
candidates with similarity scores above a dynamic
cut-off were retained, computed using the central
limit theorem to approximate the distribution of
similarity scores as normal and ensure statistical
reliability (Kwak and Kim, 2017). If both previous
steps failed, we assumed the mention was not in
the reference vocabularies. In such cases, we first
attempted to map the mention to an existing entry
in our custom ontology. If no match was found, we
added a new concept to our ontology by prompt-
ing an LLM (LLaMA3-8B-8192 in this case) with
the sentence containing the mention (highlighted
with inline markers) to generate a pertinent defini-
tion (see Figure 5 for an example). In all stages,
if multiple candidate links were returned, we man-
ually selected the most appropriate one. Finally,
all generated linkages and individuals created in
our custom ontology were manually reviewed and
verified by experts to ensure consistency and re-
solve ambiguous mappings. The accuracy of the
NEL annotations was estimated at 0.915± 0.0473
using a sampling-based evaluation framework with
statistical guarantees (Martinelli et al., 2026).

Automatically-Annotated Data Collection. Af-
ter finalizing the manual annotations, we automat-
ically annotated the remaining unlabelled docu-
ments from the original retrieval. For NER, we
fine-tuned again the GLiNER model using the full
set of expert-annotated data. For RE, we introduced
ATLOP, a model leveraging adaptive thresholding
and localized context pooling to effectively capture
long-tail relations (Zhou et al., 2021). This feature
is critical for the GUTBRAINIE corpus, where var-
ious low-frequency relations play a significant role
in accurately representing biomedical interactions.
ATLOP was trained with expert annotations as pri-
mary supervision and student annotations as weak
supervision. Although no manual revision was per-
formed on this data, we applied a post-processing
step to ensure adherence to the same schema and
guidelines as the human-curated data.

Collection Overview. Once all the documents
from the original retrieval were annotated, either
manually or automatically, we organized them into
four quality-based folds reflecting the reliability
of the annotations and the level of expertise of the



Table 1: GUTBRAINIE dataset statistics.

Collection No. Docs No. Ents Ents/Doc No. Rels Rels/Doc

Silver 499 15,275 30.61 10,616 21.27

Gold 208 5,192 24.96 1,994 9.59

Platinum 111 3,638 32.77 1,455 13.11

Dev 40 1,117 27.93 623 15.58

Test 40 1,237 30.92 777 19.42

Manual 898 26,459 29.46 15,465 17.22

Automatic
(Bronze)

749 21,420 28.51 8,533 10.90

Overall 1,647 47,879 29.03 23,998 14.35

annotators involved: 1. Platinum: highest-quality
annotations produced by experts during the first
manual annotation phase and internally reviewed
by a dedicated subgroup. 2. Gold: high-quality
annotations created by experts during the second
manual annotation phase. 3. Silver: annotations of
intermediate quality produced by trained layperson
annotators under expert supervision. 4. Bronze:
automatically generated annotations.

The training set includes all four quality folds.
As for the Development and Test sets, they contain
only expert annotations (Platinum and Gold).

Each annotation is tagged with an anonymized
annotator ID, with expert annotators identified
as expert[1–7] and automatic annotations as
automatic. For layperson annotators, we clus-
tered them into two groups (A and B) based on
annotation quality: Group A achieved the high-
est overlap with experts (≥ 65% for entities and
≥ 40% for relations), whereas Group B showed
lower agreement. Accordingly, student annotators
are identified as student[A/B], depending on the
reliability cluster to which they have been assigned.

This tiered annotation quality, along with annota-
tor metadata, allows models to be trained or tuned
by weighting or filtering annotations differently
based on their reliability, supporting training strate-
gies such as reliability-aware loss weighting (Lin
et al., 2019; Ibrahim et al., 2020; Guo and Yang,
2024) and selective denoising (Ghosh et al., 2023;
Alomar et al., 2023). Table 1 shows the distribution
of documents and annotations per fold.

3 Data Analysis

To better contextualize our corpus features and
strengths, we compare it against a selection of
widely used general-purpose and biomedical IE
datasets. We excluded most distantly supervised
datasets and focused on manually annotated ones

that provide reliable labels and are directly compa-
rable to ours (Amin et al., 2020, 2022).

Data Size. The GUTBRAINIE corpus consists
of 1,647 documents, of which 898 are manually
annotated. This positions it among the largest man-
ually curated biomedical corpora, with a size com-
parable to BioRED (600 documents) and NCBI
disease (793). In terms of length, GUTBRAINIE
documents average 235 words, which is aligned
with widely used biomedical and general-purpose
datasets such as BioRED (240 words), JNLPBA
(240), NCBI Disease (227), and DocRED (210)
(Luo et al., 2022; Collier et al., 2004; Doğan et al.,
2014; Yao et al., 2019). Table 2 reports overall
statistics for GUTBRAINIE and several representa-
tive IE datasets. We report aggregated statistics for
both the full collection and the manually annotated
subset.

Annotated Entities and Relations. GUT-
BRAINIE contains an average of 29 entity mentions
and 15 relations annotated per document, compa-
rable to BioRED (34 mentions, 11 relations) and
exceeding other general-purpose corpora like Do-
cRED (26 mentions, 11 relations) and HacRED
(11 mentions, 6 relations), as well as biomedical
datasets such as JNLPBA (25 mentions, 15 rela-
tions), NCBI Disease (9 mentions), and CHEMD-
NER (8 mentions) (Luo et al., 2022; Cheng et al.,
2021; Collier et al., 2004; Doğan et al., 2014;
Krallinger et al., 2015). Nevertheless, while the av-
erage number of entity mentions and relations per
document in GUTBRAINIE is comparable to other
widely used corpora, our dataset offers greater gran-
ularity, more than doubling the number of entity
and relation types compared to BioRED (7 and 8,
respectively), which is the most fine-grained manu-
ally curated biomedical corpus to date (Luo et al.,
2022).

