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Abstract. Information Retrieval (IR) evaluation deeply relies on human-
made relevance judgments. To overcome the high costs of the judgment
collection process, a potential solution is to utilize LLMs as judges to
replace human annotators. However, the validation of LLM-generated
judgments is fundamental for informed use. Standard validation ap-
proaches typically rely on simple sampling techniques to collect a sample
of the LLM-generated judgments and estimate the LLM agreement with
the human. In this work, we propose using stratified sampling, a more
sophisticated sampling strategy that, by leveraging appropriate strat-
ification features, reduces human involvement in the validation process
while still providing statistical guarantees on the human-LLM agreement
estimate. Through the analysis of various candidate features, we identify
the LLM-generated judgments themselves as the most promising one.
Our approach achieves up to an 85% reduction in the required human
involvement in the validation process.

Keywords: Relevance Judgments · Large Language Models · Agree-
ment Estimation

1 Introduction

Information Retrieval (IR) evaluation is deeply rooted in empirical experimenta-
tion that employs evaluation collections to gauge the effectiveness of the systems.
In detail, a standard IR evaluation collection, built according to the Cranfield
paradigm [7], includes three elements: a set of topics to represent possible infor-
mation needs, a corpus of documents, and the relevance judgements, describing
which documents are relevant to each topic. Constructing high-quality, realisti-
cally sized test collections is both time-consuming and expensive, primarily be-
cause of the need for manually created relevance labels. Adding to this challenge
is the dynamic nature of topics, documents, and their relevance; continuously
updated annotated data is essential for reliably evaluating an IR system. The
recent advances in the development and widespread adoption of Large Language
Models (LLMs) offer the potential to reduce the cost of building IR experimen-
tal collections by assisting humans in the annotation process—or even replacing
them in certain scenarios [16, 18, 23, 29, 30]. While an active debate is ongoing
within the research community about whether LLMs should [1, 15, 30] or should
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not [6, 20, 25] be used for relevance assessment, we argue that LLMs are likely
to be increasingly integrated in the construction of experimental collections—at
least for specific tasks or to replace less reliable and imprecise annotators, such
as crowd-workers [11].

Determining whether or not LLMs are suitable and reliable relevance annota-
tors is far beyond the scope of this paper. Here, in the same spirit of Merlo et al.
[19], we are interested in determining how to measure the agreement between
human-made and LLM-generated relevance judgements and how to compute
strong statistical bounds for such a measurement, while minimizing the human
effort required. In detail, Merlo et al. [19] demonstrated that by employing an
iterative procedure and an estimation pipeline based on the statistical properties
of sampling, it is possible to use a few hundred human-made query-document
relevance judgments to estimate the alignment between LLM labels and human
annotations, while also constructing meaningful confidence intervals around this
estimate. However, their approach relied exclusively on Simple Random Sam-
pling (SRS), a reliable and stable sampling method whose downside is that it
often requires a larger number of samples to achieve convergence. Advanced sam-
pling methods, such as Stratified Sampling (SS), have the potential to reduce the
number of samples required to achieve the same confidence level in the obtained
estimate [8, 17]. To fully realize this potential, however, it is necessary to parti-
tion the population—relevance judgements in our case—into meaningful strata.
In this work, we define and compare possible stratification features that allow
us to organize LLM-generated relevance judgments into strata. This enables us
to employ the SS technique, reducing the number of LLM-generated relevance
judgments that need to be validated by humans to estimate the level of agree-
ment, compared to existing approaches. From this perspective, we articulate our
work into two research questions:

– RQ1 - Stratification Features: What are the most reliable stratification
features for LLM-generated relevance judgments?

– RQ2 - Impact of Stratified Sampling on the Cost: Does SS allow
for reducing the number of human-made relevance judgments required to
validate the LLM-generated ones?

Our empirical results show that adopting SS and appropriate estimators for
Mean Absolute Error (MAE) and Cohen’s κ allows to reduce the amount of
LLM-generated relevance judgments that must be validated by humans up to
85%, compared to the standard SRS technique [19], to achieve a 95% confidence
on the estimated measure of interest.

