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Abstract

Homogeneous 2D positive systems are 2D state space models whose variables are
always nonnegative and, consequently, are described by a pair of nonnegative square
matrices (A,B). In the paper, the properties of these pairs are discussed both in the
general case and under particular assumptions like finite memory, separability and
property L.
Various aspects of the positive asymptotic dynamics are considered; in particular,
sufficient conditions are provided guaranteeing that the local states are eventually
strictly positive. Finally, some results on the convergence of the states towards a
constant asymptotic distribution are presented.
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1 Introduction

A positive system is a system in which the state variables are always positive (or at least
nonnegative) in value. The positivity constraint arises quite naturally when modelling
real systems, whose state variables represent quantities that are intrinsically nonnegative,
such as pressures, concentrations, population levels, etc..
Even though some interesting topics have not been clarified yet, and constitute active
areas of research, the major aspects of linear 1D positive systems are already well un-
derstood. The cornerstone of the 1D theory is a family of results on positive matrices
that essentially draw on the celebrated Perron-Frobenius theorem [Berman Plemmons,
1979]. The spectral characterization of irreducible and primitive matrices allows, in par-
ticular, for a complete description of the long term performance, based on the dominant
eigenvalues and the associated nonnegative eigenvectors.
In this paper we consider homogeneous positive 2D systems, described by the equation:

x(h+ 1, k + 1) = A x(h, k + 1) +B x(h+ 1, k), (1.1)

where the doubly indexed local state sequence x(·, ·) takes values in the positive cone
Rn

+ := {x ∈ Rn : xi ≥ 0, i = 1, 2, ..., n}, A and B are nonnegative n × n matrices, and
the initial conditions are assigned by specifying the nonnegative values of the local states
on the separation set C0 := {(i,−i) : i ∈ Z}.
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There are essentially two reasons why the investigation of homogeneous positive sys-
tems is more difficult in 2D than in 1D case. First of all, the dynamics of a 2D system
(1.1) is determined by the matrix pair (A,B) and, as well known, the algebraic tools we
use for studying a pair of linear transformations are not as simple and effective as those
available for the analysis of a single linear transformation. In particular, a natural 2D
extension of the Perron-Frobenius theorem is not immediately apparent. On the other
hand, the free evolution is strongly influenced by the choice of the nonnegative initial
local states and, most of all, by the support of the states sequence on C0.

Our aim is to explore the properties of nonnegative matrix pairs and the way they
influence the asymptotic behaviour of the associated homogeneous 2D systems. More
precisely, in sections 2 and 3 we consider the main features of the characteristic poly-
nomial of nonnegative matrix pairs both in the general case and for pairs endowed with
particular structures. In section 4 we analyse under which conditions on the initial local
states and on the pair (A,B) the states x(h, k) eventually become strictly positive. Fi-
nally, in section 5, some preliminary results on the convergence of the states towards a
constant asymptotic distribution are presented.

Before proceeding, it is convenient to introduce some notation for distinguishing
positive (and nonnegative) vectors and matrices. If M = [mij ] is a matrix (in particular,
a vector), we write

i) M � 0 (M strictly positive), if mij > 0 for all i, j;

ii) M > 0 (M positive or strictly nonnegative), if mij ≥ 0 for all i, j, and mhk > 0
for at least one pair (h, k);

iii) M ≥ 0 (M nonnegative), if mij ≥ 0 for all i, j.

Two matrices M and N , with the same dimensions, are said to have the same zero
pattern if mij = 0 implies nij = 0 and vice versa.
In the following developments, moreover, we shall use some terminology borrowed from
the semigroup theory. Given the alphabet Ξ = {ξ1, ξ2}, the free monoid Ξ∗ with base Ξ
is the set of all words

w = ξi1ξi2 · · · ξim , m ∈ Z, ξih ∈ Ξ.

The integer m is called the length of the word w and denoted by |w|, while |w|i represents
the number of occurencies of ξi in w, i = 1, 2. If v = ξj1ξj2 · · · ξjp is another element of
Ξ∗, the product is defined by concatenation

wv = ξi1ξi2 · · · ξimξj1ξj2 · · · ξjp .

This produces a monoid with 1 = ∅, the empty word, as unit element. Clearly, |wv| =
|w|+ |v| and |1| = 0.
C〈ξ1, ξ2〉 is the algebra of polynomials in the noncommuting indeterminates ξ1 and ξ2.
For each pair of matrices A,B ∈ Cn×n, the map ψ defined on {1, ξ1, ξ2} by the assigne-
ments ψ(1) = In, ψ(ξ1) = A and ψ(ξ2) = B, uniquely extends to an algebra morphism
of C〈ξ1, ξ2〉 into Cn×n. The ψ-image of a polynomial ℘(ξ1, ξ2) ∈ C〈ξ1, ξ2〉 is denoted by
℘(A,B).
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2 Characteristic polynomial of a nonnegative matrix pair

For a given matrix pair (A,B) we define the characteristic polynomial

∆A,B(z1, z2) := det(I −Az1 −Bz2), (2.1)

and denote by V(∆A,B) the corresponding variety, i.e. the set of all (complex) solutions of
the equation ∆A,B(z1, z2) = 0. Several properties of the pair (A,B), like finite memory,
separability and property L, that affect the dynamical behaviour of system (1.1), can be
completely described in terms of its characteristic polynomial. Furthermore, the variety
V(∆A,B) is the keystone of the stability analysis [Fornasini Marchesini, 1980] and, in
some instances [Fornasini 1990], allows to establish the existence of a vector which plays
the same role as the Perron-Frobenius eigenvector in the 1D case.
Our concern in this section is to show how some constraints on the zero pattern of a
nonnegative pair reflect into the structure of the variety V(∆A,B).
As well known [Minc, 1988], a nonnegative n× n matrix M , n ≥ 2, is called reducible if
there exists a permutation matrix P such that

P TMP =
[
M11 M12

0 M22

]
, (2.2)

where M11 and M22 are square submatrices. Otherwise M is irreducible. Whereas there
are positions (i, j) where all powers Mν of a reducible matrix have zero entries, this is
never true for an irreducible matrix.
The zero patterns of the powers Mν of an irreducible matrix M can exhibit different
behaviours for large values of ν. If there exists an integer N such that Mν >> 0 for
all ν ≥ N , then M is called primitive; otherwise there exist positive integers h and tij ,
i, j = 1, 2, ..., n, such that for all ν ≥ tij , [Mν ]ij , the (i, j)-th entry of Mν , is positive if and
only if ν = tij+`h. The two cases admit a spectral characterization. Actually, a primitive
matrix M has a simple real positive eigenvalue r, whose module is strictly greater than
the module of any other eigenvalue of M . On the other hand, if M is not primitive, its
spectrum includes h simple eigenvalues of maximal module, i.e. r, rej

2π
h , ..., rej

2π
h

(h−1),
r > 0. The integer h is called the imprimitivity index of M .

