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ABSTRACT
Homogeneous 2D state space models whose variables

are always nonnegative are described by a pair of non-
negative square matrices (A,B). In the paper, we dis-
cuss some spectral and combinatorial properties under
particular assumptions on the structure of the matrix
pair, like finite memory, separability and property L.

1. INTRODUCTION

Positive state models are widely applied in representing
physical, biological and economical dynamical evolutions
in which the variables are always nonnegative in value.
In this contribution we consider 2D positive systems, i.e.
discrete positive state models whose variables depend on
two integer indices, according to a quarter plane causal-
ity law. The investigation of this class of systems is quite
recent [1,2] and several challenging problems remain still
open. As a point has not reached yet where a general
survey can be attempted, we have preferred to concen-
trate on some basic topics which underlie the analysis ot
the unforced 2D state equation

x(h+ 1, k + 1) = A x(h, k + 1) +B x(h+ 1, k), (1.1)

where the doubly indexed local state sequence x(·, ·)
takes values in the positive cone Rn

+ := {x ∈ Rn :
xi ≥ 0, i = 1, 2, ..., n}, A and B are nonnegative
n × n matrices, and the initial conditions are assigned
on C0 := {(i,−i) : i ∈ Z}.
The results we are going to present fall in two classes,
which correspond to the sections of the paper. In section
2, we investigate various connections among the spectral
properies (nilpotency, dominant eigenvalues, common
dominant eigenvectors) a positive matrix pair (A,B)
may exhibit. Different hypotheses on its structure are
introduced, such as finite memory, separability, commu-
tativity etc., which are frequently used for characteriz-
ing the behavior of a 2D system. An usual method for
studying invariants defined on matrices is to simplify
the structure of the matrices by linear transformations
that preserve the invariants. Following this philosophy,
in section 3 we use permutation matrices for obtaining
canonical matrix pairs cogredient to positive pairs en-
dowed with special properties.

Before proceeding, we introduce some notation. If M =

[mij ] is a matrix , we write M � 0 (M strictly positive),
if mij > 0 for all i, j; M > 0 (M positive), if mij ≥ 0
for all i, j, and mhk > 0 for at least one pair (h, k);
M ≥ 0 (M nonnegative), if mij ≥ 0 for all i, j. In some
cases, it will be useful to denote the (i, j)-th entry of a
matrix M as [M ]ij . The Hurwitz products of two square
matrices A and B are inductively defined as Ai 0B =
Ai, A0 jB = Bj and, when i and j are both greater
than zero, Ai jB = A(Ai−1 jB) +B(Ai j−1B).
The characteristic polynomial of a pair of square matri-
ces (A,B) is ∆A,B(z1, z2) = det(I −Az1 −Bz2)
Given an alphabet Ξ = {ξ1, ξ2}, the free monoid Ξ∗ is the
set of all words w = ξi1ξi2 · · · ξim , m ∈ N, ξih ∈ Ξ. The
integer m is called the length of the word w and denoted
by |w|, while |w|i represents the number of occurencies of
ξi in w, i = 1, 2. For each pair of matrices A,B ∈ Cn×n,
the map ψ defined on {1, ξ1, ξ2} by the assignements
ψ(1) = In, ψ(ξ1) = A and ψ(ξ2) = B, uniquely extends
to a monoid morphism of Ξ∗ into Cn×n. The ψ-image
of w ∈ Ξ∗ is denoted by w(A,B).

2. SPECTRAL PROPERTIES

The dynamics of a 2D system (1.1) is essentially deter-
mined by the matrix pair (A,B). Unfortunately, the
algebraic tools for studying a pair of linear transforma-
tions are not as simple and effective as those available
for the investigation of a single linear transformation.
In particular, the modal analysis approach to the un-
forced dynamics does not extend to 2D systems. Inter-
estingly enough, however, some natural assumptions on
the structure of the pair (A,B) allow to single out im-
portant classes of positive systems, whose spectral prop-
erties are easily investigated.

As a first instance, we consider finite memory systems,
i.e. systems whose unforced state evolution goes to zero
in a finite number of steps. As proved in [3] a generic (i.e.
nonnecessarily positive) 2D system (1.1) is finite mem-
ory if and only if ∆A,B(z1, z2) = 1. The nonnegativity
assumption leads to some penetrating characterizations,
as shown in the following Proposition.

