
Abstract

The paper stresses the relevance of polynomial matrices in three differ-
ent approaches to the analysis of two-dimensional systems: input/output
maps, state models and behavior descriptions. Some aspects of i/o and
state models, like stability definitions and their algebraic characteriza-
tions, as well as conditions for the existence of stabilizing/dead-beat con-
trollers are surveyed. Finally, some preliminary results about stability and
the design of stabilizing controllers in the context of 2D behavior theory
are presented.

Two-dimensional systems, input/output models, state-space models,
behaviour, stability, stabilizing controllers
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2D SYSTEMS ANALYSIS: A

POLYNOMIAL APPROACH

E. Fornasini∗ and M.E. Valcher ∗

1 INTRODUCTION

The foundations of the polynomial matrix approach to linear systems,
along with its applications to industrial control design, were laid down
in the early seventies by H.H.Rosenbrock [?]. Since that time the the-
ory has been developed by a large number of researchers, and nowadays
polynomial matrix methods have gained a large acceptance within the
control community. Among the others, one of the main advantages of
this conceptual framework is the possibility of analysing and designing
two-dimensional (2D) systems, both in their classical structure of quarter
plane causal filters and in the modern behavioral setting, introduced by
J.C.Willems. In fact, (Laurent) polynomial and rational matrices in two
variables often constitute the only tool available for formulating and solv-
ing 2D problems, as state space methods, based on the geometric theory
of finite dimensional spaces, do not extend to multidimensional systems.

The aim of this paper is to give some flavour of the kind of questions
which have already been answered, and to indicate some directions for
future investigations. We shall assume the reader to be acquainted with
the material on 2D polynomial matrices presented in [?] and to have an el-
ementary knowledge of basic 2D system theory, as presented, for instance,
in [?].

Before proceeding, we introduce some notation. Throughout the pa-
per we will denote by R[z1, z2], R[z1, z2, z

−1
1 , z−1

2 ] and R(z1, z2) the rings
of polynomials and Laurent polynomials (L-polynomials) and the field of
rational functions, respectively, in the indeterminates z1 and z2, with co-
efficients in R. For any two-dimensional sequence w = {w(h, k)}h,k∈Z ∈
(Rq

)Z×Z, the support of w is the set of points supp(w) := {(h, k) ∈
Z × Z : w(h, k) 6= 0}. As it is customary, any two-dimensional se-
quence w will be identified with the corresponding formal power series∑

h,k∈Z w(h, k) zh1 z
k
2 , thus exploiting the bijective correspondence be-

tween sequences taking values in Rq
and formal power series with co-

efficients in Rq
. For sake of brevity, the sequence space (Rq

)Z×Z will be
denoted by Rq∞.
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2 2D SYSTEMS MODELLING

The simplest class of 2D systems are those in input/output (i/o) form,
which represent the natural generalization of 1D input/output linear sys-
tems. Partitioning the system variables into “inputs” and “outputs”, u
and y respectively, aims to distinguish between “causes” and “effects”
within the phaenomenon to describe. Usually, inputs are assumed m-
dimensional and completely free, while outputs are p-dimensional and
uniquely determined by the inputs by means of an input/output map.

Under the linearity, shift-invariance and finite-dimensionality assump-
tions, i/o maps are expressed by means of a p×m rational transfer matrix
W (z1, z2) =

∑
(i,j)∈SWi,jz

i
1z
j
2 as follows

Y (z1, z2) = W (z1, z2)U(z1, z2), (1)

where U(z1, z2) and Y (z1, z2) are the formal power series corresponding to
the input and output sequences u and y. The set S is a suitable, generally
infinite, subset of Z×Z. A typical assumption on this class of models is
“quarter-plane causality”, which amounts to saying that S is included in
the positive orthant {(h, k) ∈ Z×Z : h ≥ 0, k ≥ 0} or, equivalently, that
in every left coprime matrix fraction description, D−1(z1, z2)N(z1, z2), of
W (z1, z2) we have detD(0, 0) 6= 0. Rational matrices endowed with this
property are called proper.