The following proposition shows that, under rather mild assumptions on a nonnega-
tive matrix pair (A,B), some properties of the variety V(∆A,B) strictly resemble those
of the spectrum of a primitive matrix.

Proposition 2.1 Let A > 0 andB > 0 be n×nmatrices, whose sum A+B is irreducible,
with maximal eigenvalue r. Then the variety V(∆A,B) intersects the polydisc

Pr−1 := {(z1, z2) : |z1| ≤ r−1, |z2| ≤ r−1} (2.3)

only in (r−1, r−1) and in some points of its distinguished boundary {(z1, z2) : |z1| =
r−1, |z2| = r−1}; moreover, (r−1, r−1) is a regular point of the variety.

Proof Let (ρ1e
jθ1 , ρ2e

jθ2), ρi ≥ 0, i = 1, 2, be a point of V(∆A,B). Then there exists a
nonzero vector v ∈ Cn such that

(ρ1e
jθ1A+ ρ2e

jθ2B)v = v, (2.4)
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and it’s clear that
(ρ1A+ ρ2B)|v| ≥ |v|, (2.5)

where |v| denotes the real vector whose i-th component is |vi|, i = 1, 2, ..., n.
Assume now that (ρ1e

jθ1 , ρ2e
jθ2) belongs to Pr−1 , so that

ρ1 ≤ r−1 and ρ2 ≤ r−1. (2.6)

simultaneously hold. Then (2.5) and (2.6) imply (A+B)|v| ≥ r |v|. Since |v| is a positive
vector and A+B is an irreducible matrix with maximal eigenvalue r, then |v| is a strictly
positive eigenvector of A+B corresponding to r [Minc, 1988]. If in (2.6) ρ1 and ρ2 were
strictly less than r−1, the strict positivity of |v| and the assumption A,B > 0 would
imply

|v| = r−1(A+B)|v| > (ρ1A+ ρ2B)|v| ≥ |v|, (2.7)

a contradiction. Therefore, if (ρ1e
jθ1 , ρ2e

jθ2) belongs to Pr−1 , we must have

ρ1 = ρ2 = r−1. (2.8)

To prove the second part of the proposition, namely that (r−1, r−1) is a regular
point, we show that the partial derivatives ∂∆A,B/∂z1 and ∂∆A,B/∂z2 are nonzero when
evaluated at (r−1, r−1). In fact, we have

∂

∂z1
det(I −Az1 −Bz2) = −

n∑
i,j=1

(−1)i+j det
(
I −Az1 −Bz2)(i|j)

)
aij

= − tr
(
AT adj(I −Az1 −Bz2)

)
, (2.13)

where (I−Az1−Bz2)(i|j) denotes the (n−1)×(n−1) matrix obtained from (I−Az1−Bz2)
by deleting the i-th row and the j-th column.
Since r is a nonzero eigenvalue of A+B, we have also(

I − (A+B)r−1
)
adj
(
I − (A+B)r−1

)
= rnIn det(rI − (A+B)) = 0,

that is, each nonzero column of adj(I − (A+B)r−1) is an eigenvector corresponding to
r and thus it is either strictly positive or strictly negative.
Applying the same reasonings to AT and BT , the above conclusions hold also for the
columns of adj(I − (A+B)T r−1), that is for the rows of adj(I − (A+B)r−1).

Thus each row and column of adj (I − (A + B)r−1) is either strictly positive or
negative or zero, and at least one of the rows and of the columns is nonzero. It follows
that adj (I − (A + B)r−1) is either strictly positive or strictly negative and, as A > 0,
at least one row of AT adj(I − (A + B)r−1) is strictly positive or strictly negative. So
(2.13), evaluated at (z1, z2) = (r−1, r−1), is nonzero. The same reasoning proves also the
inequality ∂∆A,B/∂z2 |(z1,z2)=(r−1,r−1) 6= 0
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3 Finite memory, separability and property L

When dealing with a generic (i.e. nonnecessarily positive) 2D system, some natural as-
sumptions on the structure of the characteristic polynomial allow to single out important
classes of systems, whose dynamical behaviour exhibits very peculiar, distinguishing fea-
tures. As an example, finite memory systems [Bisiacco, 1985], i.e. 2D systems whose
state evolution goes to zero in a finite number of steps, are characterized by the condition

∆A,B(z1, z2) = 1. (3.1)

On the other hand, separable systems [Fornasini Marchesini Valcher, 1993], that are
usually viewed as the simplest examples of IIR 2D systems, are those which satisfy the
factorization property

∆A,B(z1, z2) = r(z1)s(z2), (3.2)

for suitable polynomials r(z1) ∈ R[z1] and s(z2) ∈ R[z2].
A more general class, which encompasses both finite memory and separable systems,
refers to the so-called property L [Motzkin Taussky, 1952 and 1955], of the matrix pair
(A,B), and corresponds to the possibility of factorizing ∆A,B(z1, z2) into the product of
linear factors, as follows

∆A,B(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2). (3.3)

The nonnegativity hypothesis introduces further constraints on the structure of the above
systems, we will explore in some detail. To this purpose, we introduce the Hurwitz
products of a matrix pair, that naturally arise in the analysis of the local state evolution.
The Hurwitz products of two square matrices A and B are inductively defined as

Ai 0B = Ai, A0 jB = Bj (3.4)

and, when i and j are both greater than zero,

Ai jB = A(Ai−1 jB) +B(Ai j−1B). (3.5)

Basing on (3.4) and (3.5), we easily see that

Ai jB =
∑

w ∈ Ξ∗

|w|1=i,|w|2=j

w(A,B).

