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Abstract. Neural models have transformed Information Retrieval (IR)
by enabling semantic search, representing queries and documents as
dense embeddings in latent spaces. However, recent works indicate the
contribution of single dimensions in these representations to ranking
quality is uneven: some dimensions are essential, while others may even
degrade performance. Dimension IMportance Estimators (DIMEs) are
heuristics to guide the search for the subsets of dimensions that induce
an optimal subspace where retrieval is more effective. To explore these
subspaces, DIMEs rely on two simplifying assumptions: the linearity of
subspaces and the independence of dimensions. In this paper, we move
a step forward by relaxing the independence assumption and employ-
ing genetic algorithms to select the optimal set of dimensions. We show
that selecting optimal dimensions for individual queries can achieve up
to 0.981 nDCG@10 and 0.831 AP using state-of-the-art dense retrieval
models on the considered datasets. Additionally, we identify subsets of
dimensions that improve ranking quality across multiple queries simul-
taneously. Finally, we show that a dataset-specific subset of dimensions
enables dense retrieval models to generalize across other datasets without
loss of performance.

Keywords: Dense Representations - Ranking - Optimization - Genetic
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1 Introduction

Recent advances in Large Language Models (LLMs) have enabled Information
Retrieval (IR) models to shift from keyword-based search to semantic search.
This transition has improved ranking effectiveness, particularly in handling lan-
guage variations, synonyms, and contextual ambiguities in queries and docu-
ments [1]. Modern retrieval systems leverage these models to capture the se-
mantic meaning of documents and queries. In particular, dense IR systems rely
on contextualized embeddings [34] to represent queries and documents as dense
vectors in a shared, lower-dimensional latent space. Each dimension encodes a
latent feature, with its value reflecting the importance of that feature in the text.
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The improved effectiveness of dense representations comes with reduced in-
terpretability compared to lexical representations. We do not know the meaning
of the dimensions, the reason for their value, or if they are needed [33]. In-
deed, recent work reveals that not all dimensions in these dense representations
equally contribute to ranking quality: some are useful, while others harm per-
formance [9, 11]. Building upon this empirical observation, Faggioli et al. [11]
introduced the manifold clustering hypothesis, showing that retrieval effective-
ness can be improved by projecting documents and queries onto a query-specific
sub-space of the original latent space. To find such a subspace, Faggioli et al. de-
veloped heuristics called Dimension IMportance Estimators (DIMEs). To make
the problem computationally tractable and avoid searching through all possible
solutions, DIMEs introduce two simplifying assumptions: (i) the search is re-
stricted to linear subspaces, and (ii) dimension independence is assumed. While
these assumptions reduce computational complexity, they provide limited insight
into the structure of embedding spaces. In particular, the independence assump-
tion ignores potential interactions between dimensions, which may be crucial for
accurately characterizing the embedding space.

This paper further explores the manifold clustering hypothesis, aiming to
determine whether more effective query-specific DIMEs can be discovered by re-
laxing the assumption of independence among dimensions. Furthermore, we in-
vestigate if the improvements due to the DIME-induced shift of reference spaces
are preserved across queries and there are subspaces that consistently perform
well across entire query sets. Finally, we explore the potential for transferring
dimensionality reduction strategies across different collections. We formalize our
analysis into the following research questions:

RQ1 Effective dimensionality reduction. To what extent can query-specific
dimension selection improve performance?

RQ2 A subspace for all queries in a dataset. Are there subsets of dimensions
that consistently improve model performance across multiple queries?

RQ3 Generalization on multiple datasets. Can we learn a robust subset of
dimensions that enables a model to generalize across different datasets?

This paper is primarily theoretical in nature. However, given the analytical
intractability of studying the manifold clustering hypothesis, we adopt an empir-
ical heuristic approach. We run extensive experiments on TREC Deep Learning
2019/2020 [5, 6] and TREC Robust 2004 [32], evaluating dense retrieval models
such as TAS-B [13], Contriever [14], and Dragon [21].

