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Abstract

LetG(z1, z2) be a p×m 2D proper rational transfer matrix, with full
column rank, and Σ = (A1, A2, B1, B2, C,D) a state space realization
of its. Necessary and sufficient conditions are presented in this paper,
which guarantee that (i) G(z1, z2) admits polynomial left inverses, (ii)
such polynomial inverses are transfer matrices of some inverse system
of Σ. When the above conditions are not fulfilled, the existence of
stable and/or proper, possibly delayed, inverses of G(z1, z2), is also
discussed.

1 Introduction

The investigation of 2D inverse systems represents an interesting topic from
the point of view of several applications, such as multivariable system de-
coupling [1] and the synthesis of finite memory decoders [2]. Even more,
the inversion of 2D systems is of great interest from a theoretical point of
view. Actually it involves a detailed analysis of the structural properties
of polynomial and rational matrices that represent the input-output trans-
fer matrices of 2D systems, and the study of some connections between 2D
external descriptions and state models.

Given a proper rational transfer matrix G(z1, z2), p × m with p > m,
the full (column) rank condition is necessary and sufficient to guarantee the
existence of a rational left inverse, i.e. an m × p matrix, G−1(z1, z2), such
that

G−1(z1, z2)G(z1, z2) = Im (1.1).

Being a rectangular matrix, G(z1, z2) admits an infinite number of left in-
verses, and sometimes this degree of freedom can be used to single out inverse
matrices endowed with special properties.
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Perhaps the most common requirement on G−1(z1, z2) is the properness
condition, which corresponds to the quarter plane causality. It’s quite clear
that the possibility of finding such an inverse is equivalent to the assumption
that G(0, 0) is full column rank.

Moreover, it can be easily realized that when G(z1, z2) admits proper
left inverses, the existence of a polynomial inverse represents a particularly
favourable case: indeed it’s associated to a 2D FIR filter and, consequentely,
involves a moving average processing of the input data. Such a feature is
also of fundamental importance in two-dimensional decoding, in order to
avoid the arising of “catastrophic” errors.

An interesting problem arises when G(0, 0) is not full column rank, so
that is not possible to obtain a proper inverse of G(z1, z2). Unlike the 1D
case, where the introduction of appropriate delay elements always makes
possible to properly invert a proper transfer matrix, the 2D case exhibits
some remarkable features. Indeed examples can be given of 2D transfer
matrices for which is not even possible to find a delayed proper inverse, that
is a proper rational matrix H(z1, z2) such that

H(z1, z2)G(z1, z2) = zν11 z
ν2
2 Im (1.2).

See, for instance, G(z1, z2) =
[
z1 + z2 z1 + z2

]T
.

2D state models considered in this paper have the following structure [3]

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k)
+ B1u(h, k + 1) +B2u(h+ 1, k)

y(h, k) = Cx(h, k) +Du(h, k)
(1.3)

where the local state x is an n-dimensional vector over the field R, input
and output functions take values in Rm and Rp respectively, and A1, A2,
B1, B2, C, D are matrices of suitable dimension, with entries in R.
For sake of brevity, model (1.3) will be denoted as Σ = (A1, A2, B1, B2, C,D).

Every 2D proper rational matrix G(z1, z2) can be realized by a 2D state
model [3,4], and therefore can be regarded as the input-output map of a
model (1.3), for an appropriate choice of matrices A1, A2, B1, B2, C and D.

If D = G(0, 0) is full rank, we can associate the inverse system, [5,6],
Σ−1(D−1) = (A1 − B1D

−1C,A2 − B2D
−1C,B1D

−1, B2D
−1,−D−1C,D−1)

to a given realization Σ of G(z1, z2) and to a particular left inverse D−1 of D.
Since Σ−1(D−1) realizes a proper inverse of G(z1, z2), the problem of finding
a causal inverse for a proper transfer matrix can be solved by resorting to
an inverse system.

Finite memory 2D systems, [7,8], that is systems (1.3) for which the cha-
racteristic polynomial det(I − A1z1 − A2z2) is a unit, constitute the most
“natural” state model for realizing FIR filters, since in this case the FIR
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property is a direct consequence of the zeroing of the free state evolution in
a finite number of steps.

When a transfer matrix G(z1, z2) admits polynomial inverses, we may
ask whether inverse possibly finite memory, state models allow to realize
them.

Actually, even though the inversion of a state model always produces a
proper inverse of G(z1, z2), nevertheless not every proper inverse of G(z1, z2)
can be obtained in this way. In particular, examples can be given given of
matrices which have polynomial inverses but none of them can be realized
by an inverse system.