Linkage Statistics. As stated in Section 2, all
entity mentions in the Gold and Platinum folds have
been linked to standardized medical vocabularies,
resulting in a total of 1,819 unique URIs assigned
across 11,184 annotated mentions.

Each entity type is linked, on average, to con-
cepts from four different vocabularies, with pref-
erence given to authoritative resources in the field.
In particular, we prioritized mappings to UMLS, a
widely used metathesaurus, to maximize interop-
erability with other biomedical datasets (Bodenrei-
der, 2004). Reference vocabularies associated with
each entity type are reported in Table 8.



Table 2: Comparison of GUTBRAINIE with the main IE datasets. Reported annotation counts include both entities
and relations for datasets featuring RE. and the “Task(s)„ column indicates the tasks supported by each dataset.
Rows highlighted in red correspond to biomedical IE datasets. while those in green indicate general-purpose IE
datasets.

Dataset Year Task(s) No. Docs No. Entity Mentions No. Entity Types No. Relations No. Relation Predicates. No. Annotations

GUTBRAINIE (Manual) 2025 NER. NEL. RE 898 26,459 (29.46 per doc) 13 15,465 (17.22 per doc) 17 41,924 (46.69 per doc)

GUTBRAINIE (Manual+Automatic) 2025 NER. NEL. RE 1,647 47,879 (29.07 per doc) 13 23,998 (14.57 per doc) 17 71,877 (43.64 per doc)

JNLPBA (Collier et al., 2004) 2004 NER 2404 59,963 (24.94 per doc) 5 – – 59,963 (24.94 per doc)

EU-ADR (Van Mulligen et al., 2012) 2012 NER. RE 300 7,011 (23.37 per doc) 3 2,436 (8.12 per doc) 3 9,447 (31.49 per doc)

BioNLP-CG (Pyysalo et al., 2013) 2013 NER. RE 600 21,683 (36.14 per doc) 4 917 (1.53 per doc) 4 22,600 (37.67 per doc)

NCBI Disease (Doğan et al., 2014) 2014 NER. NEL 793 6,892 (8.69 per doc) 1 – – 6,892 (8.69 per doc)

CHEMDNER (Krallinger et al., 2015) 2015 NER 10,000 84,355 (8.44 per doc) 1 – – 84,355 (8.44 per doc)

BC5CDR (Li et al., 2016) 2016 NER. NEL. RE 1500 12,850 (8.57 per doc) 2 3,116 (2.08 per doc) 2 15,966 (10.64 per doc)

NLM-Gene (Islamaj et al., 2021) 2021 NER. NEL 550 15,553 (28.28 per doc) 1 – – 15,553 (28.28 per doc)

BioRED (Luo et al., 2022) 2022 NER. NEL. RE 600 20,419 (34.03 per doc) 6 6,503 (10.84 per doc) 8 26,922 (44.87 per doc)

DocRED (Manual) (Yao et al., 2019) 2019 NER. NEL. RE 5,053 98,533 (19.50 per doc) 6 56,798 (11.24 per doc) 96 155,331 (30.74 per doc)

HacRED (Cheng et al., 2021) 2021 NER. NEL. RE 9,231 98,772 (10.70 per doc) 10 56,798 (6.15 per doc) 26 155,570 (16.85 per doc)

Re-DocRED (Tan et al., 2022) 2022 NER. NEL. RE 4,053 78,628 (19.40 per doc) 6 120,664 (29.77 per doc) 96 199,292 (49.17 per doc)

4 Benchmark Setup and Validation

The GUTBRAINIE benchmark natively supports
four tasks: NER, NEL, M-RE, and C-RE.

The NER task requires identifying and classify-
ing entity mentions into 13 predefined entity types.
Each mention is represented as a tuple including:
location (title or abstract), character offsets (start
and end positions), text span, and entity label. A
prediction is considered correct only if it exactly
matches a ground truth entry in all these fields.

The NEL task extends NER by additionally re-
quiring the linkage to a URI from one of the ref-
erence vocabularies. Here, predicted entities must
match ground truth annotations in all NER fields
plus URI to be considered correct.

The M-RE task involves detecting and classi-
fying relations between pairs of entity mentions.
Each relation is expressed as a 5-tuple: (subject
text span, subject label, relation
predicate, object text span, object
label). Predicted relations are considered correct
only if they fully match a ground truth tuple.

The C-RE task mirrors M-RE but evaluates pre-
dictions at the concept level, with relations rep-
resented as 5-tuples: (subject URI, subject
label, predicate, object URI, object
label). For example, a predicted relation involv-
ing “Parkinson” would match a ground truth rela-
tion comprising “Parkinson’s disease” if both men-
tions are linked to the same URI. The correctness
of predicted relations is assessed as in M-RE.

Benchmark Validation. To assess the complex-
ity and utility of the GUTBRAINIE benchmark,
we conducted internal experiments across all four

proposed benchmark tasks, adapting the automatic
annotation system to serve as a baseline system.
Moreover, GUTBRAINIE has been externally vali-
dated by featuring the NER and M-RE tasks in an
international evaluation campaign, which attracted
17 participating teams. Internal and external results
have been analyzed to assess performance varia-
tions across tasks and their relative difficulty, and
to validate the intended progression in complexity.
Finally, we estimated human performance by com-
paring non-expert annotations on shared honeypot
documents with our baseline system.