To explore subspaces without assuming independent dimensions, we use ge-
netic algorithms (GAs) to approximate optimal subsets of dimensions. These are
guided by cost functions defined using relevance judgments from ground truth
pools, placing our study in an oracle setting with ideal, noise-free feedback. We
recognize that relying on ground truth judgments limits real-world applicability,
as such data is rarely available at scale. However, we aim to provide a conceptual
and empirical foundation for understanding the potential of dimension selection
and to encourage future work on developing practical, signal-based approxima-
tions of these oracle-informed strategies.
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Our genetic approach, applied on a query-per-query basis, selects subspaces
leading to substantial performance gains, improving nDCGQ10 up to +113%
and AP up to +191%. Secondly, we find that certain dimension subsets con-
sistently improve performance across multiple queries. Finally, we demonstrate
that dimension subsets learnt on one dataset can be transferred to other datasets
without degrading effectiveness, indicating promising generalization capabilities.

2 Background and Related Work

This section discusses related work regarding Dense Retrieval, representation
reduction techniques, and GAs.

Dense Retrieval. Dense retrieval has emerged as a powerful paradigm in IR,
particularly for tasks requiring semantic understanding, such as question answer-
ing, ad hoc search, and recommender systems [34]. Modern dense IR models
can be broadly categorized into three types: cross-encoders, bi-encoders, and
late-interaction models. Cross-encoders, such as BERT [10], RoBERTa [22], and
ELECTRA [3], jointly encode query-document pairs, computing their interac-
tions at query time. While effective, they are computationally expensive. Late-
interaction models, such as ColBERT [19], compare contextual representations
of individual terms rather than reducing queries and documents to single embed-
dings [12]. While offering improved retrieval accuracy, they introduce overhead
in time and space. Bi-encoders, in contrast, independently encode queries and
documents using neural networks, allowing for offline document pre-computation
and indexing. These models can be symmetric, i.e., using the same encoder for
queries and documents, as in TAS-B [13] and Contriever [14], or asymmetric, as
in Dragon [21]. The bi-encoder architecture enables scalable retrieval using effi-
cient indexing tools, such as FAISS [16], and data structures, such as HNSW [23],
which speed up nearest-neighbour search over large vector embedding datasets.
In this work, we focus on bi-encoders and investigate to what extent their
encoding of queries and documents in the latent space is redundant and noisy.

Representation Reduction Techniques. Dimension IMportance Estimators
(DIMESs) have recently been proposed as query-dependent methods to improve
the ranking performance of bi-encoder models by exploiting correlations across
dimensions between the query representation and those of relevant or irrele-
vant documents [2, 8, 11]. They leverage the observation that not all repre-
sentation dimensions contribute equally to retrieval effectiveness, and aim to
identify through Pseudo Relevance Feedback or by exploiting dense representa-
tions of Large Language Model-generated answers query-dependent subsets of
dimensions to enhance ranking quality. However, a key limitation of previous
approaches is the assumption of independence across dimensions: each is scored
in isolation, ignoring interactions that may influence their combined impact on
ranking. This assumption was primarily introduced to ensure computational
tractability, since modeling all possible dependencies among dimensions quickly
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becomes intractable at scale. In this work, we address this limitation by fram-
ing the task as an instance of Best Subset Selection, a well-known NP-hard
problem [35]. To tackle the combinatorial complexity, we resort to GAs, which
provide an efficient heuristic for exploring large search spaces and identifying
high-quality suboptimal subsets of dimensions. Unlike previous DIMEs, our ap-
proach captures dependencies among dimensions, enabling a richer and more
effective exploration of the representation space.

Genetic algorithms. GAs are optimization techniques inspired by the process
of natural selection [18, 28]. They work by simulating evolution through opera-
tions such as selection, crossover, and mutation [7]. In GAs, potential solutions
to a problem are represented as individuals in a population. Over successive
generations, the fittest individuals (i.e., the ones representing better solutions
to the considered problem) are selected to reproduce, combining their “genetic”
information to create new solutions [17]. This iterative process allows the al-
gorithm to explore a solution space efficiently and converge toward optimal or
near-optimal solutions.