Proposition 2.1 For a pair of n× n nonnegative ma-
trices (A,B), the following statements are equivalent:
i) ∆A,B(z1, z2) = 1; ii) A + B is a nilpotent (and, a
fortiori, an irreducible) matrix; iii) Ai jB is nilpotent,
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for all (i, j) 6= (0, 0); iv) w(A,B) is nilpotent, for all
w ∈ Ξ∗ \ {1}.
Proof i)⇒ ii) Letting z1 = z2 = z in ∆A,B(z1, z2) =
1, we get det(I − (A + B)z) = 1, which implies the
nilpotency of A+B.

ii) ⇒ iii) For all ν ≥ n we have 0 = (A + B)ν =∑
h+k=ν A

h kB. The nonnegativity assumption further
implies that Ah kB is zero whenever h+k ≥ n. Conse-
quently, when (i, j) 6= (0, 0), one gets 0 ≤ (Ai jB)n ≤
Ain jnB = 0, which proves the nilpotency of Ai jB

iii) ⇒ iv) Let |w|1 = i, |w|2 = j. As [w(A,B)]n ≤
(Ai jB)n = 0, we see that w(A,B) is nilpotent.

iv) ⇒ iv) By a theorem of Levitzki [4], assumption
(iv) corresponds to the existence of a similarity trsnsfor-
mation that reduces both A and B to upper triangular
form. Clearly, the characteristic polynomial of a pair of
upper triangular nilpotent matrices is 1.

Remark In the general case of matrices whose entries
assume both positive and negative values, condition (ii)
is necessary, but not sufficient, for guaranteeing the finite
memory property, which depends on the nilpotency of all
linear combinations αA+βB, α, β ∈ C [5]. By contrast,
anyone of conditions (iii) and (iv) is sufficient, but not
necessary, for the finite memory property.

A fairly complete description is also available for 2D pos-
itive systems whose characteristic polynomial factorizes
into the product of a polynomial in z1 and a polynomial
in z2 (separable positive systems).

Proposition 2.2 For a pair of n × n matrices A > 0
and B > 0, the following statements are equivalent:
i) ∆A,B(z1, z2) = r(z1)s(z2); ii) Ai jB is nilpotent
for all (i, j) with i, j 6= 0; iii) w(A,B) is nilpotent, for
all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2; iv) there exists
a complex valued nonsingular matrix T such that Â =
T−1AT and B̂ = T−1BT are upper triangular matrices
and âhh 6= 0 implies b̂hh = 0.

Proof i) ⇒ ii) We refer to a characterization of sep-
arability [5], which states that a pair (A,B) is sepa-
rable if and only if tr(Ai jB) = 0, for all (i, j) with
i, j > 0. When (A,B) is a positive pair, one gets
tr[(Ai jB)ν ] ≤ tr(Aiν jνB) = 0, ν = 1, 2, . . . which
implies (ii).

ii)⇒ iii) Let |w|1 = i ≥ 1, |w|2 = i ≥ 1. As w(A,B) ≤
Ai jB, we have [w(A,B)]n ≤ (Ai jB)n = 0.

iii) ⇒ iv) For all pairs w, w̄ ∈ Ξ∗, we have that
|w|i = |w̄|i, i = 1, 2, implies tr[w(A,B)] = tr[w̄(A,B)].
This guarantees [6] that A and B are simultaneously
triangularizable. As the trace is invariant under similar-
ity, we obtain

∑n
h=1 â

i
hhb̂

j
hh = 0 for all i, j > 0. This

equation is satisfied if and only if âhh 6= 0⇒ b̂hh = 0.

iv)⇒ i) Obvious.

A pair of n × n matrices (A,B) has property L if the
eigenvalues of A and B can be ordered into two n-tuples

Λ(A) = (λ1, λ2, ..., λn), Λ(B) = (µ1, µ2, ..., µn) (2.1)

such that, for all α, β in C, the spectrum of Λ(αA+βB)
is given by Λ(αA+βB) = (αλ1+βµ1, ..., αλn+βµn). It is
not difficult to show that property L corresponds to the
possibility of factorizing the characteristic polynomial
into linear terms [7]. Under appropriate irreducibility
assumptions, the nonnegativity of A and B allows for
some precise statements concerning the coupling of their
maximal eigenvalues.

Proposition 2.3 Let (A,B) be a nonnegative n × n
matrix pair, endowed with property L w.r.t. the order-
ings (2.1), and assume A+B irreducible.
Then there exists a unique index i such that λi, µi ∈
R+, λi ≥ |λj |, µi ≥ |µj |, j = 1, 2, ..., n, and, for each
α, β > 0, αλi + βµi is the maximal positive eigenvalue
of the irreducible matrix αA+ βB.