The aim of this paper is to provide a fairly detailed discussion of the
problems mentioned above, and to present some new results. In sections
2 and 3, necessary and sufficient conditions are given for a proper rational
matrix to have polynomial inverses and, in particular, polynomial inverses
realizable through an inverse 2D system. Section 4 deals with the singular
case, (i.e. G(0, 0) not full rank). The existence of a delayed proper inverse
is shown to be equivalent to a condition on the variety V(G) of the maximal
order minors of G(z1, z2). The special case of a polynomial delayed inverse
is also considered, and reduced to a further condition on V(G), that must
be a subset of the coordinate axes of C × C.

2 Polynomial inverses of 2D transfer matrices

Throughout this paper, we will assume that G(z1, z2) is a 2D proper rational
transfer matrix, p × m with p > m and rank m over the field of rational
functions R(z1, z2). Moreover in sections 2 and 3 we will also assume G(0, 0)
full column rank, which implies that the set

S(G) := {Σ = (A1, A2, B1, B2, C,D) : C(I −A1z1 −A2z2)−1

(B1z1 +B2z2) +D = G(z1, z2)} (2.1)

of all the state models which realize the transfer matrix G(z1, z2) consists
of invertible systems. Given Σ = (A1, A2, B1, B2, C,D) in S(G) and a left
inverse, D−1, of D, the inverse system Σ−1(D−1) = (A1 − B1D

−1C,A2 −
B2D

−1C,B1D
−1, B2D

−1,−D−1C,D−1) realizes a proper left inverse ofG(z1, z2).
In general, however, the inverse systems belonging to

S−1(G) := {Σ−1(D−1) : Σ ∈ S(G), D−1D = Im}

do not realize all the left inverses of G(z1, z2).
In this section we derive necessary and sufficient conditions, guarantee-

ing that a proper rational matrix (in particular a polynomial one), G(z1, z2),
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admits a polynomial inverse G−1(z1, z2). We will determine in which cases
S−1(G) includes systems having a polynomial transfer matrix, and in par-
ticular finite memory systems.

Let NRD
−1
R be a right coprime matrix fraction description (rcMFD) of

G(z1, z2), [9,10], and suppose, without loss of generality, that DR(0, 0) = Im,
so that

G(0, 0) = NR(0, 0)D−1
R (0, 0) = NR(0, 0) (2.2).

Under these assumptions we can prove the following proposition.

Proposition 1. a) G(z1, z2) admits a polynomial inverse if and only if
there is a polynomial matrix Q(z1, z2) such that

DR(z1, z2) = Q(z1, z2)NR(z1, z2) (2.3).

b) If Σ = (A1, A2, B1, B2, C,D) realizes the transfer matrix G(z1, z2),
the inverse system Σ−1(D−1) realizes a polynomial inverse of G(z1, z2) if
and only if there is a polynomial matrix P (z1, z2) such that

DR(z1, z2) = P (z1, z2)D−1NR(z1, z2) (2.4).

c) Σ−1(D−1) is finite memory if and only if D−1NR(z1, z2) is a unimodu-
lar matrix and Σ is a coprime realization of G(z1, z2).

PROOF
a) If Q(z1, z2) is a polynomial left inverse of G(z1, z2), postmultiplying

both the members of

Q(z1, z2)NR(z1, z2)D−1
R (z1, z2) = Im

by DR(z1, z2), we obtain (2.3).
Conversely, if we postmultiply both the sides of (2.3) by D−1

R (z1, z2), we
obtain

Q(z1, z2)NR(z1, z2)D−1
R (z1, z2) = Im.

So Q(z1, z2) is a polynomial inverse of G(z1, z2).

b) Rewriting the transfer matrix of Σ−1(D−1) as:
G−1(z1, z2) = −D−1C[I −A1z1 −A2z2 + (B1z1 +B2z2)D−1C]−1

(B1z1 +B2z2)D−1 +D−1

= −D−1C(I + (I −A1z1 −A2z2)−1(B1z1 +B2z2)D−1C)−1

(I −A1z1 −A2z2)−1(B1z1 +B2z2)D−1 +D−1

and using the identity (I +HS)−1H = H(I + SH)−1, we obtain
G−1(z1, z2) = −D−1C(I −A1z1 −A2z2)−1(B1z1 +B2z2)D−1[I + C(I −

A1z1 −A2z2)−1(B1z1 +B2z2)D−1]−1 +D−1
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= −D−1[G(z1, z2)−D][D−1G(z1, z2)]−1D−1 +D−1