GAs have already been successfully employed in IR. For example, Martin-
Bautista and Miranda [24] described the use of GAs for feature selection, preserv-
ing a limited number of relevant features associated with documents to enhance
efficiency in classification problems. Kraft et al. [20] employed GAs for weighted
boolean query reformulation in order to achieve higher effectiveness, considering
both precision and recall. Ozel [27] leveraged GAs for web-page classification
during crawling processes. Similar to these works, we leverage GAs to identify
effective subsets of dimensions that can be used to improve the ranking quality
of dense retrieval models.

3 Methodology

3.1 Background on Dimension Importance Estimators

A bi-encoder dense retrieval model projects a query ¢ and the corpus of docu-
ments C = {dy,...,d,} into a latent h-dimensional space R". At retrieval time,
given a query g and its representation q € R”, the retrieval score for a document
d represented in the latent space as d € R" is the dot product q - d. Thus, we
can define a ranked list of documents Ry = {di,...,d}, containing the top-k
documents sorted according to their retrieval score. Finally, if a set of relevance
labels £ is available, we can compute an effectiveness measure M(R,; £) that
quantifies how effective R, is in satisfying the information need represented by g.
Faggioli et al. [11] observed that given a representation space in R”, there exists
a linear subspace® RI9l that insists on the dimensions § C {1, ..., h}, with |6 < h,
where the retrieval is more effective. In other terms, called R4 s the ranked list

4 Faggioli et al. postulate that the subspace can be an arbitrary manifold, but focus
only on independent linear subspaces, i.e., subspaces constructed by removing some
dimensions.
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of documents obtained by carrying out the retrieval in RI°/, we observe that
MRy L) < M(Rqs:L). We refer to (q - d)s as the dot product between the
query and document representations in RI®/. The problem of finding the optimal
set of dimensions § where the retrieval is most effective is intractable: there are 2"
possible linear subspaces of R". Hence, Faggioli et al. propose a class of models,
called Dimension IMportance Estimators (DIMEs) w : ({1, ...,h};q,0) — R that,
given the index of a dimension, the query representation q, and possibly a set of
additional inputs 0, outputs a score measuring how important the dimension is.

3.2 DIMEs and Genetic Algorithms

The Dimension IMportance Estimator (DIME) task can be formulated as the
optimization problem of finding the set of dimensions that maximizes effective-
ness. In this paper, we employ GAs to find suboptimal sets of dimensions for
single or groups of queries. Differently from the heuristic approaches proposed
in [2, 8, 11], we account for dependencies between dimensions by designing an
evolutionary framework designed to balance exploration and exploitation of our
solution space. The individuals in the population of our GA are subsets of repre-
sentation dimensions, represented as binary strings where 1 in the i-th position
means that dimension ¢ is retained in the query vector representation, 0 oth-
erwise. The population is initialized with a random sample of individuals. At
each generation, we employ a fitness-based strategy that guides the selection of
individuals by favouring the subsets of dimensions that provide the best rank-
ing quality while preserving diversity. This increases the likelihood of generating
high-quality individuals over time. New individuals are generated by recombin-
ing components from selected parents in the current population. For example,
given two parent solutions encoded as bit strings 10110011 and 01101100 in a
toy 8-dimension model, a new individual is formed by randomly selecting each
bit from one of the parent, creating, for example, an offspring like 11111100 cor-
responding to a DIME selecting the first six dimensions in the representation.
This crossover mechanism promotes diversity and facilitates exploration of dif-
ferent regions in the solution space. To further maintain variation and prevent
premature convergence, the algorithm introduces small random changes, called
mutations, in the current population of solutions. Mutations involve flipping a
bit of an individual with low probability, ensuring that new genetic material is
occasionally introduced into the population. Our approach also includes elitism,
a mechanism that guarantees the best solution found in the current generation is
carried forward unchanged to the next generation, thereby ensuring that progress
is not lost.