All tasks are evaluated using standard IE metrics
of Precision (P ), Recall (R), and F1-score (F1),
with both macro- and micro-averaging. Let TPℓ,
FPℓ, and FNℓ denote the number of True Posi-
tives, False Positives, and False Negatives for label
ℓ. The label set L is defined as the set of 13 entity
types for the NER and NEL tasks, and the 55 possi-
ble relation triples (subject label, predicate,
object label) for the M-RE and C-RE tasks. Be-
fore evaluation, duplicate predictions are removed
and overlapping ones are merged, keeping the one
with the longest text span. Micro-averaged F1 is
used as the reference metric for all tasks, as it better
captures the balanced effectiveness of IE systems
and accounts for class imbalance.

Baseline System. To provide reference perfor-
mances, we derived a baseline system from the
one used for pre-annotating documents. To per-
form NER we adopted GLiNER fine-tuned from
the NuNERZero checkpoint on the Platinum, Gold,
and Silver collections (Zaratiana et al., 2024; Bog-
danov et al., 2024). At inference time, we applied



Table 3: Baseline results across all four GUTBRAINIE
supported tasks.

Macro-avg Micro-avg
Task P R F1 P R F1

NER 0.69 0.71 0.70 0.76 0.82 0.79
NEL 0.40 0.41 0.39 0.50 0.54 0.52
M-RE 0.35 0.18 0.21 0.50 0.25 0.33
C-RE 0.30 0.18 0.20 0.38 0.20 0.27

a 0.6 confidence threshold and merged adjacent
and overlapping spans. For RE, we used ATLOP,
giving the document text and the entities predicted
by GLiNER as inputs (Zhou et al., 2021). ATLOP
is trained using the Platinum, Gold, and Silver col-
lections as primary supervision, while the Bronze
collection is used as distantly supervised data. In-
ferred relations are processed to retain only triples
defined in the annotation schema. The NEL module
links GLiNER-predicted entities by applying the
same three-stage hierarchical approach described
above. Baseline results are reported in Table 3.

External Validation. To exhaustively validate
the GUTBRAINIE benchmark, the NER and M-RE
tasks have been offered within an international eval-
uation campaign. Participants were provided with
the dataset, annotation guidelines, and the baseline
system. Teams were free to employ any model
architecture, training strategy, or external resource.

A total of 17 distinct teams participated: 15 in
NER and 12 in M-RE, submitting 101 and 95 runs
respectively. Considering micro-averaged F1 as the
reference metric, 8 teams outperformed the base-
line on NER (38 runs) and 5 on M-RE (24 runs).
These results highlight both the competitiveness
of the baseline system and the clear margin for
improvement (see Tables 4 and 5 in the annex for
team scores). For full details on approaches and
results, see (Martinelli et al., 2025).

Model Performance. The results obtained by
the baseline and the teams participating in the cam-
paign provide valuable insights into the strengths
and limitations of current NLP methods across
biomedical IE tasks of increasing complexity.

For NER, most teams relied on supervised fine-
tuning of pre-trained biomedical transformers, in-
cluding PubMedBERT, BioBERT, BioLinkBERT,
and BioMedELECTRA (Gu et al., 2021; Lee et al.,
2019; Yasunaga et al., 2022; Alrowili and Shanker,
2021). Several participants also adopted GLiNER,
the same architecture used in the baseline, but
with different checkpoints and fine-tuning strate-
gies (Zaratiana et al., 2024). Many submissions

further improved performance through ensemble
methods, either by combining different models or
multiple instances of the same model trained with
different configurations, seeds, or data splits. In-
deed, while most systems were trained exclusively
on the manually curated Platinum, Gold, and Silver
collections, a few teams also included the Bronze
collection, using reweighting or filtering strategies
to mitigate its noise. However, these attempts led
to inconsistent improvements, suggesting that the
benefits of using automatically annotated data in
high-granularity IE tasks remain limited.

M-RE results reflected the inherent high com-
plexity of this task. Most teams approached M-RE
as a supervised classification problem over entity
mention pairs predicted by an upstream NER mod-
ule. To address class imbalances and long-tail re-
lations, participants employed negative sampling,
class-weighted loss functions, and filtering heuris-
tics, and a few explored more advanced architec-
tures such as query-based encoders and hypergraph
models (Feng et al., 2019).

Nevertheless, the baseline system achieved com-
petitive results, ranking close to the median across
both subtasks, indicating the difficulty of achiev-
ing substantial improvements on our benchmark.
In contrast, prompt-based and zero-shot LLM ap-
proaches used by a few teams to perform end-to-
end NER and RE performed substantially worse,
indicating the current limitations of LLMs for
domain-specific and fine-grained IE tasks.

Overall, these results demonstrate that IE sys-
tems face numerous challenges in achieving ro-
bust performance on the GUTBRAINIE benchmark,
as participants who achieved substantial improve-
ments over the baseline did so by adopting sophis-
ticated architectures, advanced training strategies,
and computationally intensive solutions. This un-
derscores that our benchmark offers ample opportu-
nities for methodological research and innovation.

Human Performance. To estimate human-level
performance on the benchmark tasks proposed in
the evaluation campaign, we evaluated layperson
annotations on the shared honeypot documents.
Each set of annotations by a student was treated
as an individual system submission and evaluated
using the same script and metrics applied to partic-
ipant test runs, with the final annotated version of
each honeypot document used as ground truth. To
establish a fair comparison, we re-trained our base-
line system leaving out the honeypot documents



to prevent data leakage, then ran inference on the
honeypot set and evaluated its predictions.