Note that the sequence of local states x(·, ·) one obtains by assuming zero initial condi-
tions on C0, except at (0, 0), is represented by the power series

X(z1, z2) =
∑
h,k≥0

x(h, k)zh1 z
k
2 = (I −Az1 −Bz2)−1x(0, 0)

=
∑
h,k≥0

Ah kB x(0, 0)zh1 z
k
2 . (3.6)
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As a consequence, the local state at (h, k)

x(h, k) = Ah kB x(0, 0) =
∑

w ∈ Ξ∗

|w|1=h, |w|2=k

w(A,B) x(0, 0)

has to be interpreted as the sum of the elementary contributions along all paths con-
necting (0, 0) to (h, k) in the two-dimensional grid [Fornasini Marchesini, 1993].

For 2D finite memory systems there is only a finite number of nonzero Hurwitz
products. This property and the positivity constraint allow for a simple characterization
of the finite memory property, provided by the following proposition.

Proposition 3.1 [Finite memory] For a pair of n× n nonnegative matrices (A,B), the
followings are equivalent

i) ∆A,B(z1, z2) = 1;

ii) A+B is nilpotent;

iii) there exists a permutation matrix P such that P TAP and P TBP are both upper
triangular matrices with zero diagonal.

Proof i)⇒ ii) Letting z1 = z2 = z in ∆A,B(z1, z2) = 1, we get det(I− (A+B)z) = 1,
which implies the nilpotency of A+B.

ii)⇒ iii) Since (A+B)ν = 0, for all ν ≥ n, A+B is reducible and, consequently, there
exists a permutation matrix P1 such that

P T1 (A+B)P1 =
[
C11 C12

0 C22

]
.

As C11 and C22, in turn, are nilpotent, we can apply the above procedure to both diagonal
blocks. By iterating this reasoning, we end up with one dimensional nilpotent diagonal
blocks and, therefore, with an upper triangular matrix, as follows

P T (A+B)P = P TAP + P TBP =

 0 ∗ ∗
. . . ∗

0

 . (3.7)

As P TAP and P TBP are nonnegative, both of them are upper triangular with zero
diagonal.

iii)⇒ i) Obvious

As a consequence of iii), if we perform a permutation on the basis of the local state
space, so as to reduce matrices A and B into upper triangular form, it is easy to realize
that, for any initial global state on C0, the last t components of the local states on the
separation set Ct = {(h, k) : h+ k = t} are identically zero.

Remark In the general case, the finite memory condition depends on the nilpotency
of all linear combinations αA + βB, α, β ∈ C [Fornasini Marchesini Valcher, 1993],
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whereas the nonnegativity assumption allows to consider only one linear combination
A+B. Moreover, while for an arbitrary finite memory pair we can only guarantee that
Ai jB = 0, for i+ j ≥ n, in the nonnegative case all matrix products w(A,B), w ∈ Ξ∗,
are zero when |w| ≥ n.

Proposition 3.2 [Separability] For a pair of n × n matrices A > 0 and B > 0, the
followings are equivalent:

i) ∆A,B(z1, z2) = r(z1)s(z2);

ii) tr w(A,B) = 0, for all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2;

iii) w(A,B) is nilpotent, for all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2.

Proof i)⇔ ii) To prove this equivalence we refer to a characterization of separability,
presented in [Fornasini Marchesini Valcher, 1993], which states that (A,B) is separable
if and only if

tr(Ai jB) = 0, ∀ (i, j), i > 0, j > 0. (3.8)

As tr (Ai jB) =
∑
|w|1=i,|w|2=j tr w(A,B), and all the words w(A,B) are nonnegative,

(3.8) implies ii). The converse is always true.

ii)⇔ iii) By assumption ii), for each w ∈ Ξ∗, with |w|1 > 0 and |w|2 > 0, we have

tr(w(A,B))k = 0, k = 1, 2, ...,

which implies the nilpotency of w(A,B).
Conversely, the nilpotency of w(A,B) trivially implies that tr w(A,B) = 0

Separable nonnegative pairs can be reduced to two different canonical forms. One
is obtained by resorting to permutation matrices, i.e. to a reordering of the basis of
the local state space, while the other is based on a (complex) similarity transformation,
namely a more general change of basis. To construct the canonical forms we need the
following Lemma:

Lemma 3.3 Let A > 0 and B > 0 constitute a separable pair; then A+B is a reducible
matrix.

Proof Consider any w = ξi1ξi2 · · · ξim ∈ Ξ∗, with |w|1 > 0 and |w|2 > 0. Because of
the characterization ii) of separability given in Proposition 3.2, each diagonal element of
w(A,B) is zero, and therefore for any sequence of integers `1, `2, ..., `m ∈ {1, 2, ..., n}

[ψ(ξi1)]`1`2 [ψ(ξi2)]`2`3 ...[ψ(ξim)]`m`1 = 0. (3.9)

As A and B are nonzero, there exist entries [A]ij > 0 and [B]hk > 0. If A + B were
irreducible, there would be integers p and q such that [(A+B)p]jh > 0 and [(A+B)q]ki >
0. Consequently

[ψ(ξt1)]j`1 [ψ(ξt2)]`1`2 ...[ψ(ξtp)]`p−1h > 0

and
[ψ(ξs1)]kr1 [ψ(ξs2)]r1r2 ...[ψ(ξsq)]rq−1i > 0
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for appropriate choices of ξtν and ξsµ and of the indexes `ν and rµ. Therefore

[A]ij [ψ(ξt1)]j`1 [ψ(ξt2)]`1`2 ...[ψ(ξtp)]`p−1h [B]hk [ψ(ξs1)]kr1 [ψ(ξs2)]r1r2 ...[ψ(ξsq)]rq−1i > 0,

which contradicts (3.9)

Proposition 3.4 Let (A,B) be an n× n nonnegative matrix pair, then the followings
are equivalent:

i) ∆A,B(z1, z2) = r(z1)s(z2);

ii) there exists a permutation matrix P such that P TAP and P TBP are conformably
partitioned into block triangular matrices

P TAP =


A11 ∗ ∗ ∗

A22 ∗ ∗
. . . ∗

Att

 P TBP =


B11 ∗ ∗ ∗

B22 ∗ ∗
. . . ∗

Btt

 , (3.10)

where Aii 6= 0 implies Bii = 0. It entails no loss of generality assuming that the
nonzero diagonal blocks in P TAP and P TBP are irreducible;

iii) there exists a nonsingular matrix T such that Â = T−1AT and B̂ = T−1BT are
upper triangular matrices and âii 6= 0 implies b̂ii = 0.