Proof Denoting by ν1(α), ν2(α), ..., νn(α) the eigenval-
ues of αA+ (1− α)B, property L implies that

νj(α) = αλj + (1− α)µj , j = 1, 2, ..., n. (2.2)

Moreover, for all α ∈ (0, 1), the matrix αA + (1 − α)B,
having the same zero-pattern as A+B, is irreducible and
hence has a simple maximal eigenvalue νmax(α). We aim
to prove that there exists an integer i such that for all
α, νmax(α) = αλi + (1− α)µi, where λi and µi are real
positive eigenvalues of A and B, respectively.
Note first that the characteristic polynomial
∆A,B(z1, z2) =

∏n
i=1(1 − λiz1 − µiz2) belongs to

R[z1, z2]. So, if one factor 1 − λiz1 − µiz2 has not
real coefficients, also 1 − λ̄iz1 − µ̄iz2 appears in ∆A,B .
That amounts to say that, when a nonreal pair (λj , µj)
appears in (2.2), also the conjugate pair (λ̄j , µ̄j)
does, and hence both νj(α) = αλj + (1 − α)µj and
νk(α) = αλ̄j + (1 − α)µ̄j belong to Λ(αA + (1 − α)B).
Moreover, νj(α) is real if and only if νk(α) is, and they
take the same value. As νmax(α), 0 < α < 1, has to
be simple, it cannot coincide with any eigenvalue νj(α)
associated with a nonreal pair (λj , µj).
Therefore, an integer j(α) exists, possibly depending
on α, such that (λj , µj) is a real pair and νmax(α) =
νj(α)(α). Because of the linear structure of (2.2), we
can determine finitely many points, α1, α2, ..., αr, 0 <
α1 < α2 < ... < αr < 1, with the property that the in-
dex j(α) remains constant on each interval (αµ, αµ+1),
µ = 1, 2, ..., r − 1, and takes different values on differ-
ent intervals. If r were greater than zero, νmax(αµ),
µ = 1, 2, ..., r, would be a multiple eigenvalue of the ir-
reducible matrix αA + (1 − α)B, a contradiction. So r
has to be zero and j(α) takes in (0, 1) a unique value i.
Next, we show that λi and µi are maximal eigenvalues
of A and B. Suppose, for instance, that A possesses



a positive eigenvalue λh > λi. As the eigenvalues of
αA + (1 − α)B are continuous functions of α, |νh(α)|
would be greater than |νi(α)| for all values of α in a
suitable neighbourhood of 1, a contradiction.
Finally, letting ᾱ = α/(α + β) and 1 − ᾱ = β/(α + β),
we have that ᾱλi + (1 − ᾱ)µi is the maximal positive
eigenvalue of ᾱA + (1 − ᾱ)B = 1

α+β (αA + βB) and,
consequently, αλi + (1 − α)µi is the maximal positive
eigenvalue of αA+ βB

We conclude this section with some results on the exis-
tence of a common positive eigenvector v of A and B,
which corresponds to their maximal eigenvalues.

Proposition 2.4 Let A > 0 and B > 0 be n× n com-
mutative matrices, whose sum A+B is irreducible. Then
A and B have a strictly positive common eigenvector v,
which corresponds to the maximal eigenvalues rA and
rB of A and B, respectively.

Proof Assume first that A is irreducible, and let v� 0
be the eigenvector of A corresponding to the eigenvalue
rA, that is Av = rAv. The commutativity of A and B
and the assumption B > 0 imply A(Bv) = rA(Bv) and
Bv > 0 respectively. Since an irreducible matrix has ex-
actly one eigenvector [8] in En := {x ∈ Rn

+ :
∑n
i=1 xi =

1}, and both v and Bv are positive eigenvectors of A,
we have Bv = λv, λ > 0 Consequently, v is a strictly
positive eigenvector of B, corresponding to its maximal
eigenvalue rB , and λ = rB .
Assume next that A + B is irreducible, and let Aε :=
A + εB,Bε := B + εA, where ε is an arbitrary positive
real number. As Aε and Bε commute and are both ir-
reducible, the first part of the proof gives, for all ε > 0
Aεv(ε) = rAεv