For the NER task, all laypeople achieved Pre-
cision (P ), Recall (R), and F1 scores above 0.40,
with average scores of 0.79 P , 0.77 R, and 0.77 F1.
Although lower, results were still robust for M-RE,
where, on average, laypeople scored higher on P
(0.61) and slightly lower on R (0.52) and conse-
quently on F1 (0.53). The baseline system achieved
a micro-averaged P , R, and F1 of 0.83 for NER,
and 0.44 P , 0.31 R, and 0.37 F1 for M-RE. These
results indicate that, while NER can be effectively
tackled by automatic systems with performance
comparable to non-expert annotators, RE remains
significantly more complex. In this task, layperson
annotators consistently outperformed the baseline
across all metrics, highlighting the semantic and
contextual difficulty of our benchmark.

Discussion. The experimental results confirm
that GUTBRAINIE is a robust and well-designed
benchmark, presenting significant challenges for
current IE systems, especially in RE tasks, which
demand methodological advancements and refined
IE approaches. External validation shows that es-
tablished BioNLP methods are highly effective
across tasks. In contrast, emerging methods based
on LLMs are still immature and do not match the
performance of supervised systems in specialized
domains, indicating that their potential remains
largely unexploited for fine-grained IE. Moreover,
we found out that models trained on smaller subsets
of expert-annotated data consistently outperformed
those trained on larger datasets that included the
automatically annotated noisier portion of the cor-
pus, reinforcing the importance of high-quality an-
notations in IE and validating the tiered quality
structure of the GUTBRAINIE corpus.

5 Related Work

A variety of datasets have been developed to sup-
port IE in the biomedical domain, particularly for
NER, NEL, and RE. Early biomedical corpora
such as JNLPBA (Collier et al., 2004), EU-ADR
(Van Mulligen et al., 2012), BioNLP-CG (Pyysalo
et al., 2013), and BC5CDR (Li et al., 2016) fo-
cused on a small number of entity types, includ-
ing genes, diseases, and chemicals, and helped es-
tablish benchmarks for single-type NER systems.
However, systems trained on one or a few entity
types often fail to generalize across broader arrays
of biomedical concepts. Moreover, various studies

demonstrated that in BioNLP multi-type NER mod-
els can perform comparably or better than single-
type models, showing greater capabilities in lever-
aging contextual information and handling ambi-
guities (Crichton et al., 2017; Wang et al., 2019).
For what concerns RE, the high cost of manual
annotations led most biomedical IE datasets to rely
on distant supervision for inferring relations, in-
evitably introducing noise and incorrectness (Karp,
2016; Amin et al., 2020, 2022). Recognizing that
gap, BioRED introduced a fine-grained dataset cov-
ering six biomedical entity types and eight relation
predicates, with manually curated NER, NEL, and
document-level RE annotations (Luo et al., 2022).

Compared to existing resources, GUTBRAINIE
introduces a large domain-specific IE benchmark
with manual annotations for entities, concept-
level linkages, and relations divided into a multi-
tiered quality structure. To our knowledge, GUT-
BRAINIE provides the most fine-grained annota-
tion schema to date for both entities and relations
in the biomedical domain.

6 Conclusions and Future Work

In this work we presented GUTBRAINIE, a com-
prehensive IE benchmark focusing on the emerg-
ing biomedical research area of the gut-brain axis.
GUTBRAINIE provides a large domain-specific
dataset manually curated, supporting four well-
defined tasks of increasing complexity (NER, NEL,
M-RE, and C-RE), each accompanied by standard-
ized evaluation measures and a competitive base-
line system. To demonstrate its impact and practi-
cal utility, we featured two of its tasks (NER and
M-RE) as part of an international evaluation cam-
paign, which attracted 17 participating teams with
nearly 200 system submissions. Experimental re-
sults indicate that current NER systems are effec-
tive even in specialized domains, while RE remains
a significantly more challenging task in domains
requiring deep contextual and semantic understand-
ing. GUTBRAINIE has been developed to support
IE research at large, proposing a reliable and chal-
lenging evaluation framework for settings charac-
terized by domain specificity, limited training data,
and complex terminology. In future work, we plan
to extend the GUTBRAINIE corpus by annotating
documents related to additional neurodegenerative
diseases (e.g., Alzheimer’s, Multiple Sclerosis) and
to further enhance the quality of existing data by
manually revising the Silver and Bronze folds.



Limitations

While GUTBRAINIE is a novel and high-quality
benchmark, it has a few limitations. First, from
the analysis of layperson annotations conducted
to cluster them into the two reliability groups (cf.
Section 2), we observed that the Silver collection
includes annotations that are not fully consistent
with those in the Platinum and Gold collections.
Moreover, the automatically generated annotations
of the Bronze collection exhibit notable noise. As
observed in experiments, incorporating these lower-
quality folds directly into training might degrade
model performance.

Concerning the annotation workflow, it was con-
ducted in separate batches, which may have intro-
duced inconsistencies in annotations. Future anno-
tation cycles could leverage active learning tech-
niques with continuous model-in-the-loop feedback
to enhance consistency and reduce manual effort.

Finally, given that the involvement of biomedical
domain experts played a critical role in the devel-
opment of the conceptual schema and annotation
guidelines, future annotation cycles could further
benefit from their integration as external reviewers
or adjudicators to enhance annotation quality and
accuracy.

Ethical Considerations

Below we detail relevant ethical aspects related
to the construction and dissemination of the GUT-
BRAINIE dataset:

• Intellectual property and data sources: the
GUTBRAINIE dataset comprises only titles
and abstracts of biomedical articles retrieved
from PubMed, a publicly accessible electronic
database. These documents are available for
reuse under terms that permit research and
educational purposes, and no full-text content
or content under restricted licenses has been
included.

• Annotators privacy: although we collected
information about the annotators to manage
task assignments and quality control during
the annotation process, the released version
of the dataset includes only anonymized iden-
tifiers, designed to preserve the utility of the
data while ensuring that no individual anno-
tator can be personally identified from the re-
leased dataset.