An alternative approach to 2D systems is in terms of state-space de-
scription. By a 2D state-model we mean a quarter plane causal 2D system
described by the following equations [?]:

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k)
+ B1u(h, k + 1) +B2u(h+ 1, k)

y(h, k) = Cx(h, k) +Du(h, k),

where u(·, ·), x(·, ·) and y(·, ·) are the input, state and output sequences,
taking values in Rm

, Rn
and Rp

respectively, while A1, A2, B1, B2, C and
D are real matrices of suitable dimensions. Initial conditions are assigned
by specifying the state values x(h, k) on the separation set S0 := {(h, k) ∈
Z×Z : h+ k = 0}. So, when an input sequence u(·, ·) has been assigned
over the half-plane H+

0 := {(h, k) ∈ Z × Z : h + k ≥ 0}, the state and
output sequences can be computed at every point of H+

0 .
Upon representing input, state and output sequences by means of for-

mal power series, model (2) is equivalently described as follows

X(z1, z2) = (I −A1z1 −A2z2)−1
∑

i
x(i,−i)zi1z−i2

+(I −A1z1 −A2z2)−1(B1z1 +B2z2)U(z1, z2)

Y (z1, z2) = CX(z1, z2) +DU(z1, z2),

and, if we assume zero initial conditions on S0, the associated i/o map is
given by Y (z1, z2) = W (z1, z2)U(z1, z2), where W (z1, z2) := C(I−A1z1−
A2z2)−1(B1z1 +B2z2) +D represents the (quarter plane causal) transfer
matrix of the 2D state model.



Clearly, every 2D state model determines a unique transfer matrix, and
hence a unique i/o map, while the inverse problem of “realizing” a given
2D proper rational matrix by means of a state model admits infinitely
many solutions [?].

Quite recently, the behavior approach to the description of dynamical
systems, introduced by J.C.Willems [?] has been extended to the multidi-
mensional case [?, ?]. One of its main features is that it focuses its interest
on the set of system trajectories, the behavior, while making no distinc-
tion between inputs and outputs when describing how the system interacts
with its environment. Input/output and state space descriptions have to
be deduced only later, from the mathematical equations, provided that
the analysis of the behavior has enlightened some cause/effect structure.

In the 2D context a dynamical system Σ is defined as a triple Σ =
(Z × Z,Rq

,B), with Z × Z as independent variables set, Rq
as the

set where the system trajectories take values (the signal alphabet) and
B ⊆ Rq∞ as the set of admissible trajectories (the behavior). In order
to make it possible a comparison with the previous models, we must in-
troduce the linearity and shift-invariance hypotheses also in the behavior
descriptions. A further requirement on B is completeness [?, ?], which is
the possibility of checking whether a sequence w belongs to the behavior
by simply analysing its restrictions to the finite subsets of Z × Z. In
mathematical terms, the completeness of a behavior B corresponds to the
existence of an L-polynomial matrix HT such that

B = kerHT := {w ∈ Rq∞ : HTw = 0}. (2)

The most significant property a behavior can be endowed with is un-
doubtely zero-controllability [?, ?] which expresses the possibility of “em-
bedding” any portion of a behavior trajectory into a new trajectory whose
support slightly exceeds that of the available portion. More precisely, we
say that a behavior B is zero-controllable if there exists a positive integer δ
such that, for every finite set T ⊂ Z×Z and every w ∈ B, there is a tra-
jectory w̃ ∈ B, which coincides with w in T and has support included in
T δ := {(i, j) ∈ Z×Z : d((i, j), T ) < δ}, where the distance d((i, j), T ) is
defined as min {|i−h|+ |j−k|; (h, k) ∈ T }. Controllability induces a very
peculiar polynomial matrix description for a behavior B. 2D controllable
behaviors, indeed, are kernels of left factor prime L-polynomial matrices
or, equivalently, image spaces of suitable L-polynomial operators, i.e.

B = ImG := {w ∈ Rq∞ : w = Gu,u ∈ Rm∞}, (3)

for some G ∈R[z1, z2, z
−1
1 , z−1

2 ]q×m.
A property which is somehow opposite to controllability is autonomy.

A behavior B is autonomous if there exists a solid cone C in R×R such
that the restriction of any behavior trajectory w to C ∩ (Z×Z) allows to
uniquely retrieve the remaining portion of w. Autonomous behaviors are
kernels of full column rank L-polynomial matrices [?].

Controllable and autonomous behaviors constitute the building blocks
for constructing other behaviors, since every complete behavior B can be
expressed [?] as the sum B = Bc +Ba of its “controllable part” Bc, which
is the maximal controllable behavior included in B, and of a suitable
autonomous behavior Ba.