= [(−D−1G(z1, z2) + I)(D−1G(z1, z2))−1 + I]D−1

= [D−1G(z1, z2)]−1D−1

It follows that G−1(z1, z2) is polynomial if and only if

[D−1G(z1, z2)]−1D−1 = [D−1NR(z1, z2)D−1
R (z1, z2)]−1D−1, (2.5)

has the same property. Postmultiplying (2.5) by D, we can see that (2.5) is
polynomial if and only if [D−1NR(z1, z2)D−1

R (z1, z2)]−1, and hence

P (z1, z2) := DR(z1, z2)(D−1NR(z1, z2))−1 (2.6)

are polynomial.
From (2.6) we obtain (2.4) and viceversa.

c) The system Σ−1(D−1) is finite memory if and only if

1 = det[I − (A1 −B1D
−1C)z1 − (A2 −B2D

−1C)z2]
= det(I −A1z1 −A2z2) det[I + (I −A1z1 −A2z2)−1(B1z1 +B2z2)D−1C]
= det(I −A1z1 −A2z2) det[I +D−1C(I −A1z1 −A2z2)−1(B1z1 +B2z2)]
= det(I −A1z1 −A2z2) det[D−1NR(z1, z2)D−1

R (z1, z2)]
= det(I −A1z1 −A2z2) det[D−1NR(z1, z2)]/ detDR(z1, z2)

that is if and only if

detDR(z1, z2) = det(I −A1z1 −A2z2) det[D−1NR(z1, z2)] (2.7).

Keeping in mind that detDR(z1, z2) is a divisor of det(I − A1z1 − A2z2),
and the two polynomials coincide if and only if Σ is a coprime realization,
it follows that (2.7) holds if and only if

1) Σ is a coprime realization of G(z1, z2);
2) det[D−1NR(z1, z2)] = 1, so D−1NR(z1, z2) is a unimodular matrix. 2

Remark I : If NR(z1, z2) is zero-prime, (2.3) is fulfilled by assuming
Q(z1, z2) = [DR(z1, z2)N−1

R (z1, z2)], where N−1
R (z1, z2) is any polynomial

left inverse of NR(z1, z2).

It’s worthwhile to underline that a realization Σ(D−1) is finite memory
if and only if the following two conditions are simultaneously satisfied:

i) the realization Σ is coprime. This property is a characteristic of the
state model , and is always obtainable by resorting to an appropriate choice
of the realization of G(z1, z2);

ii) D−1NR(z1, z2) = G(0, 0)−1 NR(z1, z2) is unimodular. This property
depends only on the transfer matrix G(z1, z2) and the choice of D−1.
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The unimodularity of D−1NR(z1, z2) constitutes a sufficient (but not
necessary) condition for Σ−1(D−1) to realize a polynomial inverse, since
(2.4) holds with P (z1, z2) = DR(z1, z2)[D−1NR(z1, z2)]−1.

Let’s now restrict to the case of G(z1, z2) being a polynomial matrix.
Thus, choosing

NR(z1, z2) = G(z1, z2)
DR(z1, z2) = Im

the previous proposition can be restated as follows.

Proposition 2. Let Σ = (A1, A2, B1, B2, C,D) be a realization of a
2D polynomial transfer matrix G(z1, z2) and D−1 a left inverse of D. The
inverse system Σ−1(D−1) realizes a polynomial inverse of G(z1, z2), if and
only if D−1G(z1, z2) is unimodular. If that condition is met, Σ−1(D−1) is a
finite memory system if and only if Σ has the same property.

PROOF
From the proof of Proposition 1, we know that the transfer matrix of

Σ−1(D−1) is
G−1(z1, z2) = [D−1G(z1, z2)]−1D−1.

Obviously [D−1G(z1, z2)]−1 is polynomial if and only if [D−1G(z1, z2)]−1 is
polynomial too, and then D−1G(z1, z2) is a unimodular matrix.

Moreover, keeping in mind (2.8), the finite memory condition (2.7) on
Σ−1(D−1) is equivalent to

1 = det(I −A1z1 −A2z2) det[D−1G(z1, z2)] (2.9).