The rest of this work is organized as follows: Section 2 reviews current ap-
proaches for LLM-generated judgment validation; Section 3 and 4 describes the
SS-based estimation pipeline and the experimental methodology and setup; Sec-
tion 5 discusses the obtained results; Finally, Section 6 provides the final remarks.
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2 Related Work

The recent improvements of LLMs reasoning capabilities favored their adoption
in many research fields. In IR, the creation of relevance judgments represents
one of the most impacted processes. Indeed, to reduce the costs derived from
human work, LLMs started to be employed to support or even replace humans
in the assessment of the query-document pairs. Thomas et al. [29] first proposed
a methodology and some prompts to allow for the generation of judgments using
LLMs. Upadhyay et al. [30] refined the work of Thomas et al. [29], introducing
UMBRELA, a prompt that has been extensively used [14, 22] and studied [13].
Moreover, workshops and challenges started to be organized, among which the
“LLM4Eval” workshop [21, 24].

Nonetheless, IR researchers hold mixed opinions on whether [1, 15] or not [6,
20, 25] LLMs should be employed in the judgements generation process. In this
perspective, several studies are being performed trying to identify potential LLM
biases or strengths [3, 4, 11, 14, 28, 33]

Besides the reliability of LLMs, the generated judgments must be properly
validated to make an informed use. Existing work estimate the quality of LLM-
generated relevance judgments based on a pre-defined sample of query-document
pairs [11, 27, 29]. However, most of them focus on evaluating the LLM-human
agreement on test collections for which human judgments are available and, thus,
an appropriate size of the sample can be defined in advance. The only work
that focuses on minimizing the human involvement in the validation process is
represented by [19]. This approach exploits an iterative sampling procedure that,
relying on SRS, first draws a sample of LLM-generated judgments to be validated
by humans and then estimates the human-LLM agreement. Moreover, through
the use of appropriate estimators, it also allows to provide statistical guarantees
on the computed agreement estimates. Nonetheless, statistical literature has
long established that more advanced sampling techniques can further reduce the
sample size required to achieve a specified confidence level in the estimate [8].
For this reason, in this work we propose a novel agreement estimation pipeline
that leverages the SS technique to reduce the human effort required to validate
LLM-generated judgments.

3 The Stratified Sampling Pipeline

Our objective is to evaluate the extent the relevance judgments produced by an
LLM agree with those made by humans, while minimizing the requirement for
human annotations. Following Merlo et al. [19], we use an estimation pipeline
that employs an iterative sampling procedure to achieve this result. Unlike prior
work [19], we use SS instead of SRS for sampling.

In detail, we assume to have a population of relevance judgments produced
by an LLM, called R, whose size is N . At each step of the iterative procedure,
we sample a relevance judgment r and add it incrementally to the sample RSS .
For each sampled LLM-generated relevance judgment r, we assume to have the
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human-made ground truth label t(r). By taking θ as the real quality value and
θ̂ as the quality estimate, it is possible to define the human-LLM agreement
evaluation as a minimization problem:

minimizeRSS
cost(RSS)

subject to E[θ̂] = θ,MoE(θ̂, α) ≤ ϵ
(1)

The goal of this minimization problem is to estimate the human-LLM agreement
on a sample RSS of R, obtained by applying the SS technique, while minimizing
the cost (cost(RSS)) and guaranteeing that the constraints set on the confidence
of the estimate are satisfied – i.e., the Margin of Error (MoE) is below the
threshold ϵ. In this work, we set the annotation cost cost(RSS) to the number
of LLM-generated judgments that are sampled and need to be validated by
humans. For the estimation to be valid, the employed estimators θ̂ of θ must
be unbiased (E[θ̂] = θ). In practice, we address this task through the following
iterative pipeline:

Step 0 - Stratify the population: we use one or more stratification variables
to partition the population into non-overlapping strata. This step is done
beforehand, and once fixed, the stratification cannot be modified.

Step 1 - Sampling: we sample a stratum proportionally to its weight. From
that stratum, we uniformly sample an LLM-generated relevance judgment
and add it to the global sample RSS .

Step 2 - Estimation of the statistics of interest: given the sampled LLM-
generated relevance judgments and the corresponding human-made counter-
parts, we employ estimators tailored for SS to compute the target statistics,
in our case the MAE and Cohen’s κ, together with their variance.