3 I/O AND STATE MODELS: STRUC-
TURAL PROPERTIES AND CONTROL
PROBLEMS

When dealing with quarter-plane causal 2D i/o models, a fundamental
issue is undoubtely represented by BIBO (bounded input/bounded out-
put) stability. An i/o model is BIBO stable if it produces bounded output
sequences when stimulated by bounded input sequences with support in
H+

0 or, equivalently, if the coefficients Wi,j of its transfer matrix expansion
W (z1, z2) =

∑
i,j∈NWi,jz

i
1z
j
2 constitute an `1-sequence.

It has been shown [?] that a sufficient condition for BIBO stability is
that W (z1, z2) is devoid of singularities within the closed unit polydisk

P̄1 := {(z1, z2) ∈C×C : |z1| ≤ 1, |z2| ≤ 1}.

On the other hand, when W (z1, z2) has singularities in P̄1 \ T1, where

T1 := {(z1, z2) ∈C×C : |z1| = 1, |z2| = 1}

is the distinguished boundary of P̄1, the i/o map is not BIBO stable.
When W (z1, z2) is regular in P̄1 \ T1 but exhibits (nonessential) singular-
ities of the second kind in T1, a general result about BIBO stability is not
available, as there are both examples of stable [?] and of unstable maps
with these features. In any case, as transfer matrices with second kind
singularities on T1 cannot be realized via internally stable state models,
it is often convenient to strengthen the stability definition and consider
BIBO stable only rational matrices devoid of singularities in P̄1.

Under this assumption, the feedback stabilization problem (see [?] for
a complete survey on this topic) has been stated in the following terms:
given a “plant”, described by some strictly proper rational transfer matrix
W (z1, z2) ∈ R(z1, z2)p×m, find a (proper) rational matrix C(z1, z2) ∈
R(z1, z2)m×p such that the resulting connected system

- i -C(z1, z2) - i -W (z1, z2) -
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has an (m+ p)× (m+ p) proper stable rational transfer matrix.
If D(z1, z2)−1N(z1, z2) is a left coprime MFD of the plant transfer

matrix W (z1, z2), the plant is stabilizable by means of a proper rational
compensator if and only if the variety of the maximal order minors of
[D(z1, z2) | N(z1, z2)] does not intersect P̄1.

Structural properties of 2D state models constitute a much wider field
of research. Actually, as stability is defined as a property of the state vari-
ables, feedback stabilization depends both on the way inputs affect the
state of a system and on the possibility of reconstructing the state from
the external variables. Therefore, a preliminary investigation of properties
like local controllability, stabilizability, causal reconstructability and de-
tectability is needed for dealing with the problem of designing dead-beat
or stabilizing controllers.



A 2D state model is internally stable if the free state evolution, corre-
sponding to every set of bounded initial conditions on S0, asymptotically
goes to zero, i.e. x(h, k)→ 0 as h+k → +∞. As proved in [?], a 2D state
model is internally stable if and only if the variety of its characteristic
polynomial det(I − A1z1 − A2z2) does not intersect P̄1. It is clear that
the internal stability of a state model ensures the BIBO stability of the
associated i/o map, while the converse is not true, not even when dealing
with minimal realizations.

A 2D state model is stabilizable if for any set of bounded initial con-
ditions on S0, there exist real numbers R > 0 and ρ > 1 and an input
sequence u(·, ·), with support in H+

0 , satisfying ‖ u(h, k) ‖< ρ−(h+k),
∀h, k ∈ H+

0 , such that the corresponding state evolution satisfies

‖ x(h, k) ‖< R/ρh+k, h, k ∈N.

As shown in [?], stabilizability of 2D state models admits a polynomial
matrix characterization which represents a natural extension of the well-
known PBH test for 1D systems. Actually, a 2D system is stabilizable if
and only if

rank [ I −A1z1 −A2z2 B1z1 +B2z2 ] = n, (4)

for every (z1, z2) ∈ P̄1. Also detectability, i.e. the possibility of construct-
ing an asymptotic observer for the 2D state model, can be characterized
by means of a suitable PBH matrix. In fact, a 2D system is detectable if
and only if [?]

rank

[
I −A1z1 −A2z2

C

]
= n, (5)

for every (z1, z2) ∈ P̄1.