(2.9) holds if and only if
1) det[D−1G(z1, z2)] = 1, that is Σ−1(D−1) realizes a polynomial inverse

of G(z1, z2);
2) det(I − A1z1 − A2z2) = 1, that is Σ is a finite memory realization of

G(z1, z2) 2

Remark II : Proposition 2 implies that if Σ−1(D−1) realizes a polyno-
mial inverse then the polynomial matrix G(z1, z2) is zero-prime. Indeed it’s
a well-known result ([10], [11]) that polynomial matrices with polynomial
inverse are zero-prime.
The zero-primeness of G(z1, z2) is a necessary condition for D−1G(z1, z2)
to be a unimodular matrix: if the maximal order minors of G(z1, z2) had
a common zero, (α1, α2) ∈ C × C, then G(α1, α2), and consequentely
D−1G(α1, α2), would have rank less than m, and det[D−1G(α1, α2)] would
be zero, a contradiction. As it’s clearly shown in Example 1, this is not a
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sufficient condition. Therefore, even if G(z1, z2) is zero-prime, is not gener-
ally true that a polynomial inverse of its can be represented as the inverse
system transfer matrix of a realization of G(z1, z2).

A further consequence, [12], of Proposition 2 is that the possibility of
obtaining an inverse of G(z1, z2) via an inverse system Σ−1(D−1) is inde-
pendent of the specific realization Σ, and relies only on G(z1, z2) and the
particular inverse matrix choosen for D. Only when we introduce the addi-
tional requirement of finite memory, the internal properties of the realization
Σ become relevant.
Example 2 shows how different choices of D−1 lead to different results as
regards the unimodularity of D−1G(z1, z2).

Example 1 :

Consider the 4× 1 zero-prime matrix

G(z1, z2) =


1 + z1
z1z2

1 + z2
z2
1


with D = G(0, 0) =

[
1, 0, 1, 0

]T
.

All left inverses of D can be represented as

D−1 =
[
a+ 1, b, −a, c

]
a, b, c ∈ R

but for every choice of the real parameters a, b, and c

D−1G(z1, z2) = 1 + (a+ 1)z1 + bz1z2 − az2 + cz2
1

is not unitary.

Example 2 :

Consider the 4× 1 zero-prime matrix

G(z1, z2) =


z1 + 1
z1 + 2
z2
0



with D = G(0, 0) =
[
1, 2, 0, 0

]T
. If we choose the row vector

D−1 =
[
1, 0, 0, 0

]
7



as a left inverse for D, the condition det[D−1G(z1, z2)] = 1 is not satisfied,
while it is for

D−1 =
[
− 1, 1, 0, 3

]
.

3 Inversion of zero-prime polynomial transfer ma-
trices via inverse systems

As proved in Proposition 2, given a realization Σ of a zero-prime polynomial
matrix G(z1, z2), it’s possible to obtain a polynomial left inverse of G(z1, z2)
through the inverse system Σ−1(D−1) if and only if D−1G(z1, z2) is a uni-
modular matrix. In this section we will study some structural conditions on
a zero-prime polynomial matrix G(z1, z2) which ensure the unimodularity
of D−1G(z1, z2).

Particularly interesting from an algebraic point of view, is the possibil-
ity of column bordering up G(z1, z2) into a unimodular p × p matrix by
an appropriate set of p − m constant columns, as stated in Proposition
3. Since the Quillen-Suslin Theorem [9] guarantees that every p ×m zero-
prime polynomial matrix G(z1, z2) can be included as the first m columns of
some p × p unimodular matrix, the polynomial transfer matrices for which
a polynomial inverse can be obtained through an inverse system, can be
equivalentely characterized as those which have a constant Quillen-Suslin
completion.

Proposition 3 . Let G(z1, z2) be a zero-prime polynomial matrix,
p ×m with p > m, and D−1 a left inverse of G(0, 0) = D. The following
statements are equivalent:

i) D−1G(z1, z2) is a unimodular matrix;
ii) G(z1, z2) can be expressed as follows:

G(z1, z2) = DU(z1, z2) +B(z1, z2) (3.1)

where U(z1, z2) is a unimodular matrix with U(0, 0) = Im, B(z1, z2) a poly-
nomial matrix with B(0, 0) = 0 and

D−1B(z1, z2) = 0 (3.2)

iii) G(z1, z2) can be column-bordered up into a unimodular matrix,
M(z1, z2), by resorting to a p× (p−m) constant matrix X:

M(z1, z2) =
[
G(z1, z2) X

]
such that [ D X ] is invertible and D−1X = 0.
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PROOF
i)⇒ ii): Let A a (p−m)× p constant matrix which completes D−1 to

a full rank square matrix and is orthogonal to D; then we have[
D−1

A

]
G(z1, z2) =

[
U(z1, z2)
T (z1, z2)

]
where T (z1, z2) is a polynomial matrix which is zero in (0,0), and U(z1, z2) =
D−1G(z1, z2) is unimodular with U(0, 0) = Im.