Proof If one of the matrices is zero, the proposition is trivially true, so we will confine
ourselves to the case of A and B both nonzero.

i)⇒ ii) By the previous Lemma, there exists a permutation matrix P1 s.t.

P T1 (A+B)P1 =
[
C11 C12

0 C22

]
and, consequently,

P T1 AP1 + P T1 BP1 =
[
A11 A12

0 A22

]
+
[
B11 B12

0 B22

]
,

where Aii, Bii and Cii, i = 1, 2, are square submatrices. As the nonnegative matrix pairs
(Aii, Bii) are separable, we can apply the same procedure as before to both of them. By
iterating this method we end up with a pair of matrices with the structure (3.10).

ii) ⇒ iii) Let P be a permutation matrix that reduces A and B as in (3.10). Re-
calling that every square matrix is similar to an upper triangular matrix, consider the
matrix Q = diag{Q11, Q22, ..., Qtt}, where Qii are nonsingular square matrices such that
Q−1
ii (Aii + Bii)Qii is upper triangular. Then T = PQ is the nonsingular matrix we are

looking for.

iii)⇒ i) Obvious

A pair of n×n matrices (A,B) is said to have property L if the eigenvalues of A and
B can be ordered into two n-tuples

Λ(A) = (λ1, λ2, ..., λn) and Λ(B) = (µ1, µ2, ..., µn) (3.11)
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such that, for all α, β in C, the spectrum of Λ(αA+ βB) is given by

Λ(αA+ βB) = (αλ1 + βµ1, αλ2 + βµ2, ..., αλn + βµn). (3.12)

In other words, property L means that the spectrum of any linear combination of A
and B is the linear combination of the spectra Λ(A) and Λ(B). Under appropriate
assumptions, nonnegativity of A and B allows for some precise statements concerning
the coupling of their maximal eigenvalues.

Proposition 3.5 [Property L] Let (A,B) be a nonnegative n×n matrix pair, endowed
with property L w.r.t. the orderings (3.11), and assume A+B irreducible.
Then there exists a unique index i such that

λi, µi ∈ R+, λi ≥ |λj |, µi ≥ |µj |, j = 1, 2, ..., n,

and, for each α, β > 0, αλi + βµi is the maximal positive eigenvalue of the irreducible
matrix αA+ βB.

Proof Denoting by ν1(α), ν2(α), ..., νn(α) the eigenvalues of αA + (1 − α)B, property
L implies that

νj(α) = αλj + (1− α)µj , j = 1, 2, ..., n. (3.13)

Moreover, for all α ∈ (0, 1), the matrix αA+ (1− α)B, having the same zero-pattern as
A + B, is irreducible and hence has a simple maximal eigenvalue νmax(α). We aim to
prove that there exists an integer i such that for all α, νmax(α) = αλi + (1−α)µi, where
λi and µi are real positive eigenvalues of A and B, respectively.
Note first that the characteristic polynomial

∆A,B(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2). (3.14)

belongs to R[z1, z2]. So, if one factor 1 − λiz1 − µiz2 has not real coefficients, also
1 − λ̄iz1 − µ̄iz2 appears in (3.14). That amounts to say that, when a nonreal pair
(λj , µj) appears in (3.11), also the conjugate pair (λ̄j , µ̄j) does, and hence both νj(α) =
αλj + (1 − α)µj and νk(α) = αλ̄j + (1 − α)µ̄j belong to Λ(αA + (1 − α)B). Moreover,
νj(α) is real if and only if νk(α) is, and they take the same value. As νmax(α), 0 < α < 1,
has to be simple, it cannot coincide with any eigenvalue νj(α) associated with a nonreal
pair (λj , µj).
Therefore, an integer j(α) exists, possibly depending on α, such that (λj , µj) is a real
pair and

νmax(α) = νj(α)(α). (3.15)

Because of the linear structure of (3.13), we can determine finitely many points, α1, α2, ...,
αr, 0 < α1 < α2 < ... < αr < 1, with the property that the index j(α) in (3.15) remains
constant on each interval (αµ, αµ+1), µ = 1, 2, ..., r − 1, and takes different values on
different intervals. If r were greater than zero, νmax(αµ), µ = 1, 2, ..., r, would be a
multiple eigenvalue of the irreducible matrix αA + (1 − α)B, a contradiction. So r has
to be zero and j(α) takes in (0, 1) a unique value i.
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Next, we show that λi and µi are maximal eigenvalues of A and B. Suppose, for instance,
that A possesses a positive eigenvalue λh > λi. As the eigenvalues of αA+ (1− α)B are
continuous functions of α, |νh(α)| would be greater than |νi(α)| for all values of α in a
suitable neighbourhood of 1, a contradiction.
Finally, letting ᾱ = α/(α + β) and 1 − ᾱ = β/(α + β), we have that ᾱλi + (1 − ᾱ)µi is
the maximal positive eigenvalue of ᾱA+ (1− ᾱ)B = 1

α+β (αA+ βB) and, consequently,
αλi + (1− α)µi is the maximal positive eigenvalue of αA+ βB

Example 1 The pair

A =
[

0 1/2
1 1/2

]
B =

[
2/5 3/10
2/5 4/5

]
is endowed with property L w.r.t. the orderings

Λ(A) = (1, −1/2), Λ(B) = (1, 1/5).

For each α > 0 and β > 0, the maximal eigenvalue α + β of αA + βB is obtained as a
linear combination of the maximal eigenvalues of A and B. Note that A+ B is strictly
positive, and hence irreducible. When we drop the irreducibility assumption, as, for
instance, with the pair

A =
[

1 2
0 3

]
B =

[
2 0
0 1

]
,

the maximal eigenvalues of A and B are not necessarily coupled w.r.t. the orderings
of the spectra, and hence do not appear in the same linear factor of the characteristic
polynomial ∆A,B(z1, z2).