The controller design problem in the context of 2D state-models is
stated as an output feedback stabilization problem. More precisely, we
look for a 2D state model, connected to the original plant as in the fol-
lowing picture

- m - Plant -

6

Controller�

v u+

+

y

and making the overall system internally stable. A stabilizing con-
troller exists if and only if the plant is both stabilizable and detectable,
and, interestingly enough, these two conditions are the same ones guar-
anteeing the existence of a stabilizing regulator for a 1D system.

Local controllability and causal reconstructability appear as stronger
versions of stabilizability and detectability [?, ?]. Indeed, a 2D state
model is locally controllable if for any set of initial conditions on S0, there
exist an input sequence u, with support in H+

0 , and a positive integer
N , such that the state evolution satisfies x(h, k) = 0, for h + k > N,



while causal reconstructability expresses the possibility of constructing a
dead-beat observer.

Also these properties admit polynomial matrix characterizations, as
they correspond to the cases when matrices (4) and (5) have full rank
for every (z1, z2) ∈ C × C (i.e. are zero prime polynomial matrices).
Moreover, local controllability and causal reconstructability are necessary
and sufficient for the existence of dead-beat controllers.

4 SOME RESULTS ON 2D BEHAVIORS
STABILITY

The relevance of L-polynomial matrices in investigating the structural
properties of 2D behaviors was pointed out by several authors [?, ?]. As
we have seen, important features, like completeness, autonomy and con-
trollability, have a polynomial matrix characterization, and the same holds
true for observability and extendability. Instead of presenting an overview
of the available results, we prefer, however, to address further aspects of
2D behavior theory which are still unexplored. So, in this section we
make a first attempt to introduce the notions of stability and stabilizabil-
ity for 2D behaviors, and to relate them to the algebraic features of the
L-polynomial matrices involved in their description.

Introducing the stability issue in the 2D context requires some pre-
liminary assumptions. Indeed, stability of ordinary 1D systems naturally
refers to the common interpretation of the independent variable t as time
coordinate, and consequently to the trajectory evolution as t goes to +∞.
For 2D systems, instead, there is no natural ordering in the discrete grid
Z × Z, and hence no obvious “future direction” can be singled out in
the system evolution. The quarter plane causality assumption for 2D i/o
maps and state models leads to a stability notion that refers to the evo-
lution of the output and state trajectories, respectively, on the separation
sets St := {(h, k) ∈ Z×Z : h+ k = t} as t goes to +∞.

The stability definition we are going to introduce is somehow tailored
for analysing the dynamics of behavior trajectories on the separation sets
St for increasing values of t. Although many alternative definitions could
be given, this choice has the advantage of allowing for comparisons with
the previous models, considered as special cases of 2D dynamical sys-
tems. Intuitively speaking, a behavior B should be called stable when,
for every trajectory w ∈ B, we have w(h, k) → 0 as h + k → +∞. This
rules out all behaviors with a nontrivial controllable part Bc. In fact,
as Bc includes a finite support trajectory wf 6= 0, there exists a pair of
positive integers (`,m) such that

∑
i∈N z

i`
1 z

im
2 wf is an infinite support

trajectory which does not estinguish asymptotically. Consequently, sta-
bility notion concerns only autonomous behaviors and among them, due
to the assumptions on the system evolution, only those for which the
cone C, where the trajectories can be uniquely recognized, is included in
H−0 := {(h, k) ∈ Z × Z : h + k < 0}. This implies that we can always
reconstruct a trajectory from its restriction to H−0 and this is possible,
in particular, when the behavior B is the kernel of a polynomial matrix



HT ∈R[z1, z2]m×q with HT (0, 0) full column rank. For sake of simplicity,
in this contribution we will afford only this special case.

Finally, in analogy with the definition of internal stability for state
space models, it seems convenient to require that the asymptotic conver-
gence of the local states is uniform w.r. to the separation sets. As a con-
sequence, we will consider only behavior trajectories which are bounded
on a suitable “strip” ∪−1

i=−MSi.
Definition Let Σ = (Z×Z,Rq

,B) be a system, endowed with a complete
autonomous behavior B = kerHT , HT an m× q polynomial matrix, with
homogeneous degree M and HT (0, 0) of rank q. We say that B is stable
if for every sequence w ∈ B, which is bounded on the “strip” ∪−1

i=−MSi,
we have w(h, k)→ 0 as h+ k → +∞.