Let [D X] be the inverse of
[
D−1

A

]
: it follows that

G(z1, z2) = DU(z1, z2) +XT (z1, z2)

and assumingB(z1, z2) = XT (z1, z2), we obtainB(0, 0) = 0 andD−1B(z1, z2) =
D−1XT (z1, z2) = 0.

ii) ⇒ iii) : Suppose that (3.1) holds and X is a p × (p −m) constant
matrix such that [D X] is a full rank square matrix and D−1X = 0.

Letting
[
D−1

A

]
= [D X]−1, we have:

[
D−1

A

]
[G(z1, z2) X] =

[
D−1G(z1, z2) 0
AG(z1, z2) I

]
=
[
U(z1, z2) 0
AG(z1, z2) I

]
so

[G(z1, z2) X] = [D X]
[
U(z1, z2) 0
AG(z1, z2) I

]
.

Thus [G(z1, z2) X] is a unimodular matrix, since it’s the product of two
unimodular matrices.

iii) ⇒ i): Assume that [G(z1, z2) X] is unimodular and let
[
D−1

A

]
=

[D X]−1 = [G(0, 0) X]−1. So in[
D−1

A

]
[G(z1, z2) X] =

[
D−1G(z1, z2) 0
AG(z1, z2) I

]
the matrix on the right-hand side, and hence D−1G(z1, z2), are unimodular
2

Example 3 :

Let’s consider the 4× 2 zero-prime transfer matrix

G(z1, z2) =


1 + z1 z2

2

z1 1 + z2
−z1 −z2

2

z2
1 −z2
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with

G(0, 0) = D =


1 0
0 1
0 0
0 0

 .
i) If we assume D−1 = [I2 I2] as left inverse of D, we meet the condition
det[D−1G(z1, z2)] = 1.
ii) G(z1, z2) can be expressed as in (3.1), choosing

U(z1, z2) =
[

1 0
z1 + z2

1 1

]
B(z1, z2) =


z1 z2

2

−z2
1 z2

−z1 −z2
2

z2
1 −z2



iii) Following the procedure given in the proof of Proposition 3, select a
constant matrix X such that D−1X = 0 and [D X] is a full rank square
matrix. Both conditions are met by the matrix

X =


−1 0
0 −1
1 0
0 1


and it’s easy to verify that

[
G(z1, z2) X

]
is unimodular.

If G(z1, z2) is a column matrix, conditions i)÷iii) of the previous propo-
sition can be restated as conditions of linear independence of real valued
vectors.
Indeed, given a p × 1 polynomial matrix G(z1, z2) the unimodularity of
D−1G(z1, z2) reduces to D−1G(z1, z2) = 1. So we have to find under which
conditions G(z1, z2) has a left inverse that is a left inverse of D, too.
Decomposing G(z1, z2) into the sum of a constant and a strictly proper part

G(z1, z2) = Gsp(z1, z2) +G(0, 0) = Gsp(z1, z2) +D

we can see that det[D−1G(z1, z2)] = 1 is satisfied if and only if there’s a left
inverse of D such that

D−1Gsp(z1, z2) = 0 (3.3).

Developing Gsp(z1, z2) as a vector coefficients polynomial:

Gsp(z1, z2) = G10z1 +G01z2 +G11z1z2 + ...+Gdqz
d
1z
q
2

we obtain the following conditions:

D−1Gij = 0 0 ≤ i ≤ d, 0 ≤ j ≤ q, i+ j > 0 (3.4)
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We distinguish two cases:
a) D belongs to S(Gsp) := span{Gij , 0 ≤ i ≤ d, 0 ≤ j ≤ q, i + j > 0}.

If D−1 satisfies (3.4), it’s orthogonal to S(Gsp), and hence to D, which
contradicts D−1D = 1;

b) D does not belong to S(Gsp). Then there exists a vector v in(
S(Gsp)

)⊥
, such that vTD = c 6= 0. Therefore the vector w = v/c satisfies

the conditions wTD = 1 and wTGij = 0 and we can choose wT as a left
inverse of D.

The previous remarks are summarized in the following:

Proposition 4 . For a p × 1 polynomial transfer matrix G(z1, z2) the
condition

D−1G(z1, z2) = 1

is satisfied if and only if D does not belong to S(Gsp).