Step 3 - Constraint check: using the estimation obtained from the previ-
ous step, we compute the Confidence Interval (CI) and evaluate if we have
reached the required level of confidence. If this is the case, the procedure is
interrupted; otherwise, we repeat the procedure iteratively from step 1.

Below, we describe each of these steps in detail.

3.1 Step 0 - Stratify the Population

SS relies on stratifying the population R into a set of H non-overlapping strata
P = {p1, p2, ..., pH}, such that P represents a partition of the sample space [8].
If the stratification is effective, SS usually requires fewer samples than SRS to
achieve the desired confidence level on the estimate. However, the effectiveness
of a stratification depends on two factors: (i) how individuals are allocated across
strata, and (ii) the number of strata H. Regarding (i), a stratification is more
effective the more “uniform” the individuals are in each stratum. As for (ii),
while increasing the number of strata likely increases the internal homogeneity,
it also increases the number of samples required to converge.
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Stratification Features Our first task is to find the feature, or the combina-
tion of features, that maximizes the per-stratum homogeneity. In this work, we
investigate the following stratification features:

– Assigned Labels (A): the LLM-generated relevance judgments;
– Probability (P ): the probability computed by the LLM in the output layer

that the token corresponding to the relevance label is the next one;
– Probability Delta (∆P ): the difference between the probabilities in the out-

put layer of the LLM for tokens corresponding to the most likely and least
likely labels;

– Probability Delta Second (∆P2): similar to ∆P , but considering the most
and second-most likely labels;

– Perplexity (PPL): the perplexity of the output generated by the LLM. Per-
plexity can be computed as: PPL(X) = exp

(
− 1

|X|
∑|X|

i=1 logP (xi | xi−1
1 )

)
,

where X represents the LLM output and xi denotes its i-th token.

To limit the influence of the stratification strategy, we either partition the data
according to their assigned labels, as in the case of feature A, or employ k-means
to derive H strata. Exploring the impact of other stratification strategies is left
for future work.

3.2 Step 1 - Sampling

The second step of the pipeline is articulated in two sampling phases. The first
phase requires sampling one of the strata. Each h-th stratum has a weight de-
fined as Wh = Nh

N , where Nh represents the size of the stratum. According to
SS, the strata are randomly sampled with a probability that is proportional to
their weight Wh. This guarantees that, at the end of the process, the relevance
judgments in RSS are distributed across strata proportionally to their weights.

The second phase, instead, requires uniformly sampling the relevance judg-
ments from the stratum selected during the previous phase. Within each stratum,
we employ SRS as sampling technique; that is, a single LLM-generated relevance
judgment is selected among those in the stratum sampled during the first phase.

3.3 Step 2 - Estimation of the Statistics of Interest

After sampling, it is necessary to compute both the point estimate of the target
statistics and its variance using an appropriate estimator. Applying an incorrect
estimator—e.g., an estimator assuming SRS instead of SS as the underlying
sampling strategy—can yield misleading results, such as biased estimates or
invalid CIs. Since we rely on SS to draw data, it is essential to adopt estimators
suitable for this sampling strategy.

In this work, we assess the human-LLM agreement using two measures: Mean
Absolute Error (MAE), defined as the mean absolute difference between LLM-
generated and human-made relevance labels, and Cohen’s κ. Below, we describe
the corresponding SS-based estimators for each statistics.
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MAE Estimator under Stratified Sampling. When the statistics we want
to compute can be represented as a mean, as in the MAE case, an unbiased point
estimate under SS is given by:

θ̂ =

H∑
h=1

Whθ̂h, (2)

where θ̂h represents the MAE estimate computed on the samples r ∈ RSS ∩ ph
from the h-th stratum. Specifically, we define the per-stratum MAE as θ̂h =
1
nh

∑nh

i=1 f(ri), where f(r) = |r − t(r)| and nh is the number of judgements
drawn from the h-th stratum.

Accordingly, the estimation variance is computed as:

V (θ̂) =

H∑
h=1

W 2
hV (θ̂h), (3)

where V (θ̂h) =
∑nh

i=1(ri−t(ri))
2

nh(nh−1) .