• Annotators compensation: all annotations
were performed by volunteers, who were in-
formed in advance that no monetary compen-
sation would be provided. Participation was
entirely voluntary and conducted in a non-
commercial academic context.

• Data transparency and characteristics:
detailed information about the annotation
schema, workflow, and data characteristics is
provided in the appendix and in the annotation
guidelines file.

• Potential data quality issues: although a sig-
nificant portion of data has been manually an-
notated by experts following strict guidelines,
we acknowledge the possibility of residual
noise or inconsistencies also in the highest-
quality Gold and Platinum collections. Such
issues are common in most publicly available
corpora and are not expected to critically im-
pact downstream applications.

• Use of generative AI: during the preparation
of this work, the authors used GPT-4o and
Grammarly for grammar and spelling checks.
After using these tools, the authors reviewed
and edited the content as needed and takes full
responsibility for the publication’s content.

We believe that the publication and use of GUT-
BRAINIE will contribute positively to the develop-
ment of robust and effective IE systems across a
variety of semantically rich and complex domains,
including but not limited to Biomedical Natural
Language Processing (BioNLP) and health-related
applications.

Acknowledgements

This project has received funding from the HERED-
ITARY Project, as part of the European Union’s
Horizon Europe research and innovation pro-
gramme under grant agreement No GA 101137074.

References
Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai.

2023. Data augmentation in classification and seg-
mentation: A survey and new strategies. Journal of
Imaging, 9(2):46.

Omar Alonso and Gary Marchionini. 2019. The Prac-
tice of Crowdsourcing. Morgan & Claypool Publish-
ers.



Sultan Alrowili and Vijay Shanker. 2021. BioM-
Transformers: Building Large Biomedical Language
Models with BERT, ALBERT and ELECTRA. In
Proceedings of the 20th Workshop on Biomedical
Language Processing, pages 221–227, Online. Asso-
ciation for Computational Linguistics.

Saadullah Amin, Katherine Ann Dunfield, Anna
Vechkaeva, and Guenter Neumann. 2020. A data-
driven approach for noise reduction in distantly super-
vised biomedical relation extraction. arXiv preprint
arXiv:2005.12565.

Saadullah Amin, Pasquale Minervini, David Chang,
Pontus Stenetorp, and Günter Neumann. 2022. Med-
distant19: towards an accurate benchmark for broad-
coverage biomedical relation extraction. arXiv
preprint arXiv:2204.04779.

Jeremy Appleton. 2018. The gut-brain axis: influence
of microbiota on mood and mental health. Integrative
Medicine: A Clinician’s Journal, 17(4):28.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (UMLS): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Sergei Bogdanov, Alexandre Constantin, Timothée
Bernard, Benoit Crabbé, and Etienne Bernard. 2024.
NuNER: Entity Recognition Encoder Pre-training via
LLM-Annotated Data.

Marilia Carabotti, Annunziata Scirocco, Maria Antoni-
etta Maselli, and Carola Severi. 2015. The gut-brain
axis: interactions between enteric microbiota, central
and enteric nervous systems. Annals of gastroenterol-
ogy: quarterly publication of the Hellenic Society of
Gastroenterology, 28(2):203.

Yukun Chen, Thomas A Lasko, Qiaozhu Mei, Joshua C
Denny, and Hua Xu. 2015. A study of active learning
methods for named entity recognition in clinical text.
Journal of biomedical informatics, 58:11–18.

Qiao Cheng, Juntao Liu, Xiaoye Qu, Jin Zhao, Jiaqing
Liang, Zhefeng Wang, Baoxing Huai, Nicholas Jing
Yuan, and Yanghua Xiao. 2021. HacRED: A large-
scale relation extraction dataset toward hard cases in
practical applications. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2819–2831, Online. Association for Computa-
tional Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Nigel Collier, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka
Tateisi, and Jin-Dong Kim. 2004. Introduction to the
bio-entity recognition task at JNLPBA. In Proceed-
ings of the International Joint Workshop on Natural
Language Processing in Biomedicine and its Appli-
cations (NLPBA/BioNLP), pages 73–78.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recognition.
BMC bioinformatics, 18:1–14.

John F Cryan, Kenneth J O’Riordan, Kiran Sandhu,
Veronica Peterson, and Timothy G Dinan. 2020.
The gut microbiome in neurological disorders. The
Lancet Neurology, 19(2):179–194.

Kartik Detroja, C.K. Bhensdadia, and Brijesh S. Bhatt.
2023. A survey on Relation Extraction. Intelligent
Systems with Applications, 19:200244.
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A GUTBRAINIE Benchmark at a Glance

The entire GUTBRAINIE benchmark is summa-
rized in Figures 1-2. In particular, Figure 2 shows
the four-stage annotation workflow adopted to
build the GUTBRAINIE collection. The Named
Entity Linking Phase is highlighted with a purple-
to-yellow gradient to indicate that it combines au-
tomatic and manual annotation. Automatic annota-
tions for the remaining documents were produced
using the system from which our baseline system
is derived.

B Shared Task Results

The results obtained by teams participating in the
international shared task are summarized in Tables
4 (NER) and 5 (M-RE) (Nentidis et al., 2025; Mar-
tinelli et al., 2025). For each participating team,
we report the performance of their best submit-
ted run, considering the micro-averaged F1-score
as the reference metric. In both tables, the entry
BASELINE (highlighted in blue) corresponds to
the results achieved by our baseline system.