Example 4

With reference to the column matrix G(z1, z2) of Example 2:
D = [1 2 0 0], G10 = [1 1 0 0]T , G01 = [0 0 1 0]T , so D does not belong
to S(Gsp) and the equation D−1G(z1, z2) = 1, in the unknown D−1, admits

D−1 = [−1 1 0 3] ∈ to
(
span(G10, G01)

)⊥
, as a solution.

Remark III : Zero-primeness of G(z1, z2) is a necessary condition for
the unimodularity of D−1G(z1, z2) and hence for D not to belong to S(Gsp).
Indeed if the latter condition is met, the system of equations

G10y10 +G01y01 +G11y11 + · · ·+Gdqydq = −D

is devoid of solutions; then, in particular, the non linear system

G10z1 +G01z2 +G11z1z2 + · · ·+Gdqz
d
1z
q
2 = −D

has no solution. So G(z1, z2) is different from zero for every (z1, z2) ∈ C×C.

The results of Proposition 4 partially extend to the case m > 1 if we con-
sider the maximal order minors instead of the elements of matrix G(z1, z2).
Indeed, by the Cauchy-Binet Theorem, condition det[D−1G(z1, z2)] = 1 can
be expressed as:

1 =
( p

m)∑
i=1

mi(D−1)gi(z1, z2) (3.5)
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where the sum is extended to all the products of the maximal order minors,
mi(D−1), of D−1 into the corresponding minors gi(z1, z2) of G(z1, z2).
It is then immediate to verify the following:

Proposition 5 . Let

g(z1, z2) = [g1(z1, z2) . . . gN (z1, z2)]T

be the column vector of the maximal order minors of G(z1, z2) and gij ∈
RN , N =

( p
m

)
, the coefficients of the monomials zi1z

j
2 in g(z1, z2). A nec-

essary condition for the existence of a left inverse D−1 of D such that
det[D−1G(z1, z2)] = 1, is that the vector of the maximal order minors of
D

g00 = m(D) = [m1(D) . . .mN (D)]T ∈ RN

does not belong to the space span{gij , i+ j > 0}.

Condition (3.5), considered as a Bézout identity, guarantees thatG(z1, z2)
is zero-prime; moreover it represents a particular example of that identity,
since it can be satisfied using constant coefficients mi(D−1).

Similarly, the fact that m(D) does not belong to the space span{gij , i+
j > 0} is sufficient for g(z1, z2) being different from zero for every (z1, z2) ∈
C×C, and then for G(z1, z2) being zero-prime.

4 Delayed inverses of 2D polynomial matrices

In the previous sections we discussed several problems connected with the
existence and the construction of polynomial inverses for an assigned transfer
matrix G(z1, z2). Here we confine ourselves to polynomial matrices, and we
analyze the case in which G(z1, z2) is full column rank over R(z1, z2) but
not zero-prime.

Under this hypothesis, G(z1, z2) admits rational, but not polynomial,
inverses, and causality and stability issues, which have a trivial solution
when a polynomial inverse exists, become now very relevant.

Both stability and causality of G−1(z1, z2) reduce to a set of conditions
on the variety of the poles of G−1(z1, z2). Indeed, as far as stability is
concerned, the denominators of the (irreducible) entries of G−1(z1, z2) must
be devoid of zero on the unit polydisc, P1 := {(z1, z2) :| z1 |≤ 1, | z2 |≤ 1},
whereas, when a causal inverse is needed, they must only be different from
zero at the origin of C × C, (i.e. G(0, 0) must be full column rank).

These properties will be analyzed in this section, and related to some
conditions on the variety V(G) of the maximal order minors [13] of G(z1, z2).
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When G(z1, z2) does not admit causal inverses, it is a matter of great interest
to state if there are at least delayed proper inverses, that is proper rational
matrices H(z1, z2) satisfying (1.2). Also the existence of such inverses will
be connected with some geometrical properties of V(G).

Throughout this section G(z1, z2) will be a 2D polynomial matrix p×m,
with p > m and full (column) rank.

Proposition 6. Let G(z1, z2) be a 2D polynomial matrix and V(G) the
variety of the maximal order minors of G(z1, z2). Then:
a) every point P ∈ V(G) is a pole of all the left inverses of G(z1, z2);
b) given a polynomial p(z1, z2) having decomposition

p(z1, z2) = p1(z1, z2) . . . pr(z1, z2)

into distinct irreducible factors, such that

V(G) ⊆ V(p)

V(G) 6⊆ V
( r∏
i=1,i 6=j

pi
)

j = 1, ..., r

there is a left inverse of G(z1, z2), G−1(z1, z2), such that V(p) is the variety
of the poles of G−1(z1, z2).