Cohen’s κ Estimator under Stratified Sampling. Cohen’s κ cannot be
represented as a mean, thus an ad hoc estimator has been defined by Stehman
[26]. Let us define M as the confusion matrix where the i-th, j-th cell contains
the number ni,j of query-document pairs in the sample for which the LLM and
the human assigned respectively the labels i and j. Then, according to [26], the
Cohen’s κ point estimator can be defined as:

θ̂ =
N · D̂ − Ĉ

N2 − Ĉ
, (4)

where Ĉ =
∑H

j=1 Nj · M̂j with M̂j =
∑H

h=1
Nh

nh
nhj , and D̂ =

∑H
h=1

Nh

nh
nhh.

The corresponding estimation variance can be defined as:

V (θ̂) =

H∑
h=1

N2
h

(
1− nh

Nh

)
V̂h

nh
, (5)

where V̂h =
∑nh

i=1 û2
hi −nhū

2
h

nh−1 , ūh =
∑nh

i=1
û2
hi

nh
,
∑nh

i=1 ûhi = nhhB,
∑nh

i=1 ûhi =

nhhB
2 and B = [ N

N2−Ĉ
+Nh

N (D̂−N)

(N2−Ĉ)2
].

It is important to note that the estimator proposed by Stehman works only
when the stratification is based on the assigned label (i.e., the LLM-generated
relevance judgment). To the best of our knowledge, no SS estimator for Co-
hens κ currently exists that accommodates arbitrary stratification schemes. The
development of such an estimator remains an open direction for future work.
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3.4 Step 3 - Constraint check

Once the sample estimate and its variance have been produced, we can use them
to compute the CI. In this work, we use the Wald CI [5], which is defined as:

θ̂ ± zα/2

√
V (θ̂), (6)

where zα/2 is the critical value of the standard normal distribution for the sig-
nificance level α. The Wald CI allows for quantifying the uncertainties on the
estimated agreement, thus a larger CI corresponds to a lower confidence level on
the estimate.

The final step of the pipeline evaluates whether the target level of confidence
in the estimate has been achieved. Specifically, the MoE—i.e., half the width of
the CI—is compared against the predefined threshold ϵ. If the MoE falls below
ϵ, the procedure halts; otherwise, it loops back to the sampling step (Step 1).

4 Experimental Methodology and Setup

4.1 Experimental Methodology to answer RQ1

Our first research question revolves around determining what are the optimal
stratification features to measure the effectiveness of LLMs as assessors. As men-
tioned in Section 3.1, the more a stratification variable produces uniform strata,
the better it is. Furthermore, in our case, the ideal stratification corresponds to
perfectly separating correct and wrong LLM-generated relevance judgments—or
partitioning them by the size of the error if we consider a multi-graded scenario.
In other terms, we are interested in finding partitioning features, the covariates
X, that allow us to predict whether the label assigned by the LLM is the same as
the one assigned by the human, our response Y . In practical terms, to measure
the quality of the features, we fit a logistic regression using each of the features
identified above individually. For example, Y = A is the model where we use the
label generated by the LLM to predict if the LLM label was correct; similarly,
Y = PPL is the model where we try to predict the correctness of the label
using the perplexity score. Notice that, while the label assigned by the LLM is
a categorical value (our variable A), all the other variables are continuous.

Besides assessing individual features, we also test more complex models, com-
bining multiple variables at once. For instance, Y = A+P is the logistic regres-
sion model where the label assigned by the LLM and the probability assigned
to the label are used to predict the error.

To identify the best set of features, we compare these models in terms of the
R2 coefficient.1 The R2 coefficient is computed as:

R2 = 1−
∑N

i=1

(
yi − ŷi

)2∑N
i=1

(
yi − ȳ

)2 , (7)

1 Being a logistic regression, we employ McFadden’s pseudo R2.
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where yi represents a binary indicator of the correctness of ri ∈ R, ŷi denotes
the prediction of the logistic regression model for ri and ȳi =

1
N

∑N
i=1 yi. This

coefficient measures how much of the variability in the dependent variable Y
is explained by the independent variable(s) X and takes values in the interval
[0, 1], with 1 indicating that the model fits the data perfectly.