Across submissions on both tasks, participants
largely relied on supervised pipelines built around
biomedical transformer encoders, with perfor-
mance gains mainly coming from system-level
modifications rather than fundamentally different
paradigms. For NER, strong systems consistently
relied on fine-tuned transformers used for token
classification (often enhanced with structured de-
coding such as CRF-style label dependency mod-
eling). Performance gains have been observed
with ensembling, confidence thresholding, and
lightweight post-processing to correct boundaries
and merge overlaps. Several teams experimented
with incorporating lower-quality (bronze/silver) an-
notations or pseudo-labeled data, typically after
cleaning or reweighting, suggesting that additional
weak supervision can be beneficial in some config-
urations but requires careful filtering to avoid intro-
ducing noise. In a minority of cases, generation-
or schema-driven Large Language Model (LLM)
extraction was explored (zero-shot or with limited
supervision), but these approaches exhibited recur-
ring practical issues such as span misalignment and
hallucinated markup that required non-trivial post-
processing and, in most cases, resulted in under-
performing tranformer-based systems.

For M-RE, most approaches framed the task as
classification over candidate entity pairs, using ex-
plicit entity markers (or query-style formulations)

to condition predictions and mitigate the large neg-
ative space via negative sampling and class rebal-
ancing. Performance improvements were most of-
ten associated with stronger candidate construction
and sampling strategies, dataset cleaning (e.g., sam-
pling or filtering extreme relation density cases),
and ensembling or fusion schemes. A few sub-
missions explored alternative formulations (e.g.,
document-level interaction modeling, end-to-end
relation generation, or multi-stage reasoning with
auxiliary LLM components), but the general trend
remained that fully prompting-based, zero-shot
LLM solutions were not competitive on these fine-
grained biomedical RE settings and tended to be
highly unreliable.

For a complete, method-by-method discussion,
implementation details, and the full set of results
for all submitted runs, we refer the reader to the
shared task overview (Martinelli et al., 2025).

C Human Performance

To estimate human-level performance on the bench-
mark tasks proposed in the evaluation campaign,
we evaluated layperson annotations on the shared
honeypot documents. Each student’s annotations
were treated as an individual system submission
and evaluated using the same script and metrics
applied to participant test runs, with the final an-
notated version of each honeypot document used
as ground truth. To establish a fair comparison,
we re-trained our baseline system leaving out the
honeypot documents to prevent data leakage, then
ran inference on the honeypot set and evaluated its
predictions.

For the NER task, all laypeople achieved micro-
averaged precision, recall, and F1 scores above
0.40, with average scores of 0.79 precision, 0.77
recall, and 0.77 F1. Although lower, results were
still robust for M-RE, where, on average, laypeople
scored higher on precision (0.61) and slightly lower
on recall (0.52) and consequently on F1 (0.53). The
baseline system achieved a micro-averaged preci-
sion, recall, and F1 of 0.83 for NER, and 0.44 pre-
cision, 0.31 recall, and 0.37 F1 for M-RE. These
results indicate that, while NER can be effectively
tackled by automatic systems, achieving results
comparable to those of non-expert annotators, RE
remains significantly more complex. Indeed, in
this task layperson annotators consistently outper-
formed the baseline across all metrics, highlighting
the semantic and contextual difficulty of our bench-
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Figure 1: Summary of the main features and contributions of the GUTBRAINIE benchmark.
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Figure 2: The four-stage workflow followed in the curation of the GUTBRAINIE collection.

Table 4: Performance metrics of each team’s top run for NER. For each evaluation metric, the best result is in bold,
the second-best is underlined. Runs are ranked based on micro-averaged F1-score

Macro-avg Micro-avg
Team ID Country Affiliation P R F1 P R F1

GutUZH Switzerland University of Zurich 0.7950 0.7736 0.7613 0.8384 0.8432 0.8408
Gut-Instincts Denmark Aalborg University 0.7619 0.7813 0.7591 0.8286 0.8480 0.8382
NLPatVCU United States Virginia Commonwealth University 0.8139 0.7161 0.7169 0.8255 0.8488 0.8370
ICUE United Kingdom The University of Edinburgh 0.8216 0.7451 0.7546 0.8369 0.8294 0.8331
LYX-DMIIP-FDU China Fudan University 0.7605 0.7910 0.7347 0.8020 0.8513 0.8259
ata2425ds Italy University of Padua 0.7199 0.7546 0.7217 0.7914 0.8432 0.8164
greenday United States Stony Brook University 0.7368 0.7682 0.7471 0.7956 0.8278 0.8114
Graphswise-1 Bulgaria Graphwise 0.7691 0.7398 0.7185 0.8066 0.7955 0.8010
BASELINE – – 0.6883 0.7690 0.7047 0.7639 0.8238 0.7927
ataupd2425-gainer Italy University of Padua 0.5808 0.5322 0.5281 0.8333 0.7397 0.7837
DS@GT-bioasq-task6 United States NA 0.6342 0.7849 0.6872 0.7337 0.8197 0.7743
DS@GT-BioNER Canada NA 0.6731 0.6497 0.6469 0.7783 0.7437 0.7606
ataupd2425-pam Italy University of Padua 0.6400 0.7435 0.6763 0.6809 0.7745 0.7247
Schemalink Italy University of Milan 0.4813 0.5038 0.4650 0.5547 0.5659 0.5602
BIU-ONLP Israel Bar Ilan University 0.4393 0.3585 0.3711 0.4916 0.4721 0.4816
lasigeBioTM Portugal Universidade de Lisboa 0.2206 0.1034 0.0863 0.3471 0.1964 0.2509

mark.

D Conceptual Schema

Entities and relations to be annotated, and thus to be
predicted by IE systems, within the GUTBRAINIE
benchmark are defined by the conceptual schema
shown in Figure 3. It was collaboratively designed
by expert annotators and subsequently validated by
external biomedical specialists. During the initial

development phase, we explored a wider range of
entity types and relation predicates. However, after
preliminary pilot annotations, we filtered out those
that were excessively underrepresented.