4 Strictly positive asymptotic dynamics

An issue that arises quite naturally when considering the asymptotic behaviour of positive
systems is that of guaranteeing that the states eventually become strictly positive vectors.
For 1D positive systems

x(h+ 1) = A x(h), x(0) > 0,

the primitivity of the system matrix A [Minc, 1988] is necessary and sufficient for x(h)
beeing strictly positive when h is large enough.
For 2D systems described as in (1.1), we say that the state evolution eventually becomes
strictly positive if there exists a positive integer T such that x(h, k) � 0 for all (h, k),
h+ k ≥ T . Clearly it’s impossible that every nonzero initial global state X0 = {x(i,−i) :
i ∈ Z} produces a strictly positive asymptotic dynamics. Actually, when X0 includes
only a finite number of nonzero states, the support of the free evolution is included in a
quarter plane causal cone of Z× Z.
As a consequence, we have to take into account not only the properties of the matrix
pair (A,B), but also the zero-pattern of the nonnegative initial global state X0, and we
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will confine our attention to global states which satisfy the following condition: there
exists an integer M such that

M∑
h=1

x(i+ h,−i− h) > 0, ∀i ∈ Z. (4.1)

In other words, the maximal distance between two consecutive positive states on the
separation set C0 is upper bounded by M .

In the sequel we will provide a set of sufficient conditions on the pair (A,B) guaran-
teeing a strictly positive asymptotic dynamics for all initial global states satisfying (4.1).

Proposition 4.1 Suppose that A > 0 and B > 0 are n× n positive matrices and there
exists (i, j) such that Ai jB is primitive. Then, for each initial global state satisfying
(4.1), there exists a positive integer T such that x(h, k)� 0 whenever h+ k ≥ T .

Proof If Ai jB is primitive, then (Ai jB)p � 0 for some p > 0, and therefore
Api pjB ≥ (Ai jB)p � 0. So in the sequel we will assume that there exists (h, k) s.t.
Ah kB is strictly positive. If we suppose x(0, 0) > 0, we have

x(h, k) ≥ (Ah kB) x(0, 0)� 0,

and, as A and B are nonzero matrices, both x(h + 1, k) and x(h, k + 1) are nonzero
vectors. Consequently, if M denotes the maximal distance between two consecutive
nonzero local states on C0, the maximal distance on Ch+k+1 is not greater than M − 1.
An inductive argument shows that all local states on C(M−1)(h+k+1) are nonzero, and,
recalling Ah kB � 0, we see that all local states on CM(h+k+1)−1 are strictly positive.
Consequently, we can choose T = M(h+ k + 1)− 1

Remark The existence of a primitive Hurwitz productAi jB implies that, for a suitable
p > 0, (Ai jB)p, and hence (A + B)(i+j)p, are strictly positive. Therefore A + B is
primitive. The converse in general is not true, as shown by the following example. The
pair of irreducible matrices

A =

 0 1 0
0 0 1
1 0 0

 B =

 0 0 1
1 0 0
0 1 0

 (4.2)

has a primitive sum. However, as B = A2, each Hurwitz product can be expressed as
Ah kB =

(h+k
h

)
Ah+2k, and hence is not primitive.

Corollary 4.2 If A > 0 and B > 0 are n× n matrices and there exists a word w ∈ Ξ∗

s.t. w(A,B) is primitive, then for all initial global states satisfying (4.1) the asymptotic
behaviour of system (1.1) is strictly positive.

Proof If |w|1 = i and |w|2 = j, then Ai jB ≥ w(A,B) is primitive too and we can
resort to Proposition 4.1

In order to apply Corollary 4.2 above, in some cases it is enough to have at disposal
a quite poor information on the zero pattern of A and B. For instance it’s sufficient to
know that A is primitive and B > 0.
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The following proposition shows that, when dealing with a pair of irreducible matrices,
it is enough to check whether their imprimitivity indexes are coprime.

Proposition 4.3 Assume that A and B are irreducible matrices with imprimitivity
indexes hA and hB. If g.c.d.(hA, hB) = 1, then there exists w ∈ Ξ∗ such that w(A,B) is
primitive.

Proof The proof depends on the following properties of a pair of n × n nonnegative
matrices R and S.

1) If R is irreducible, with imprimitivity index hR, and S = diag{S11, S22, ..., Sνν},
Sii strictly positive, i = 1, 2, ..., ν, then SRS is irreducible, and its imprimitivity
index divides hR.

2) Let R be an n× n nonnegative block matrix,

R =


R11 R12 ... R1ν

R21 R22 ... R2ν

...
Rν1 Rν2 ... Rνν


whose diagonal blocks Rii are square matrices. If all blocks Rij are either zero or
strictly positive, (i.e. Rij > 0⇒ Rij � 0) and R̃ is a ν × ν matrix whose (i, j)-th
element R̃ij is non zero if and only if Rij � 0, then R̃ is irreducible if and only if
R is. When this is the case, R and R̃ have the same imprimitivity indexes.

The proofs of the above properties are rather lengthy but elementary, and will be omitted
for sake of brevity.
If hA and/or hB are unitary, the result of Proposition 4.3 is obvious. So, assume that
both hA and hB are greater than one. Let (A0, B0) := (A,B) and suppose, without loss
of generality, that A0 is in superdiagonal canonical form [Minc, 1988]

A0 =


0 A12 0 · · · 0 0
0 0 A23 · · · 0 0
...

. . .
...

0 0 · · · 0 AhA0
−1,hA0

AhA0
1 0 · · · 0 0

 , hA0 = hA.

STEP 1 : If N is large enough, AhA0
N is block diagonal, with strictly positive diagonal

blocks. Moreover the matrix

B̃1 := AhA0
NB0A

hA0
N ,

when partitioned conformably with A0, is constituted by blocks which are either zero
or strictly positive and, by property 1), its imprimitivity index hB̃1

divides hB0 . As
property 2) implies hB̃1

≤ hA0 , and hA0 and hB̃1
are coprime, one gets hB̃1

< hA0 .

If hB̃1
= 1, B̃1 is primitive and there exists a strictly positive power of B̃1, which proves

the theorem.
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STEP 2 : If hB̃1
> 1, we introduce the matrix

Ã1 := AhA0
NA0 A

hA0
N .

It has the same zero block pattern of A0 and B̃1 and all its nonzero blocks are strictly
positive. Therefore its imprimitivity index is hÃ1

= hA0 and (hB̃1
, hÃ1

) = 1. The
matrices A1 and B1, of dimension hA0 × hA0 , obtained by substituting the zero/nonzero
blocks of Ã1 and B̃1 by 0 and 1 respectively, have imprimitivity indices hA0 and hB̃1

.
Possibly using a cogredience transformation [Minc, 1988] on both A1 and B1, we can
assume that B1 is in superdiagonal block canonical form

B1 =


0 B12 0 · · · 0 0
0 0 B23 · · · 0 0
...

. . .
...