4.2 Experimental Methodology to answer RQ2

While the methodology described in the previous section allows us to quantify
the quality of different stratification features, there are two important limitations
to consider. First, it requires access to ground truth labels to compute Y , and
therefore it cannot be directly applied in a production setting. Second, even a
strong stratification variable is only a part of the solution. The effectiveness of
the stratification also depends on several other factors: the number of strata, the
threshold values for continuous features, the grouping of categories for categorical
features, how to combine multiple stratification features, and the sizes of the
resulting strata. All these elements significantly influence the overall cost of the
annotation process.

For this reason, we move to a more practical scenario. Inspired by Merlo
et al. [19], we directly evaluate the full SS pipeline by measuring the annota-
tion cost required to achieve a specified confidence level in estimating the LLM
effectiveness as an annotator. Specifically, we simulate the annotation process
using available experimental IR collections that include human-made relevance
judgments. We begin by annotating all query-document pairs for relevance us-
ing an LLM. Then, we stratify the judgments using the unsupervised features
described in Section 3.1. Next, we apply the sampling procedure: we sample an
LLM-generated relevance judgment, fetch the corresponding query-document
pair, and simulate the annotation step by using its human-provided judgment
from the collection. After each sample, we compute the CI for either the MAE or
Cohen’s κ. This process is repeated until the desired confidence level is achieved.
Thus, a stratification strategy is considered effective if it minimizes the number of
iterations needed—which directly translates into the number of required human
annotations.

4.3 Experimental Setup

We evaluate our pipeline on three widely-used collections: TREC Deep Learn-
ing (DL) 2019 [10] and 2020 [9], based on the MSMARCO corpus (8.8M pas-
sages), with 43 and 54 queries and 10k relevance judgments on a four graded
scale; and the TREC Robust 2004 collection [31, 32] (TIPSTER disks 4 & 5,
528k documents), with 249 queries and 311k judgments on a three-graded scale.
Following Merlo et al. [19], we sample 5% of TREC Robust 2004 (∼15k pairs)
to mitigate the costs of the LLM annotation and truncate documents to match
the average TREC DL passage lengths.
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Table 1: R2 of linear regression models fit using different stratification features. The
symbol “⋆” indicates statistical significance at confidence level α = 0.05 with respect
to the null model, according to the likelihood ratio test.

TREC robust 2004 TREC DL 2019 TREC DL 2020

Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B

A 0.211⋆ 0.622⋆ 0.538⋆ 0.249⋆ 0.313⋆ 0.310⋆ 0.389⋆ 0.458⋆ 0.440⋆

P 0.145⋆ 0.173⋆ 0.256⋆ 0.084⋆ 0.027⋆ 0.027⋆ 0.147⋆ 0.032⋆ 0.104⋆

∆P 0.097⋆ 0.031⋆ 0.000 0.023⋆ 0.013⋆ 0.003⋆ 0.063⋆ 0.010⋆ 0.026⋆

∆P2 0.092⋆ 0.113⋆ 0.008⋆ 0.022⋆ 0.047⋆ 0.017⋆ 0.065⋆ 0.065⋆ 0.071⋆

PPL 0.040⋆ 0.026⋆ 0.015⋆ 0.096⋆ 0.017⋆ 0.028⋆ 0.213⋆ 0.007⋆ 0.043⋆

A+ P 0.238⋆ 0.634⋆ 0.569⋆ 0.253⋆ 0.331⋆ 0.311⋆ 0.390⋆ 0.474⋆ 0.450⋆

A+ PPL 0.225⋆ 0.623⋆ 0.541⋆ 0.250⋆ 0.313⋆ 0.311⋆ 0.390⋆ 0.458⋆ 0.440⋆

We test three LLMs of varying sizes: Llama 3.1 8B, Mistral v0.3 7B, and
Qwen3 30B, using their Instruct versions when available to improve prompt ad-
herence. To generate relevance judgments, we adopt the UMBRELA prompt [30],
modified to return only relevance levels, ensuring consistent token probability
and perplexity scores across query-documents pairs.

For the estimation pipeline, we set α = 0.05 and ϵ = 0.05, and we vary the
number of strata H ∈ [2, ..., 8]. Note that, since A is categorical, when it is used
alone as a stratification feature, the only meaningful values of H are: 2, emulating
binarized relevance labels, and 3 or 4, depending on the number of relevance
levels of the considered collection. In the case H=2, to emulate the binarization,
following common approaches [12, 30], we assign the query-document pairs with
labels “related” and “irrelevant”, for the TREC DL collections, and label “not
relevant”, for the TREC Robust 2004, to the first stratum, while all the other
pairs are assigned to the second stratum.