E Types of Named Entities

GUTBRAINIE includes annotations for 13 distinct
entity types, listed in Table 6. Each entity type is
associated with a unique Uniform Resource Iden-



Table 5: Performance metrics of each team’s top run for M-RE. For each evaluation metric, the best result is in bold,
the second-best is underlined. Runs are ranked based on micro-averaged F1-score

Macro-avg Micro-avg
Team ID Country Affiliation P R F1 P R F1

Gut-Instincts Denmark Aalborg University 0.3310 0.4303 0.3497 0.4215 0.5147 0.4635
Graphswise-1 Bulgaria Graphwise 0.3323 0.2369 0.2603 0.4686 0.3097 0.3729
ICUE United Kingdom The University of Edinburgh 0.2509 0.4239 0.2825 0.2858 0.5054 0.3651
LYX-DMIIP-FDU China Fudan University 0.2106 0.2418 0.1990 0.3682 0.3257 0.3457
ONTUG Austria University of Graz + Ontotext 0.2589 0.2293 0.2266 0.3529 0.3231 0.3373
BASELINE – – 0.3514 0.1829 0.2123 0.4986 0.2453 0.3288
Schemalink Italy University of Milan 0.2265 0.4088 0.2546 0.1948 0.4665 0.2749
ataupd2425-pam Italy University of Padua 0.1940 0.2764 0.1982 0.2278 0.3432 0.2738
ataupd2425-gainer Italy University of Padua 0.2203 0.1384 0.1538 0.4272 0.1810 0.2542
NLPatVCU United States Virginia Commonwealth University 0.1522 0.5041 0.2163 0.1423 0.6005 0.2300
BIU-ONLP Israel Bar Ilan University 0.1171 0.0854 0.0879 0.2339 0.1461 0.1799
ToGS Austria University of Graz 0.0249 0.0180 0.0203 0.1702 0.0536 0.0815
lasigeBioTM Portugal Universidade de Lisboa 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3: Conceptual schema defining entity types and relation predicates captured within GUTBRAINIE. Blue
rectangles represent annotated entity types, while white rectangles indicate concepts considered during schema
design but excluded from annotation due to low frequency. Arrows indicate valid relation directions and predicates
between entities.

tifier (URI) that links it to a standardized concept
in a reference vocabulary and is accompanied by
an explanation that defines its scope and semantic
meaning. Moreover, Figure 4a shows the distribu-
tion of entity types across the full GUTBRAINIE
dataset and within the manually and automatically
annotated subsets.

F Types of Relations

GUTBRAINIE features annotations for 17 distinct
relation predicates, each of which possibly con-
nects multiple combinations of head and tail entity
types, resulting in over 50 possible (head, predi-
cate, tail) triples. Table 7 lists all relation predicates
used in GUTBRAINIE, represented as (head, predi-

cate, tail) combinations according to the conceptual
schema depicted in Figure 3. In addition, Figure
4b illustrates the distribution of relation predicates
across the full GUTBRAINIE dataset and within
the manually and automatically annotated subsets.

G Types of Concept-Level Links

To support semantic normalization and concept-
level reasoning, entities annotated in the Platinum
and Gold collections have been linked to concepts
in standardized biomedical vocabularies. We tried
our best to minimize the number of different vocab-
ularies employed, resulting in a total of six biomed-
ical vocabularies and a custom-defined ontology.
Each entity type is linked to a number of vocabular-



Table 6: Overview of the 13 entity labels used in the GUTBRAINIE corpus, including their corresponding URIs and
explanations.

Entity Label URI Explanation
Anatomical Location NCIT_C13717 Named locations of or within the body.

Animal NCIT_C14182

A non-human living organism that has membra-
nous cell walls, requires oxygen and organic
foods, and is capable of voluntary movement,
as distinguished from a plant or mineral.

Biomedical Tech-
nique

NCIT_C15188
Research concerned with the application of bio-
logical and physiological principles to clinical
medicine.

Bacteria NCBITaxon_2

One of the three domains of life (the others
being Eukarya and ARCHAEA), also called
Eubacteria. They are unicellular prokaryotic
microorganisms which generally possess rigid
cell walls, multiply by cell division, and exhibit
three principal forms: round or coccal, rodlike
or bacillary, and spiral or spirochetal.

Chemical CHEBI_59999

A chemical substance is a portion of matter
of constant composition, composed of molec-
ular entities of the same type or of different
types. This category also includes metabolites,
which in biochemistry are the intermediate or
end product of metabolism, and neurotransmit-
ters, which are endogenous compounds used to
transmit information across the synapses.

Dietary Supplement MESH_68019587

Products in capsule, tablet or liquid form that
provide dietary ingredients, and that are in-
tended to be taken by mouth to increase the
intake of nutrients. Dietary supplements can
include macronutrients, such as proteins, carbo-
hydrates, and fats; and/or micronutrients, such
as vitamins; minerals; and phytochemicals.

Disease, Disorder, or
Finding (DDF)

NCIT_C7057

A condition that is relevant to human neoplasms
and non-neoplastic disorders. This includes ob-
servations, test results, history and other con-
cepts relevant to the characterization of human
pathologic conditions.

Drug CHEBI_23888

Any substance which when absorbed into a liv-
ing organism may modify one or more of its
functions. The term is generally accepted for a
substance taken for a therapeutic purpose, but
is also commonly used for abused substances.

Food NCIT_C1949
A substance consumed by humans and animals
for nutritional purpose.

Gene SNOMEDCT_67261001

A functional unit of heredity which occupies a
specific position on a particular chromosome
and serves as the template for a product that
contributes to a phenotype or a biological func-
tion.