(ε), Bεv(ε) = rBεv
(ε) where v(ε) � 0

is a common eigenvector of Aε and Bε, uniquely deter-
mined by the condition v(ε) ∈ En, and rAε

, rBε
are the

spectral radii of Aε and Bε respectively.
Now the eigenvalues are continuous functions of the en-
tries of the matrices. Hence rAε → rA and rBε → rB
as ε → 0+. Moreover, a compactness argument shows
that there exists v ∈ En such that v(ε) → v, and v
is a common eigenvector of A and B relative to rA
and rB . To conclude the proof, it remains to show
that the limiting vector v is strictly positive. Indeed,
(A+B)v = (rA + rB)v shows that v is a positive eigen-
vector of the irreducible matrix A + B, which implies
v� 0

The analysis of nonnegative matrix pairs that admit a
strictly positive common eigenvector essentially restricts
to stochastic matrix pairs.

Proposition 2.5 Let A > 0, B > 0, A+B irreducible.
A and B have a common positive eigenvector if and only
if their maximal eigenvalues rA and rB are positive and
there exists a diagonal positive full rank matrix D such

that r−1
A D−1AD and r−1

B D−1BD are row stochastic.

Proof Assume that rA, rB are positive,
r−1
A D−1AD, r−1

B D−1BD are row stochastic, and
let D = diag{d1, d2, · · · , dn}, di > 0. Clearly
[ 1 1 . . . 1 ]T � 0 is a common eigenvector of
D−1AD and D−1BD, relative to rA and rB . Thus
[ d1 d2 · · · dn ]T � 0 is a common eigenvector of
A and B, associated with their maximal eigenvalues.
Conversely, suppose that A and B have a common
eigenvector v = [ v1 v2 . . . vn ] > 0. As A + B is
irreducible, (A+B)v = rA+Bv and v > 0 imply v� 0.
Moreover A,B 6= 0 together with rAv = Av 6= 0 and
rBv = Bv 6= 0 imply rA, rB > 0. Then [11] r−1

A A and
r−1
B B simultaneously reduce to row stochastic matrices

via the similarity induced by D = diag{d1, d2, · · · , dn}.

3. CANONICAL FORMS OF MATRIX PAIRS

A pair of n× n matrices (A,B) is said to be cogredient
to a pair (Ā, B̄) if there exists a permutation matrix P
such that Ā = PTAP and B̄ = PTBP .

Proposition 3.1 A pair of n×n nonnegative matrices
(A,B) is finite memory if and only if it is cogredient to a
pair of upper triangular nonnegative nilpotent matrices.

Proof Assume first that (A,B) is finite memory. Thus
A+B is a nilpotent and, a fortiori, a reducible matrix.
Consequently, there exists a permutation matrix P1 such
that

PT1 (A+B)P1 =
[
C11 C12

0 C22

]
.

As C11 and C22 are nilpotent, we can apply the above
procedure to both diagonal blocks. By iterating this
reasoning, we end up with one dimensional nilpotent di-
agonal blocks and, therefore, with an upper triangular
matrix PT (A+B)P = PTAP +PTBP . As PTAP and
PTBP are nonnegative, both of them are upper trian-
gular with zero diagonal. The converse is obvious.

The combinatorial structure of separable matrix pairs
is extremely simple, and easily determined as a conse-
quence of the following lemma.

Lemma 3.2 [1] Let A > 0 and B > 0 constitute a
separable pair; then A+B is a reducible matrix.

Proposition 3.3 A pair of n×n nonnegative matrices
(A,B) is separable if and only if there exists a permu-
tation matrix P such that PTAP and PTBP are con-
formably partitioned into block triangular matrices:

A11 ∗ ∗ ∗
A22 ∗ ∗

. . . ∗
Att

 ,

B11 ∗ ∗ ∗

B22 ∗ ∗
. . . ∗

Btt

 ,
(3.1)



where Aii 6= 0 implies Bii = 0 and the nonzero diagonal
blocks are irreducible.

Proof Assume that A and B is a separable pair. If
one of the matrices is zero, there is nothing to prove. In
case A and B are both nonzero, by the previous Lemma
there exists a permutation matrix P1 s.t.

PT1 AP1 + PT1 BP1 =
[
A11 A12

0 A22

]
+
[
B11 B12

0 B22

]
,

where Aii and Bii, i = 1, 2, are square submatrices. As
the nonnegative matrix pairs (Aii, Bii) are separable, we
apply the same procedure to both of them. By iteration,
we end up with a pair of matrices with the structure
(3.1). The converse is obvious.