To account for the variability introduced by the sampling step, we repeat the
procedure 10 times and average the outcomes.

5 Results and Discussion

In this section, we first present the results of evaluating the considered strati-
fication features, and then we analyze the results obtained by applying the SS
pipeline to estimate MAE and Cohen’s κ.

5.1 Answering RQ1: Quality of the Stratification Features

Table 1 reports the R2 of the models fit using different stratification features to
predict the correctness of the LLM labels.2 All the models, except the one based
2 To favour readability, we report two configurations that include the most

promising features according to the single-features models assessment. Other
approaches tend to be on a par or worse. The full table is available here:
https://github.com/MerloSimone/StratifiedSamplingLLMEstimation/blob/
main/complete_feature_table.pdf.
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on ∆P for Qwen 30B when applied to the TREC Robust 2004, are statistically
significantly better than the null model, indicating some relation between the
chosen stratification features and the response variable. If we consider single-
feature models, we observe that, in general, the most expressive feature is the
relevance judgement assigned by the LLM (A). In other terms, this indicates that
all the LLMs tend to make mistakes more often when assigning specific classes.
This kind of result aligns with past findings in the effectiveness of LLMs as eval-
uators [2, 19, 29]. All the other features, taken individually, appear suboptimal,
with the probability assigned to the label (P ) and the perplexity (PPL) being
the second and third best, depending on the setting. If we move towards more
complex models that include multiple features, we notice that, in most cases,
there is an improvement in the fitness of the model to the data. In particular,
the model that relies on the label and on the probability (A + P ) always ap-
pears the most effective. The magnitude of the improvement over the model with
only A depends on the experimental setup—despite this, it is always significant
according to the likelihood ratio test that compares the two models.

The most relevant finding is that the patterns, i.e., which models tend to
perform best, remain stable both across different collections and LLMs: this
suggests that, if we manage to find good stratification features on historical
collections, such as the ones we employed in this work, it is likely that the same
(combination of) features will be useful also to stratify the relevance judgements
in future collections and for future LLMs. Consequently, we do not need to find
dataset-specific stratification features that would be impossible to evaluate in
the absence of ground truth signals.

5.2 Answering RQ2: Impact of Stratified Sampling on the Cost

MAE Estimation. Based on the results from the evaluation of the stratification
features, we assess the proposed estimation pipeline only on the best feature
configurations: A , A+ P and A+ PPL.

In Table 2 we report the obtained results. The first row of the table reports
the real MAE value, computed by validating all the LLM-generated relevance
judgments. The second row reports the estimation results and the related cost
(between brackets) obtained adopting the SRS framework introduced by Merlo
et al. [19]. The remaining portion of the table is splitted in 3 sections, one for each
of the considered stratification features configurations. Here, each row reports
the estimation results and costs of the proposed pipeline when a different number
of strata H is used. Both for SRS and SS we omit the CI since the MoE is always
equal to (or lower than) ϵ = 0.05.

The results obtained for Y = A reveal that, while providing a correct estimate
of the MAE, the proposed estimation pipeline also allows to consistently reduce
the number of relevance judgments that need to be validated by humans. In
particular, for the TREC Robust 2004 collection the reduction in cost spans from
25% (for Mistral 7B) up to 76% (for Llama 8B). For the TREC DL collections,
instead, the cost reduction is less pronounced and more consistent, spanning
from 12% (for Mistral 7B) to 29% (for Llama 8B) for TREC DL 2019, and from
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Table 2: MAE estimation results for different stratification features. The value indi-
cates the estimated MAE, while the number between parentheses is the number of
annotations required to achieve it.