PROOF
a) Let

G−1(z1, z2) =
[nij(z1, z2)
dij(z1, z2)

]
=

[tij(z1, z2)]
d(z1, z2)

be a left inverse of G(z1, z2), with nij(z1, z2)/dij(z1, z2) irreducible and
d(z1, z2) = l.c.m.{dij(z1, z2), i = 1, ...,m, j = 1, ..., p}, and letD−1

L (z1, z2)NL(z1, z2)
be a lcMFD of G−1(z1, z2).
Since d(z1, z2) is the l.c.m.,

(AdjDL(z1, z2))NL(z1, z2)
detDL(z1, z2)

=
[tij ]

d(z1, z2)

implies d(z1, z2) | detDL(z1, z2).
Moreover, sinceDL(z1, z2)−1NL(z1, z2) is a lcMFD, fromD−1

L (z1, z2)NL(z1, z2) =
[d(z1, z2)Im]−1[tij ], it follows that detDL(z1, z2) | dm(z1, z2). Consequently
we have

V(d) = V(detDL).

As DL(z1, z2) = NL(z1, z2)G(z1, z2), we obtain

V(G) ⊆ V(detDL) = V(d).

13



b) Denote by Gi(z1, z2) = SiG(z1, z2) the i-th m × m submatrix of
G(z1, z2), where Si is an appropriate selection matrix and gi(z1, z2) = detGi(z1, z2),
i = 1, ..., N =

( p
m

)
.

By Hilbert’s Nullstellensatz, there exist an integer n and polynomials αi(z1, z2),
for i = 1, ..., N , such that

pn(z1, z2) =
N∑
i=1

αi(z1, z2)gi(z1, z2).

From the identity Adj(SiG(z1, z2))SiG(z1, z2) = gi(z1, z2)Im, for i = 1, ..., N ,
it follows that

[ N∑
i=1

αi(z1, z2)Adj(SiG(z1, z2))Si
]
G(z1, z2) = pn(z1, z2)Im.

Then

G−1(z1, z2) =
∑N
i=1 αi(z1, z2)Adj(SiG(z1, z2))Si

pn(z1, z2)

is a left inverse of G(z1, z2) that can be rewritten as G−1(z1, z2) = [tij(z1,z2)]
d(z1,z2) ,

{tij(z1, z2), i = 1, ...,m, j = 1, ..., p; d(z1, z2)} being a set of coprime polyno-
mials.
As d(z1, z2) | pn(z1, z2), it follows that

d(z1, z2) = pn1
1 (z1, z2)...pnr

r (z1, z2) 0 ≤ ni ≤ n i = 1, ..., r (4.1)

and then
V(d) ⊆ V(p) (4.2).

To prove that the varietes in (4.2) coincide, it will be enough to show that
all the nj in (4.1) are strictly positive. By assuming that nj = 0, it follows
that

V(G) ⊆ V(d) ⊆ V
( r∏
i=1,i 6=j

pi
)
,

which contradicts the hypothesis 2

A transfer matrix G(z1, z2) is stable if its entries, expressed as irreducible
rational functions, have denominators devoid of zeroes in the closed unitary
polydisc, P1. This condition implies, but is not equivalent to, BIBO stability,
since G(z1, z2) can have non essential singularities of the second kind on the
distinguished boundary, T1 = {(z1, z2) ∈ C ×C :| z1 |=| z2 |= 1}, without
loosing BIBO stability [14].

Nevertheless, the above conditions on the denominators of G(z1, z2) are
necessary and sufficient for G(z1, z2) to be realizable by an internally stable
state model (2.1). Since in this paper our interest is in the connections
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between transfer matrices and state models, it seems more natural to follow
the definition introduced above. The condition for the existence of a stable
inverse for G(z1, z2) is then an immediate consequence of Proposition 6.

Corollary : A 2D polynomial transfer matrix G(z1, z2) admits a stable
inverse if and only if V(G) has no intersections with the unit polydisc, P1.

PROOF
If V(G)∩P1 6= ∅, then any point of the intersection is be a pole of every

left inverse of G(z1, z2), G−1(z1, z2). So every left inverse of G(z1, z2) is
unstable.

If V(G)∩P1 = ∅ we can choose a polynomial p(z1, z2) as in b) of Propo-
sition 6 that satisfies the extra condition V(p) ∩ P1 = ∅.