0 0 · · · 0 BhB1
−1,hB1

AhB1
1 0 · · · 0 0

 , hB1 = hB̃1
,

and proceed as in step 1. Namely we consider a large N such that B
hB1

N
1 is block

diagonal, with strictly positive diagonal blocks, and introduce

Ã2 := B
hB1

N
1 A1B

hB1
N

1 .

Now hÃ2
divides hA1 , and hÃ2

≤ hB1 . Moreover, hÃ2
= hB1 would imply that hA1

and hB1 , and hence hÃ1
and hB̃1

, have a common factor. Consequently, hÃ2
< hB1 . If

hÃ2
= 1, Ã2 and hence the matrix product

(AhA0
NB0A

hA0
N )hB1

N (AhA0
NB0A

hA0
N )(AhA0

NB0A
hA0

N )hB1
N

are primitive.
If hÃ2

> 1, we go through a new step of the procedure, and so on. Clearly, as

hA = hA0 > hB̃1
= hB1 > hÃ2

= hA2 > ...,

in a finite number of steps the procedure terminates with a matrix whose imprimitivity
index is unitary, and therefore with a primitive word w(A,B)

Example 2 The coprimeness assumption of the above proposition is by no means
necessary for guaranteeing the existence of a strictly positive w(A,B). Consider, for
instance, the pair

A =


0 1 1 0
0 0 0 1
0 0 0 1
1 0 0 0

 B =


0 1 0 0
0 0 1 1
1 0 0 0
1 0 0 0

 .
Both matrices are irreducible, with imprimitivity index 3, and it’s easy to check that
w(A,B) = ABABABAB is strictly positive.
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A somewhat complementary point of view underlies the following proposition, where
sufficient conditions are given ensuring that, for all w ∈ Ξ∗, w(A,B) is not primitive.

Proposition 4.4 Suppose that A ≥ 0 and B ≥ 0 are simultaneously triangularizable
by a similarity transformation

T−1AT =


λ1 ∗ ∗ ∗
0 λ2 ∗ ∗

. . . ∗
0 λn

 T−1BT =


µ1 ∗ ∗ ∗
0 µ2 ∗ ∗

. . . ∗
0 µn

 .
Suppose moreover that λi, µi are the maximal eigenvalues of A and B respectively, and
λj , µj , j 6= i, satisfy |λj | = λi, |µj | = µi. Then, for all w ∈ Ξ∗, w(A,B) is not primitive.

Proof For each word w ∈ Ξ∗, the spectrum of w(A,B) is given by

Λ(w(A,B)) = (w(λ1, µ1), w(λ2, µ2), ..., w(λn, µn)),

and |w(λj , µj)| = w(λi, µi). As the spectrum of w(A,B) includes at least two eigenvalues
of maximal module, w(A,B) cannot be primitive

Example 3 Matrices A and B in (4.2) commute and, therefore are simultaneously trian-
gularizable. As the eigenvalues of both matrices have unitary modules, the assumptions
of Proposition 4.4 are fulfilled. So, none of the words w(A,B), w ∈ Ξ∗, is primitive,
according to the remark of Proposition 4.1. When (4.1) holds, the same matrices pro-
vide also an example of a 2D positive system with irreducible matrices A and B, and a
nonstrictly positive asymptotic dynamics. Actually, assuming on C0 a periodic pattern
x(i,−i) = x(i+ 3,−i− 3), i ∈ Z, with

x(0, 0) = [ 1 0 0 ]T , x(1,−1) = [ 0 1 0 ]T , x(2,−2) = [ 0 0 1 ]T ,

one easily checks that no local state x(h, k), h+ k ≥ 0, is strictly positive.

5 Further aspects of the asymptotic dynamics

The problems that will be addressed in this section concern some aspects of the two-
dimensional dynamics which entail a finer analysis of the asymptotic behaviour. Indeed
our interest here does not merely concentrate on nonzero patterns; it involves also the
values of the local state and a qualitative description of the vectors distribution along
the separation sets Ct = {(i, j) : i+ j = t} as t goes to infinity.
The first problem is that concerning the zeroing of state oscillations on the separation
sets Ct, as t→ +∞, when scalar positive systems are considered.

Definition 1 : A scalar (nonnecessarily nonnegative) global state X0 = {x(i,−i) : i ∈ Z}
has (finite) mean value µ if, given any ε > 0, there exists a positive integer N(ε) such
that, for all ν ≥ N(ε) and h ∈ Z∣∣∣∣∣1ν

h+ν−1∑
i=h

x(i,−i)− µ
∣∣∣∣∣ < ε. (5.1)
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The mean value will be denoted as µ = limν→∞ ν
−1∑x(i,−i), where the summation is

extended to all intervals of length ν, and the convergence is uniform w.r.t. the position
of the interval along the separation set C0.

The following properties are straightforward consequences of Definition 1:

i) if X0 has mean value µ, X0 − µ = {x(i,−i)− µ : i ∈ Z} has mean value zero;

ii) if X0 has mean value µ, Xt = {x(i, j), i+ j = t} has mean value (A+B)tµ;

iii) if X0 has mean value µ, then X0 is bounded, i.e. there exists a positive integer M
such that |x(i,−i)| < M, i ∈ Z;

iv) the set of scalar global states constitutes a complete subspace of `∞(Z), the space
of bilateral bounded sequences.

Given a bounded scalar global state X0 with mean value µ, the oscillation and (when
µ 6= 0) the oscillation rate of X0 are defined as

Osc(X0) := sup
i,j∈Z

|x(i,−i)− x(j,−j)| (5.2)

and
osc(X0) :=

Osc(X0)
|µ|

, (5.3)

respectively. The following technical lemma shows that a convexity assumption on the
pair (A,B) guarantees that the oscillations of the local states on the separation sets Ct
are damped down to zero by the 2D system structure, as t→ +∞.

Lemma 5.1 Assume that in the scalar 2D system (1.1) A and B are both positive,
and A+B = 1. Then, for all global states X0 satisfying the mean value condition (5.1),
Osc(Xt)→ 0 as t→∞.

Proof As the amplitude of the oscillations along the separation set is unaffected when a
constant value is added to all initial local states, there is no loss of generality in assuming
that X0, and hence Xt, t = 1, 2, . . ., have zero mean.