3.3 RAQ1: Effective Dimensionality Reduction

RQ1 focuses on determining the largest improvement achievable by a query-
specific DIME when the dimension-independence assumption is relaxed. To ap-
proximate the optimal subset, we define the following objective function, which
guides the GA for each query ¢ using the relevance judgments L:
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where d, represents the subset of dimensions selected for query ¢ (i.e., an indi-
vidual in the GA) and M is the set of evaluation measures to maximize. This
objective function seeks to identify the subset of dimensions that maximizes the
evaluation measures while simultaneously minimizing the number of dimensions
considered. In our experiments we set M = {nDCG@10, AP}. Notably, this ap-
proach does not require explicitly specifying the number of retained dimensions,
as the GA automatically selects it for each query according to the objective
function.

3.4 RQ2: A Subspace for all Queries in a Dataset

We turn our attention to a broader question: is there a subset of dimensions
capable of enhancing the model performance consistently across all queries in a
given dataset? We aim to identify a single subset of dimensions that yields an
overall performance boost when considering the entire dataset. This approach
prioritizes global effectiveness, as it seeks to balance and optimize performance
across all queries rather than focusing on localized improvements.

To address this challenge, we employ a methodology similar to the one de-
scribed earlier in Section 3.3, again leveraging a GA to explore and refine the
selection of dimensions, guided by the following optimization function:

maXQ|z< S M(Rosi £ ) 2)

Me/vl

where § represents the subset of dimensions selected for all queries and @ is the
set containing all the queries in a dataset. Similarly to Equation 1, we employ
nDCG@I10 and AP as the evaluation measures to maximize. This allows us
to systematically search for subsets of dimensions that maximize the overall
effectiveness on all queries of a dataset.

3.5 RQ3: Generalization on Multiple Datasets

Finally, we aim to identify a robust subset of dimensions that preserves retrieval
performance advantages across datasets without relying on dataset-specific rel-
evance labels. In practice, this means selecting a subset of dimensions from one
dataset and evaluating whether the performance boost is maintained when ap-
plied to other datasets. If successful, this approach could indicate the presence
of systematic noise in the embedding space, with certain dimensions consistently
degrading retrieval performance.

We fix one dataset as the training set and determine the subset of dimensions
to retain based on the output of our optimization problem. We then evaluate
the effectiveness of these retained dimensions on other datasets used as test
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sets. Compared to the previous experiments, this setup employs proper training
and test splits, making it an analysis of the latent dimension content and a
methodology suitable for real-world applications.

Let E; and £ denote the sets of relevant and non-relevant documents for
query ¢ in the training dataset. We then proceed to define the following opti-
mization function:

1 1
mgmxz @ Z (q~d+)5—‘£q,| Z (q-d7)s (3)

q€Q drecs

This function identifies the subset of dimensions that maximizes the dot-product
scores for relevant documents while simultaneously minimizing them for non-
relevant ones. Unlike the previous functions, it does not directly optimize evalu-
ation measures such as nDCG@10 or AP. Instead, it seeks a subset that enhances
the discriminative power between relevant and non-relevant documents. There-
fore, this new objective function aims at finding a subset of dimensions with high
generalization capabilities, even across different datasets.

4 Experimental Assessment

We present here the experimental settings and a comprehensive analysis of the
experiments conducted to answer our three research questions.

4.1 Experimental Settings

We empirically validate our research questions on three dense retrieval mod-
els operating in 768-dimensional latent spaces: Contriever [14], TAS-B [13],
and Dragon [21]. The model weights were fine-tuned on the MS-MARCO col-
lection and are publicly available through the HuggingFace repository. In terms
of datasets, we consider three experimental collections: TREC Deep Learning
‘19 (DL 19) [6], TREC Deep Learning ‘20 (DL 20) [5], and TREC Robust ‘04
(RB 04) [32]. The first two focus on ad-hoc passage retrieval, with 43 and 54
annotated queries, respectively, and are based on the MS-MARCO [26] pas-
sages collection. On the other hand, RB 04 contains 249 queries and is derived
from the TIPSTER disks. For computational reasons, we consider 100,000 re-
trieved documents for every query—approximately, 19% of the corpus. As all the
considered dense IR systems have been fine-tuned on the MS-MARCO passage
collection, they are in-domain IR systems for DL 19 and DL 20, whereas RB 04
represents a zero-shot application of these models.