Any inverse of G(z1, z2) having V(p) as the variety of the poles, is stable
2

When G(z1, z2) does not admit proper inverses, the next proposition
supplies necessary and sufficient conditions for the existence of delayed
proper/polynomial inverses, based on the structure of the variety V(G).

Proposition 7. Let G(z1, z2) be a 2D polynomial matrix, and V(G)
the variety of the maximal order minors of G(z1, z2). Then
a) G(z1, z2) has a delayed proper inverse , H(z1, z2), if and only if every
algebraic curve in V(G) passing through the origin of C × C is a subset of

Z1 ∪ Z2 = {(z1, z2) ∈ C×C : z1z2 = 0}.

b) In particular, G(z1, z2) has a delayed polynomial inverse if and only if
V(G) is a subset, possibly empty, of Z1 ∪ Z2.

PROOF
a) Assume that G(z1, z2) admits a delayed proper inverse, i.e. a proper

rational matrix H(z1, z2) satisfying

H(z1, z2)G(z1, z2) = zν11 z
ν2
2 Im (4.3)

and let DL(z1, z2)−1NL(z1, z2) be a lcMFD of H(z1, z2).
Rewriting (4.3) as

NL(z1, z2)G(z1, z2) = zν11 z
ν2
2 DL(z1, z2) (4.4)

and taking the determinant on both sides of (4.4) gives

det[NL(z1, z2)G(z1, z2)] = zmν11 zmν22 detDL(z1, z2) (4.5).
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Since detDL(0, 0) 6= 0, the variety of the right hand side of (4.5) does
not include algebraic curves passing through (0, 0) which are not subset of
Z1 ∪ Z2.
This is also true for V(det(NLG)) and V(G).

To prove the converse assume that V(G) consists of distinct algebraic
curves V(p1),...., V(ph) satisfying the hypothesis of the theorem and, pos-
sibly, a finite set of isolated points M1,...,Mk. Let qi(z1, z2) be irreducible
polynomials that interpolate Mi, i = 1, 2, ..., k and whose variety is either a
coordinate axis or an algebraic curve that does not include (0, 0).
Clearly

p(z1, z2) = p1(z1, z2) . . . ph(z1, z2)q1(z1, z2) . . . qk(z1, z2)

can be rewritten as
p(z1, z2) = zn1

1 zn2
2 r(z1, z2)

with r(0, 0) 6= 0, and satisfies V(p) ⊇ V(G).
Using the same notations as in the proof of Proposition 6, we have

pn(z1, z2) =
N∑
i=1

αi(z1, z2)Adj[SiGi(z1, z2)]G(z1, z2) = znn1
1 znn2

2 rn(z1, z2)Im.

Therefore

r−n(z1, z2)
[ N∑
i=1

αi(z1, z2)Adj[SiGi(z1, z2)]Si
]

= H(z1, z2)Im (4.6)

is a delayed proper inverse of G(z1, z2).

b) If H(z1, z2) in (4.3) is a polynomial matrix, z−ν11 z−ν22 H(z1, z2) is a
left inverse of G(z1, z2) and its poles coincide with the elements of Z1 ∪ Z2.
Therefore, by Proposition 6, V(G) ⊂ Z1 ∪ Z2.

Conversely, if V(G) ⊂ Z1 ∪ Z2, the proof of a) can be carried out with
p(z1, z2) = zn1

1 zn2
2 and, therefore, H(z1, z2) in (4.6) is a polynomial matrix

2

5 Conclusions

In this paper we have considered the question of existence, properties and
construction of an inverse for a 2D system. Intuitively speaking, such an
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inverse is a proper 2D system which, when cascaded with the original one,
reproduces as its output the input (possibly delayed) to the original system.
Natural implications of invertibility theory are easily found in 2D linear
decoupling and noninteracting control [1]. Further questions, regarding the
invertibility of 2D dynamical models, have recently arised [2] in connection
with the design of 2D convolutional encoders and decoders.

The approach developed in this paper is based both on the transfer func-
tion analysis and the state space realization procedures. Tha main results
can be summarized as follows. First, necessary and sufficient conditions
have been proved guaranteeing that a polynomial transfer matrix G(z1, z2)
admits a (possibly delayed) polynomial inverse. This result, whose relevance
for applications to convolutional decoding is quite obvious, has been further
extended, thus providing conditions for the existence of proper and stable
rational inverses.

Second, the possibility of obtaining a finite memory inverse system of
a given realization of G(z1, z2) has been investigated. Solving this problem
is quite appealing, since it allows to synthesize at the same time a good
encoder and a reliable decoder by designing essentially a unique 2D system.
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