We conclude this section by investigating the combinato-
rial structure of a nonnegative matrix pair with property
L, when one of the matrices is diagonal.

Lemma 3.4 Let M be an n×n nonnegative matrix such
that [Mr]ii = ([M ]ii)r, i = 1, 2, . . . , n, r = 0, 1, 2, . . ..
Then M is cogredient to a triangular matrix

Proof We prove first that M is reducible. If not, for
any pair (i, j) with i 6= j there exist integers h and k such
that [Mh]ij > 0, [Mk]ji > 0. Consequently we have
[Mh+k]ii ≥ [Mh]ij [Mk]ji + ([M ]ii)h+k > ([M ]ii)h+k,
which contradicts the assumption of the lemma. Next
we remark that (PTMP )r = PTMrP , for any permu-
tation matrix P and for any positive integer r. This
implies that the diagonal elements in (PTMP )r and in
Mr are connected by the same index permutation which
connects the diagonal elements in PTMP and in M . So,
we get [(PTMP )r]ii = [PTMrP ]ii = ([PTMP ]ii)r for
all nongative integers r and for i = 1, 2, . . . n. Now we
apply a cogredience transformation which reduces M to
a block triangular matrix

PTMP =
[
M11 M12

0 M22

]
and notice that, by the previous remark, both M1 and
M2 fulfill the hypothesis of the lemma. We iterate the
procedure until a triangular matrix is obtained.

Proposition 3.5 Let A = diag{a1, a2, . . . , an} be a non
negative matrix with ai 6= aj if i 6= j, and let B ≥ 0.
The following statements are equivalent:
i) (A,B) has property L; ii) B is cogredient to a
triangular matrix; iii) Λ(B) = {b11, b22, . . . , bnn}
Proof (i) ⇒ (ii) Property L implies [5] that there
exists a suitable ordering (µ1, µ2, . . . , µn) of Λ(B) such
that, for all h, tr(Ah 1B) =

(
h+1
h

)∑n
i=1 a

h
i µi On the

other hand we have tr(Ah 1B) = (h+1)tr(AhB) = (h+
1)
∑n
i=1 a

h
i bii, As a consequence, we obtain

∑
i a
h
i (µi −

bii) = 0, h = 0, 1, . . . , n − 1, and, taking into account

that [ahii] is a nonsingular Vandermonde matrix, µi =
bii, i = 1, 2, . . . n.

(ii)⇒ (iii) The assumption on Λ(B) implies
∑n
i=1 b

r
ii =

tr(Br) =
∑n
i=1[Br]ii, r = 0, 1, . . . On the other hand,

since B is nonnegative, we have also brii ≤ [Br]ii. Hence
brii = [Br]ii, r = 0, 1, . . . 1 = 1, 2, . . . , n and B is cogre-
dient to a triangular matrix by Lemma 3.4.

(iii)⇒ (i) Obvious.

Lemma 3.4 and Proposition 3.5 above generalize [9] to
the case when the diagonal elements of A are nonnec-
essarily distinct. The proofs will be omitted for sake of
brevity.

Lemma 3.4 and Prop. 3.5 generalize [9] to the case
when the diagonal elements of A need not be distinct.

Lemma 3.6 Let n = ν1 + . . .+νk, and suppose that the
n × n nonnegative matrix M is partitioned into blocks
Mij of dimension νi×νj . If the blocks Mii are irreducible
and tr([Mr]ii) = tr((Mii)r) i = 1, 2, ..., k, r = 0, 1, ..., M
is cogredient to a block-triangular matrix whose diagonal
blocks coincide (except for the order) with the Mii’s.

Proposition 3.7 Let A = diag{a1Iν1 , . . . , akIνk
} ≥ 0

be a block diagonal matrix, with ai 6= aj if i 6= j, and let
B ≥ 0 be partitioned, conformably with the partition of
A, into blocks Bij . The following are equivalent:
i) (A,B) has property L; ii) det(zIn − B) =∏k
i=1 det(zIνi

−Bii); iii) there exists a permutation ma-
trix P such that PTAP = diag{Â11, Â22, . . . , Âpp}, and

PTBP =


B̂11 B̂12 . . . B̂1p

B̂22 B̂2p

. . .
...

B̂pp

 ,
where the Âii’s are scalar matrices and each B̂ii’s is a
diagonal block of the Frobenius normal form of Bjj , for
some j.
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