TREC robust 2004 TREC DL 2019 TREC DL 2020

Model Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B

Real MAE 0.358 0.505 0.391 0.908 1.002 0.792 0.913 0.985 0.729

SRS 0.363 (451.4) 0.507 (1044.8) 0.391 (823.9) 0.903 (1015.9) 1.003 (1419.6) 0.785 (1151.8) 0.915 (1170.7) 0.978 (1533.8) 0.727 (1175.0)

Strata #: Y = A

2 0.353 (335) 0.518 (272) 0.391 (302) 0.910 (895) 0.996 (1078) 0.777 (920) 0.913 (809) 0.986 (878) 0.731 (744)
3 0.360 (337) 0.521 (246) 0.388 (257) - - - - - -
4 - - - 0.920 (794) 1.006 (1008) 0.793 (855) 0.916 (639) 0.983 (748) 0.730 (642)

Y = A+ P

2 0.353 (335) 0.518 (272) 0.391 (302) 0.904 (817) 0.996 (1078) 0.802 (915) 0.908 (798) 0.985 (870) 0.732 (750)
3 0.367 (312) 0.521 (246) 0.409 (185) 0.902 (796) 1.014 (1067) 0.802 (869) 0.910 (654) 0.996 (830) 0.727 (632)
4 0.348 (306) 0.500 (208) 0.400 (162) 0.905 (808) 1.005 (1019) 0.796 (837) 0.917 (631) 0.992 (722) 0.728 (596)
5 0.344 (297) 0.496 (187) 0.406 (133) 0.911 (796) 1.015 (1021) 0.777 (818) 0.915 (645) 1.002 (713) 0.723 (576)
6 0.350 (298) 0.493 (202) 0.403 (115) 0.901 (787) 1.001 (958) 0.782 (818) 0.911 (642) 0.990 (672) 0.729 (580)
7 0.348 (273) 0.502 (217) 0.408 (147) 0.920 (793) 0.998 (964) 0.800 (879) 0.920 (643) 0.989 (681) 0.723 (588)
8 0.359 (278) 0.507 (201) 0.401 (127) 0.917 (796) 1.000 (940) 0.789 (839) 0.923 (641) 0.988 (713) 0.724 (581)

Y = A+ PPL

2 0.331 (242) 0.504 (1042) 0.392 (294) 0.911 (1047) 0.996 (1078) 0.802 (915) 0.912 (1102) 0.985 (870) 0.732 (750)
3 0.354 (294) 0.511 (971) 0.386 (283) 0.904 (968) 0.998 (1033) 0.794 (874) 0.904 (982) 0.983 (1006) 0.712 (696)
4 0.354 (262) 0.492 (350) 0.378 (261) 0.903 (922) 1.008 (1026) 0.796 (913) 0.896 (909) 0.991 (882) 0.730 (630)
5 0.347 (248) 0.508 (345) 0.378 (240) 0.902 (894) 1.006 (1032) 0.793 (885) 0.890 (886) 0.973 (842) 0.720 (596)
6 0.359 (238) 0.518 (335) 0.381 (239) 0.909 (897) 1.000 (1026) 0.805 (889) 0.914 (879) 0.987 (785) 0.732 (626)
7 0.346 (215) 0.495 (221) 0.382 (241) 0.902 (879) 1.001 (1007) 0.797 (886) 0.909 (882) 0.990 (736) 0.721 (607)
8 0.358 (264) 0.509 (234) 0.392 (233) 0.905 (905) 0.997 (969) 0.795 (856) 0.916 (930) 0.978 (735) 0.723 (620)

31 % to 51% for TREC DL 2020. Moreover, it is possible to notice that defining
separate strata for each relevance level (H ∈ 3, 4) allows to reduce the costs.

Considering the results obtained for Y = A + P , we notice that the cost
reductions span from a minimum of 19% (with Mistral 7B on the TREC DL 2019)
to a maximum of 86% (with Qwen 30B on the TREC Robust 2004). Nonetheless,
the pipeline performance appears similar to the one obtained with Y = A. An
interesting behavior can be observed when considering the performance for the
different number of strata of a single model on a specific collection. Indeed, if we
focus on Qwen 30B and the TREC DL 2019 collection we can notice how the
estimation cost when using 5 strata (818) is lower than the costs obtained when
using 7 or 8 strata (879 and 839, respectively). This highlights that defining a
large number of strata may not always be beneficial. Indeed, SS sampling requires
at least one judgment from each of the strata. Thus, defining more strata may
lead to sampling more judgments. For example, if we set H = N (a stratum for
each judgment in the population) we are forced to sample all the judgments.