Let ε be an arbitrary real number in (0, 1). By the zero mean assumption, there
exists an integer N1 ≥ 0 such that, for all ν ≥ N1,

x̄(ν)(i,−i) :=
1

2ν + 1

ν∑
j=−ν

x(i+ j,−i− j) (5.4)

satisfy, for all i ∈ Z, |x̄(ν)(i,−i)| < ε/4.
In the sequel, we shall compare the asymptotic behaviour of (1.1) induced by the
original global state X0 = {x(i,−i), i ∈ Z} with that induced by the global state
X̄ (ν)

0 = {x̄(ν)(i,−i), i ∈ Z}.
When the initial conditions are provided by X̄ (ν)

0 , we get

|x̄(ν)(t+ h,−h)| ≤ ε

4

t∑
i=0

(
t

i

)
At−iBi =

ε

4
(5.5)
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for all t ≥ 0 and h ∈ Z. So, all local states x̄(ν)(i, j) in the half plane {(i, j), i + j ≥ 0}
have an absolute value less than ε/4 and, consequently, Osc(X̄ (ν)

t ) ≤ ε/2 for all t ≥ 0.
Moreover,

x̄(ν)(t+ h,−h) =
t+ν∑
i=−ν

x(i+ h,−i− h)
1

2ν + 1

ν∑
λ=−ν

(
t

i− λ

)
At−i+λBi−λ, (5.6)

where
( t
i−λ
)

is zero if i− λ > t or i− λ < 0.
On the other hand, when the initial conditions are provided by X0, we get

x(t+ h,−h) =
t∑
i=0

x(i+ h,−i− h)

(
t

i

)
At−iBi. (5.7)

So, comparing (5.6) and (5.7), we see that the dynamics induced by X̄ (ν)
0 approximates

x(·, ·) on Ct within an error given by

e(t+ h,−h) := x̄(ν)(t+ h,−h)− x(t+ h,−h)

=
∑

i∈[−ν,−1]∪[t+1,t+ν]

x(i+ h,−i− h)
1

2ν + 1

ν∑
λ=−ν

(
t

i− λ

)
At−i+λBi−λ

+
t∑
i=0

x(i+ h,−i− h)
[ ν∑
λ=−ν

(
t

i− λ

)
1

2ν + 1
At−i+λBi−λ −

(
t

i

)
At−iBi

]
. (5.8)

We consider separately the behaviour of the two addenda in (5.8), as ν and t go to
infinity.

(i) Since X0 ∈ `∞(Z), a positive M exists, such that, for all i ∈ Z, |x(i,−i)| < M .
Once ν has been fixed, there exists a positive integer N2 such that, for all t ≥ N2, both(t
ν

)
At−νBν and

( t
t−ν
)
AνBt−ν are less than ε/4M(2ν + 1), and therefore the modulus of

the first addendum in (5.8) is less than ε/4.

(ii) We resort to the following statement of the classical Bernoulli theorem [Cramer,
1971]: “Let σ ∈ (0, 1), and consider

ω :=
∑

tB(1−σ)<i<tB(1+σ)

(
t

i

)
At−iBi. (5.9)

Then the ratio ω/(1 − ω) may be made to exceed any given quantity by choosing t
sufficiently large”.
So, given σ, a positive N3 exists, such that 1− ω < ε/16M for all t ≥ N3. Moreover, as
the values of

(t
i

)
At−iBi at the boundaries of the interval (tB(1 − σ), tB(1 + σ)) can be

made as small as convenient if t is large enough, we can assume also(
t

i

)
At−iBi <

ε

2ν + 1
1

8M
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when i − btB(1 − σ)c = 1, 2, . . . , ν or btB(1 + σ)c − i = 0, 1, . . . , ν − 1. Consequently,
for all t ≥ N3, the summation in the second addendum of (5.8), when restricted to the
values of i satisfying |i− tB| > tσ, gives

∑
|i−tB|>tσ

x(i+ b,−i− h)
[ ν∑
λ=−ν

(
t

i− λ

)
1

2ν + 1
At−i−λBi−λ −

(
t

i

)
At−iBi

]
<
ε

4
. (5.10)

Finally, we look for a suitable bound for the complementary part, namely

∑
tB(1−σ)<i<tb(1+σ)

x(i+h,−i−h)
[ ν∑
λ=−ν

(
t

i− λ

)
1

2ν + 1
At−i−λBi−λ−

(
t

i

)
At−iBi

]
. (5.11)

Letting i = t(B + δ), the term in square brackets can be rewritten as

Ti =

(
t

i

)
At−iBi

[
−1 +

1
2ν + 1

(
1 +

(1 + δ
B )

(1 + δ
A + 1

At)
+

(1− δ
A)

(1 + δ
B + 1

Bt)

+
(1 + δ

B )(1 + δ
B + 1

tB )
(1 + δ

A + 1
At) + (1 + δ

A + 2
At)

+ . . .+
(1− δ

A)(1− δ
A −

1
At) . . . (1−

δ
A −

ν+1
At )

(1 + δ
B + 1

Bt) . . . (1 + δ
B + ν

Bt)

)]
As t goes to infinity, all terms k/At and k/Bt can be neglected. Moreover, for small
values of σ, |δ| is a fortiori small, and all powers δ3, δ4 . . . can be neglected w.r.t. δ2.
This gives

Ti
∼=

(
t

i

)
At−iBi(−1 +

1
2ν + 1

(1 + 2ν + γδ2)) =

(
t

i

)
At−iBi γδ2

2ν + 1
(5.12)

where γ is a suitable constant. As the absolute value of (5.11) is not greater than

∑
tB(1−σ)<i<tB(1+σ)

M

(
t

i

)
At−iBi |γ|σ2

2ν + 1
≤ M |γ|

2ν + 1
σ2,

it can be made smaller than ε/4 when σ is small enough. Therefore, for large values of
t, we have |e(t+ h,−h)| < ε/2 and consequently

Osc(Xt) ≤ Osc(X̄ (ν)
t ) + 2 suph|e(t+ h,−h)| ≤ 3

2
ε (5.13)

The following proposition is now an immediate consequence of Lemma 5.1.

Proposition 5.2 Consider an homogeneous 2D system (1.1) with n = 1 (scalar local
states) and A,B > 0. Assume moreover that the initial global state X0 has a mean value
µ > 0. Then the oscillation rate osc(Xt) goes to zero as t goes to infinity.