Our GA employs uniform crossover mechanism with probability P.,ossover =
0.5 to set a dimension based on one of the two parents. Mutation follows a bit-flip
strategy with probability Pputation = % per bit. Selection is tournament-based,
with size 3, ensuring that the fittest individual from each group is chosen for
crossover while preserving diversity. retain the best solution across generations.
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Table 1. Answering RQ1: retrieval performance using the best query-specific subset
of dimensions found by the GA compared to the baseline using all dimensions. Symbol
* denotes statistically significant differences with respect to the baseline.

‘ Genetic algorithm ‘ Baseline
Dataset Model‘nDCG@lO AP Avg N° dims.‘nDCG@lO AP Avg N° dims.
TAS-B| 0.975* 0.813" 55 0.717  0.481
DL 19 Contriever| 0.964* 0.811" 58 0.674 0.493 768
Dragon| 0.981" 0.831" 56 0.740  0.522
TAS-B| 0.972* 0.800" 57 0.684 0.478
DL 20 Contriever| 0.972* 0.803" 55 0.672 0.482 768
Dragon| 0.976" 0.824" 59 0.718  0.509
TAS-B| 0.953* 0.619" 55 0.447  0.213
RB 04 Contriever| 0.960° 0.659" 55 0.465 0.239 768
Dragon| 0.948" 0.633" 58 0.461  0.228

The population size is fixed at 100 and initialized randomly. The algorithm ter-
minates upon convergence or after reaching a maximum number of generations.
For the experiments in Sections 4.2 and 4.3, the maximum number of generations
was set to 500, while for Section 4.4 it was set to 50, balancing effectiveness with
computational feasibility under practical timing constraints.

To test the statistical significance of the improvement over the baseline, we
use two-way Analysis of Variance (ANOVA) [29] and Tukey’s Honestly Signif-
icant Differences (HSD) post-hoc test [31], with significance level of 0.05. The
experiments are carried out on a machine with 4 Intel Xeon CPUs (72 cores in
total) and 1.5 TB of RAM. The code is publicly available.?

4.2 RQ1: Effective Dimensionality Reduction

Our first investigation concerns the maximum performance achievable through
the selection performed by the GA of an effective query-specific subset of dimen-
sions using the optimization function defined in Equation 1. With our settings
the GA examines for each query at most 500 - 100 = 50, 000 possible subsets of
dimensions in the 2768 ~ 1.55 - 1023! possible subsets.able 1 reports the results
of this oracle experiment. Despite exploring only a limited portion of the solu-
tion space, the subsets of dimensions identified by the GA yield a substantial
improvement in retrieval performance. On average, selecting about 8% of the
total dimensions per query leads to gains of up to 113% in nDCG@10 and 191%
in AP on RB 04. These findings highlight the effectiveness of dimensionality re-
duction in enhancing ranking quality. Selecting with our GA a set of dimensions
yields nearly perfect nDCG@10 values, while AP reaches up to ~ 0.8, which is
remarkably high. This leads to the following observations:

® https://github.com/MjPaxter/ECIR2026-DIME-genetic
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Table 2. Answering RQ2: retrieval performance using the best subset of dimensions
found by the GA for all the queries of the test data compared to the baseline using all
dimensions. Symbol * denotes statistically significant differences with respect to the
baseline.

‘ Genetic algorithm ‘ Baseline
Dataset ~ ModelnDCG@10 AP N° dims.[nDCG@10 AP N° dims.

TAS-B| 0.784" 0.526° 404 0.717  0.481
DL 19 Contriever| 0.793* 0.541* 367 0.674 0.493 768
Dragon| 0.836" 0.549" 410 0.740  0.522

TAS-B| 0.775* 0.511* 414 0.684 0.478
DL 20 Contriever| 0.770* 0.522* 381 0.672 0.482 768

Dragon| 0.802" 0.540" 412 0.718  0.509
TAS-B| 0.486" 0.221* 512 0.447 0.213

RB 04 Contriever| 0.528* 0.256" 439 0.465 0.239 768
Dragon| 0.511* 0.241* 507 0.461  0.228

— Fewer than 8% of the dimensions contribute positively to ranking quality,
while the remaining 92% are either irrelevant or detrimental. This finding
calls for a reconsideration of current training strategies to prevent such a
large amount of noise from being injected into query representations.