Human NCBITaxon_9606 Members of the species Homo sapiens.

Microbiome OHMI_0000003

This term refers to the entire habitat, including
the microorganisms (bacteria, archaea, lower
and higher eukaryotes, and viruses), their
genomes (i.e., genes), and the surrounding envi-
ronmental conditions.

Statistical Technique NCIT_C19044
A method of calculating, analyzing, or repre-
senting statistical data.

ies ranging from 3 to 6. The vocabularies employed
for each entity type are reported in Table 8, which
also includes, for each vocabulary and entity type,
the number of different unique URIs employed.

H LLM-Based Definition Generation for
NEL

As stated in Section 2, the final stage of our NEL
pipeline was reached when no match could be



Table 7: Overview of the relations used in the GUTBRAINIE corpus, expressed as head-predicate-tail triples.

Head Entity Tail Entity Predicate

Anatomical Location
Human
Animal

(1) Located in

Bacteria
Bacteria
Chemical
Drug

(2) Interact

Bacteria DDF (3) Influence

Bacteria Gene
(4) Change expres-
sion

Bacteria
Human
Animal

(1) Located in

Bacteria Microbiome (5) Part of

Chemical
Anatomical Location
Human
Animal

(1) Located in

Chemical Chemical
(2) Interact
(5) Part of

Chemical Microbiome
(6) Impact
(7) Produced by

Chemical
Dietary Supplement
Drug
Food

Bacteria
Microbiome

(6) Impact

Chemical
Dietary Supplement
Food

DDF (3) Influence

Chemical
Dietary Supplement
Drug
Food

Gene
(4) Change expres-
sion

Chemical
Dietary Supplement
Drug
Food

Human
Animal

(8) Administered

DDF Anatomical Location (9) Strike

DDF
Bacteria
Microbiome

(10) Change abun-
dance

DDF Chemical (2) Interact

DDF DDF
(11) Affect
(12) Is a

DDF
Human
Animal

(13) Target

Drug
Chemical
Drug

(2) Interact

Drug DDF (14) Change effect
Human
Animal
Microbiome

Biomedical Technique (15) Used by

Microbiome
Anatomical Location
Human
Animal

(1) Located in

Microbiome Gene
(4) Change expres-
sion

Microbiome DDF (16) Is linked to
Microbiome Microbiome (17) Compared to

found between an entity mention and the defined
reference vocabularies. In these cases, we cre-
ated a new individual in our custom ontology and
prompted a LLM to generate an appropriate defini-

tion. Figure 5 shows an example of the prompt and
response for the entity mention “psychobiotics”,
labeled as a “dietary supplement”



Table 8: Biomedical vocabularies used for concept-level linking of entity mentions. For each entity label, the table
lists the reference vocabularies, ordered accordingly to the priority considered in the NEL pipeline (see Section 2),
and reports for each of these the number of unique URIs assigned. GBIE indicates our custom-defined ontology.

Entity Label Linked Vocabularies
Anatomical Location UMLS (17), NCIT (70), GBIE (3)
Animal UMLS (8), NCIT (7), NCBITaxon (5), GBIE (3)
Bacteria UMLS (23), NCIT (6), NCBITaxon (136), MESH (34), OMIT (1), GBIE (6)
Biomedical Technique UMLS (65), NCIT (16), OMIT (2), NCBITaxon (4), GBIE (53)
Chemical UMLS (75), NCIT (94), CHEBI (209), OMIT (2), GBIE (14)
Dietary Supplement NCIT (34), UMLS (11), CHEBI (13), NCBITaxon (4), OMIT (2), MESH (2), GBIE (3)
DDF UMLS (179), NCIT (259), OMIT (36), NCBITaxon (1), GBIE (27)
Drug UMLS (22), NCIT (9), CHEBI (34), OMIT (1), NCBITaxon (1), GBIE (3)
Food UMLS (23), NCIT (17), GBIE (3)
Gene UMLS (52), NCIT (42), OMIT (4), CHEBI (1), GBIE (13)
Human UMLS (38), MESH (8), GBIE (24)
Microbiome UMLS (2), NCIT (1), NCBITaxon (3), GBIE (15)
Statistical Technique UMLS (35), NCIT (21), GBIE (23)

(a) Distribution of annotated entity mentions across dataset
folds and entity labels.

(b) Distribution of annotated relations across dataset folds
and relation predicates.

Figure 4: Distribution of entity types and relation predicates across manually and automatically annotated folds.



Prompt:
##Role##
You are a biomedical expert tasked with enriching a biomedical ontology. Given the sentence
below, identify the entity mention marked between **...**, which has been labeled as a dietary
supplement. Write a concise and ontologically appropriate definition for this entity, suitable
for use as an rdfs:comment or skos:definition in a formal biomedical knowledge base.

##Text##
Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol
levels, and the hypothalamic-pituitary-adrenal (HPA) axis. They are a new class of probiotics
that have been shown to improve mental health, including the treatment [...]

##Instructions##
- Output only the definition; do not include any additional commentary, introductions, or
explanations.
- Define the entity as a class-level concept (not as an individual instance).
- Ensure the definition is concise (2–3 sentences), scientifically sound, and suitable for
ontological use.
- Emphasize biomedical function, mechanisms of action, and therapeutic relevance.
- Use a formal, precise tone appropriate for ontology documentation.

Generated Answer:
Psychobiotics are live microorganisms that, when administered in adequate amounts, produce a
health benefit in the host by modulating the gut-brain axis and influencing brain function
or behavior.

Figure 5: Example prompt and response for the LLM-based definition generation stage of our NEL pipeline (see
Section 2).