When considering Y = A+ PPL, instead, both the best and worst cases in
terms of cost reduction are achieved with Llama 8B on the TREC Robust 2004,
spanning from 0.25% to 79% saved annotations. In addition, on the TREC DL
2019, when Mistral 7B is employed and 2 is chosen as the strata number, the
proposed estimatiom pipeline requires to annotate more judgments than SRS. A
closer look at the results reveals that, in general, when PPL and A are jointly
used and the number of strata H is set to 2, the cost is higher than for the
other analyzed stratification features configurations. This suggest that using A



12 S. Merlo et al.

Table 3: Cohen’s κ estimation results when assigned relevance A is used as stratifica-
tion feature. The value indicates the estimated Cohen’s κ, while the number between
parentheses is the number of annotations required to achieve it.

TREC robust 2004 TREC DL 2019 TREC DL 2020

Model Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B Mistral 7B Llama 8B Qwen 30B

Real Cohen’s κ 0.173 0.148 0.211 0.136 0.163 0.233 0.131 0.152 0.225

SRS 0.167 (1298) 0.157 (956) 0.217 (950) 0.129 (368) 0.141 (420) 0.236 (463) 0.141 (396) 0.162 (429) 0.237 (518)

Strata #:
2 0.193 (3025) 0.119 (1279) 0.148 (1655) 0.149 (382) 0.150 (368) 0.235 (425) 0.132 (353) 0.151 (352) 0.223 (468)
3 0.166 (1782) 0.115 (1282) 0.130 (1512) - - - - - -
4 - - - 0.138 (362) 0.143 (335) 0.233 (428) 0.131 (336) 0.151 (363) 0.223 (438)

and PPL to stratify the data in a low amount of strata may not be enough to
achieve a high per-stratum homogeneity.

A comparison among the results obtained for A, A+P and A+PPL, reveals
that using A as the only stratification feature, even if it limits the amount of
strata that can be created, allows to achieve the most stable performance while
drastically reducing the cost with respect to standard sampling techniques. At
the same time, using A + P allows to reduce even more the costs with respect
to SRS but appears to lead to less stable results. Finally, the A+ PPL appears
to be the worst solution in terms of stability but still allows to reduce the costs
with respect to both SRS and A.

Cohen’s κ Estimation. Due to the definition of the Cohen’s κ estimator
employed, when estimating Cohen’s κ the only stratification feature that can
be considered is the assigned label A. In Table 3 we report the results when
applying the proposed pipeline to estimate Cohen’s κ. The table is structured
in the same way as for the MAE but it has only one section: Y = A.

Considering the TREC DL collections, the proposed pipeline confirms its
validity. The only case in which SRS requires less annotations than SS is when
Mistral 7B is employed on the TREC DL 2019 collection with H=2. Nonetheless,
when the number of strata is set to be the same as the relevance levels, the
proposed approach allows to reduce the costs up to 20%. On the TREC Robust
2004, instead, the proposed solution performs worse than SRS. We ascribe this
unexpected behavior to the fact that, for this collection, we sample the relevance
judgments and we truncate the documents, inducing the LLM to declare many
query-document pairs as irrelevant. Indeed, this leads to a highly unbalanced
stratification, since all the pairs marked as irrelevant (over 85%) are assigned
to a single stratum, while the remaining are distributed across the other strata.
Thus, given that the Cohen’s κ estimator that we employ requires drawing a
consistent number of samples from each stratum, this results in increased costs.

6 Conclusions and Future Work

In this paper, we introduced an iterative pipeline that leverages Stratified Sam-
pling (SS) to reduce human effort in validating LLM-generated relevance judg-
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ments. Our results demonstrate that, compared to standard sampling techniques,
SS can reduce the number of human annotations required to estimate the agree-
ment between LLMs and human assessors by up to 85%. However, current es-
timators of Cohen’s κ are limited in that they only support stratification based
on the assigned label A and are susceptible to unbalanced stratifications, where
the majority of data falls within a single stratum.

As future work, we plan to develop Cohen’s κ estimators that are better
suited for SS settings, and to investigate how to quantify uncertainties in IR
system evaluations when relying on LLM-generated judgments.
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