— Our setting is oracular, and this optimization problem cannot be solved
directly in real-world scenarios. Nonetheless, the margins of improvement
are substantial: in this optimal setting, we more than double effectiveness on
the RB 04 collection. This result opens the door to novel strategies aimed
at translating theoretical gains into practical deployments. Future research
could focus on identifying high-impact dimension subsets without relying
on curated ground truth, for instance, by leveraging proxy signals or noisy
relevance judgments. Such advancements would make this approach more
practical and applicable in production environments.

4.3 RQ2: A Subspace for all Queries in a Dataset

We now investigate whether there exist subsets of dimensions that improve the
model performance consistently across all queries in a given dataset. To answer
this question, we employ our genetic approach guided by the optimization func-
tion defined in Equation 2. Table 2 presents the effectiveness results obtained
by selecting a single subset of dimensions for each dataset and dense retrieval
model under consideration.

As a first observation, there exist subsets of dimensions that yield signifi-
cant improvements in the effectiveness of dense retrieval models across different
evaluation measures, with gains of up to +16% in nDCG@10 and +11% in AP.
This indicates that certain dimensions can substantially enhance performance,
whereas others contribute little or may even degrade it. Figure 1 further illus-
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Fig. 1. Difference in nDCG@Q10 between Contriever using the GA-selected subsets of
dimensions and using the full set of dimensions for each query in the DL 19 dataset.
For the majority of the queries, we observe a robust performance improvement. Only
6 queries are penalized, but the loss is small.

trates this point: the subsets of dimensions selected by the GA enable Contriever
to outperform its full-dimension baseline on nearly all queries, as measured by
nDCG@10. Comparable trends are observed for the other models, though results
are omitted here due to space constraints.

Despite being empirical bounds, our findings here show a novel insight over
previous works [2, 8, 11] that observe a performance improvement only when
operating at a query-level: this analysis suggests that it is possible to find a
dimension set that optimizes multiple queries at once.

Secondly, we notice that, compared to Table 1, the dimension subsets that
optimize the retrieval effectiveness for a set of queries at once are larger compared
to those needed for a single query. This is a reasonable behaviour: being able to
answer more information needs calls for larger representations. This is further
highlighted by the fact that for DL 19 and DL 20 (approximately 50 topics),
using around 53% of the full set of dimensions provides the optimal result, while
for RB 04 (249 topics), we need 65% of the dimensions.

We highlight again that these outcomes represent an estimate of the maxi-
mal improvement that can be achieved by reducing the number of dimensions.
Nevertheless, if there exists a set of dimensions that optimizes a group of queries
at once, we can directly prune the documents’ representation to reduce its mem-
ory occupation, and improve efficiency® and effectiveness. It remains an open
challenge and a relevant future investigation path to identify clusters of queries
that benefit from the same dimensionality reduction.

5 While we do not investigate this empirically for space reasons, the theoretical effi-
ciency gain is proportional to the representation reduction.
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Table 3. Answering RQ3: retrieval performance on the target test dataset using the
best subset of dimensions found by the GA using DL 19 as training dataset compared to
the baseline using all dimensions. Symbol * denotes statistically significant differences
with respect to the baseline.

‘ Genetic algorithm ‘ Baseline
Model Dataset‘nDCG@lO AP N° dims.‘nDCG@lO AP N° dims.

DL 19 (Train)| 0.734 0.507" 0.717  0.481

TAS-B DL 20 (Test)| 0.682 0.479 674 0.684 0.478 768
RB 04 (Test)] 0.439  0.209" 0.447 0.213
DL 19 (Train)| 0.683 0.501 0.674  0.493

Contriever DL 20 (Test)| 0.671 0.477 668 0.672 0.482 768
RB 04 (Test)| 0.462  0.236" 0.465 0.239
DL 19 (Train)| 0.748  0.517 0.740 0.522

Dragon DL 20 (Test)| 0.735  0.508 671 0.718 0.509 768
RB 04 (Test)| 0.454  0.223" 0.461 0.228

4.4 RQ3: Generalization on Multiple Datasets

Previous experiments showed the effectiveness of the dimension selection at a
query and dataset level. We now turn to generalizing across datasets, moving
away from the oracle setting and considering a practical machine learning setting,
with separate training and test sets. In this experiment, we consider DL 19 as
the training dataset to find with our GA and the optimization function provided
in Equation 3 a single good subset of dimensions. Then, we test whether the
identified subset of dimensions generalizes well across the remaining datasets
and, thus, maintains a performance advantage across them.