Proof Lemma 5.1 implies that the oscillation of the global state X̂t in the system

x̂(h+ 1, k + 1) = Â x̂(h, k + 1) + B̂ x̂(h+ 1, k),
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Â = A/(A + B), B̂ = B/(A + B), goes to zero when its initial conditions are given by
X̂0 = X0. Since we have x(i+ t,−i) = (A+ B)tx̂(i+ t,−i) and the mean value of Xt is
(A+B)tµ,

osc(Xt) =
Osc(Xt)
µ(A+B)t

=
Osc(X̂t)

µ
(5.14)

goes to zero as t→∞

If we drop the hypothesis that (1.1) is a scalar system, the qualitative description of
the asymptotic dynamics is by far more interesting, and more difficult. Actually, there
is a diversity of questions one may ask, concerning the shape Xt eventually reaches as
t goes to infinity, and answers depend like enough both on the pair (A,B) and on the
structure of X0.

There is, first of all, the question of guaranteeing that the normalized state vector
x(h, k)/||x(h, k)|| converges towards a unique vector v as h + k → ∞. That is, how
can a particular direction in the local state space be recognized as the 2D analogue of
a 1D dominant eigenvector? If such a direction exists, a natural issue is to analyse the
properties of the scalar sequences (||x(i + t,−i)||)i∈Z and the possibility of obtaining
global states Xt eventually free from oscillations. Finally, the questions above can be
viewed as particular instances of the more general problem of classifying the asymptotic
behaviours of the global states and detecting recurrencies that underlie their limiting
structure.

The results so far available deal with two rather restrictive classes of positive 2D
systems, that is 2D Markov chains [Fornasini 1990] and 2D systems with commutative
A and B. Further research will lead, it is hoped, to more comprehensive theorems. For
sake of brevity, we discuss only some aspects of commutative 2D systems, that partly
supplement the treatment of this subject presented in [Fornasini Marchesini 1993].

Lemma 5.3 Let A > 0 and B > 0 be n× n commutative matrices, whose sum A+ B
is irreducible. Then A and B have a strictly positive common eigenvector v

Av = rAv, Bv = rBv (5.15)

and rA, rB are the spectral radii of A and B, respectively.

Proof Assume first that A is irreducible, and let v � 0 be the eigenvector of A
corresponding to the eigenvalue rA, that is Av = rAv. The commutativity of A and B
and the assumption B > 0 imply A(Bv) = rA(Bv) and Bv > 0 respectively. Since an
irreducible matrix has exactly one eigenvector [Minc 1988] in En := {x ∈ Rn

+ :
∑n
i=1 xi =

1}, and both v and Bv are positive eigenvectors of A, we have

Bv = λv, λ > 0 (5.16)

Consequently, v is a strictly positive eigenvector of B, corresponding to its maximal
eigenvalue rB, and in (5.16) λ = rB.
Assume now that A + B is irreducible, and let Aε := A + εB,Bε := B + εA, where ε
is an arbitrary positive real number. As Aε and Bε commute and are both irreducible,
the first part of the proof gives, for all ε > 0 Aεv(ε) = rAεv

(ε), Bεv
(ε) = rBεv

(ε) where
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v(ε) � 0 is a common eigenvector of Aε and Bε, uniquely determined by the condition
v(ε) ∈ En, and rAε , rBε are the spectral radii of Aε and Bε respectively.
Now eigenvalues and eigenvectors are continuous functions of the entries of the matrices.
Hence Aε → A, Bε → B, rAε → rA, rBε → rB as ε → 0+. Moreover, there exists
v ∈ En such that v(ε) → v, and v is a common eigenvector of A and B which fulfills
equations (5.15). To conclude the proof, it remains to show that the limiting vector
v is strictly positive. Indeed, (5.21) gives (A + B)v = (rA + rB)v So, v is a positive
eigenvector of the irreducible matrix A+B, which implies v � 0

We are now in a position to provide a stronger version of some results published in
[Fornasini Marchesini, 1993], and summarized in the following lemma

Lemma 5.4 Suppose that in system (1.1) A,B and the initial global state X0 satisfy
the following assumptions:

(i) A and B are positive commuting matrices
(ii) A and B have a strictly positive common dominant eigenvector v
(iii) There exists ` and L, both positive, such that

0 < `[ 1 1 . . . 1 ]T ≤ x(i,−i) ≤ L[ 1 1 . . . 1 ]T , ∀i ∈ Z. (5.17)

Then
lim

h+k→+∞

x(h, k)
||x(h, k)||

=
v

||v||

Proposition 5.5 Suppose that in system (1.1)
a) A and B are primitive commuting matrices
b) there exist an integer M > 0 and two positive real numbers r and R such that

r ≤ [ 1 1 . . . 1 ]
M∑
h=1

x(i+ h,−i− h) ≤ R, ∀i ∈ Z

Then
lim

h+k→+∞

x(h, k)
||x(h, k)||

=
v

||v||
where v � 0 is a common eigenvector of A and B.

Proof As A+B is irreducible, by Lemma 5.3 there exists v � 0 that satisfies equations
(5.15). The primitivity assumption guarantees that v is a dominant eigenvector of both
A and B. Thus conditions (i) and (ii) of Lemma 5.4 are fulfilled. On the other hand,
when N is large enough, all matrices Aν N−νB, 0 ≤ ν ≤ N , are strictly positive. So,
denoting by sN and SN their minimum and maximum entries

sN := minνminh,k[Aν N−νB]hk > 0, SN := maxνmaxh,k[Aν N−νB]hk > 0

respectively, and assuming N ≥M , we have

xj(i+N,−i) =
N∑
ν=0

rowj(Aν N−νB)x(i+N − ν,−i+ ν −N)

≥ sN

N∑
ν=0

[ 1 1 . . . 1 ]x(i+N − ν,−i−N + ν) ≥ sNr j = 1, 2, . . . , n
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and

xj(i+N,−i) ≤ SN
N∑
ν=0

[ 1 1 . . . 1 ]x(i+N−ν,−i−N+ν) ≤ SNNR j = 1, 2, . . . , n.

Therefore, for large values of N , XN fulfills condition (iii) of Lemma 5.4 , with ` = sNr
and L = SNNR, and the proof is complete
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