Table 3 shows the results of this experiment. The selected subset of dimen-
sions enables dense retrieval models to generalize effectively across different
datasets. By learning the set of dimensions on DL 19, this clearly induces a
performance improvement. The number of dimensions that maximizes the opti-
mization function described in equation 3 ranges from 668 (Contriever) to 674
(TAS-B). This indicates that, by reducing the dimensions by around 13% to
12%, we still maintain a good separation between the scores assigned to relevant
and non-relevant documents. If we use the same set of dimensions to project the
representation space also for DL 20 and RB 04, we notice a minor deflation of ef-
fectiveness. This decrease occurs, as an order of magnitude, in the third decimal
place, indicating a negligible change in terms of ranking. In other terms, while
we have saved more than 12% of the resources—both in terms of space on the
disk and in the number of required operations to compute the dot product—it
is highly unlikely that the user will perceive this change when looking at the
ranked list of documents. Importantly, this change is seldom statistically signif-
icant, except for AP for RB 04 collection. We stress that, despite the change
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being significant, Cohen’s d [4, 15], which indicates the actual strength of the
change, is always below 0.03.”

Future research could explore whether the discarded dimensions primarily
contain redundant information or noise that does not contribute to model effec-
tiveness. Investigating the role of these dimensions could lead to further opti-
mizations in embedding design, potentially improving both efficiency and inter-
pretability in dense retrieval models.

5 Conclusion and Future Work

In this paper, we presented an in-depth investigation into how strategically
selecting dimensions from dense retrieval models’ representations can enhance
ranking performance. We provided novel empirical evidence supporting the man-
ifold clustering hypothesis by identifying and leveraging only effective subsets of
dimensions for each query, using DIMEs in combination with GAs. Our simu-
lation experiments demonstrated substantial improvements in both nDCG@10
and AP across various models and datasets. Notably, we show that our method-
ology can be extended to entire query sets: the same subset of dimensions can
improve retrieval performance even when applied uniformly to all queries in a
dataset. Furthermore, we demonstrate that it is possible to learn robust sub-
sets of dimensions that allow a dense retrieval model to generalize effectively to
unseen datasets without compromising effectiveness.

Although the insights from this study are primarily theoretical since they
mostly rely on an oracle setting, they reveal that dense representations often
contain noise or redundancy that can negatively impact ranking quality. By
selecting a reduced yet informative subset of dimensions, we not only preserve
effectiveness but also achieve significant performance gains.

Future research could explore innovative approaches for selecting effective
subsets of dimensions without relying on relevance judgments. This could in-
clude unsupervised methods that automatically identify the most important di-
mensions for a given query, thereby enhancing ranking quality more practically.
Moreover, considering other data modalities, such as image-based datasets [25],
could help assess how well our findings generalize to different downstream tasks.
Additionally, further investigation could focus on understanding the contribution
of each model dimension, identifying those associated with noise or redundancy,
thus trying to delve deeper into the interpretability of these models. Lastly,
more ambitious research could aim to simplify model complexity, which could
translate into lower-dimensional text representations. By extending dimension-
ality reduction techniques to account for both the quality and interpretability
of selected representations, future research directions could further advance our
understanding of the impacts of specific models’ dimensions on ranking, espe-
cially in the context of large-scale real-world applications. By delving deeper into

7 As a reference, a Cohen’s d between 0.2 and 0.5 is considered small, while below 0.2
the effect is deemed negligible [30].
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these areas, future research has the potential to build more effective and efficient
IR systems capable of better solving complex and specialized retrieval tasks.
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content of this article.
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