As in the case of state space models, stability of an autonomous be-
havior B is related to the intersections of the closed unit polydisk P̄1 with
a suitable algebraic variety.
Proposition Let Σ = (Z × Z,Rq

,B) be a system, endowed with a
complete autonomous behavior B = kerHT , HT an m × q polynomial
matrix, with homogeneous degree M and HT (0, 0) of rank q. If the variety
V(HT ) of the maximal order minors of HT does not intersect the closed
unit polydisk P̄1, then B is stable.

Proof As V(HT )∩P̄1 = ∅, there exists also ρ > 1 such that V(HT )∩
P̄ρ = ∅, with P̄ρ := {(z1, z2) ∈ C ×C : |z1| ≤ ρ, |z2| ≤ ρ}. Thus, the
ideal generated by the maximal order minors mi(H

T ) of HT includes a
polynomial pρ =

∑
i
cimi(H

T ) whose variety V(pρ) does not intersect

P̄ρ. If Si denotes the selection matrix corresponding to mi(H
T ), then

mi(H
T )I = adj(SiH

T )SiH
T , and consequently

L :=
∑
i

ci adj(SiH
T )Si

is a polynomial matrix satisfying LHT = pρI. Consider, now, a trajectory
w ∈ B, which is bounded in ∪−1

i=−MSi, and denote by w+ and w− its

restrictions to H+
0 and H−0 , respectively. Then HT (w+ +w−) = 0 implies

that the sequence s := HTw+ = −HTw−, and hence also s̃ := Ls, are
bounded sequences with support included in some strip. Let ∪N−1

i=0 Si,
N ≥ M , be a strip including supp (s̃) and set S := sup{‖ s̃(i, j) ‖, 0 ≤
i+ j ≤ N − 1}. As 1/pρ admits a power series expansion

∑
i,j∈N qi,jz

i
1z
j
2,

which is absolutely convergent in P̄ρ, there exists a positive real K such
that ∑

t≤i+j≤t+N−1

|qij | < K/ρt, ∀t ∈N.

As a consequence, from s̃ = LHTw+ = pρw+, it follows that the
sequence w+ = s̃/pρ satisfies

‖ w(h, k) ‖≤ SKρN−1

ρh+k
, h+ k ≥ 0,

which proves stability.

Consider, now, a complete nonautonomous behavior B and a represen-
tation of B as the sum of its controllable part and an autonomous behavior



Ba, i.e. B = Bc + Ba. Then, every trajectory w of B decomposes into
a trajectory wc ∈ Bc and a trajectory wa ∈ Ba. Replace now wc with a
trajectory w′c ∈ Bc which coincides with wc in H−0 and is zero for all (h, k)
with h + k ≥ δ, δ a suitable integer. If we assume, as before, that every
trajectory in the autonomous part is uniquely determined by its restric-
tion to the halfplane H−0 , it is immediate to realize that the possibility of
asymptotically driving to zero a behavior trajectory only depends on the
autonomous part Ba. These arguments lead to the following definition of
stabilizability.

Definition Let Σ = (Z×Z,Rq
,B) be a system, endowed with a complete

behavior B = kerHT , HT an m × q polynomial matrix of rank q, with
homogeneous degree M , and let Bc be the controllable part of B. We say
that B is stabilizable if there exists a decomposition B = Bc + Ba, such
that for every sequence w ∈ B, which can be expressed as w = wc + wa,
with wc ∈ Bc and wa ∈ Ba bounded on the “strip” ∪−1

i=−MSi, there

exists w̃ ∈ B, which coincides with w on the halfplane H−0 and satisfies
w̃(h, k)→ 0 as h+ k → +∞.

Proposition Let Σ = (Z × Z,Rq
,B) be a system, endowed with a

complete behavior B = kerHT , HT an m× q (strictly) polynomial matrix
of rank r, with homogeneous degree M , and assume that HT factors as
HT = FH̄T , with F full column rank and H̄T left factor prime polynomial
matrices. If the variety V(HT ) and the variety of some maximal order
minor of H̄T , mi(H̄

T ), do not intersect the closed unit polydisk P̄1, then
B is stabilizable.

Proof Let H̄T
1 be a maximal order submatrix of H̄T such that

V(det H̄T
1 ) ∩ P̄1 = ∅, and assume, for instance, that it consists of the

first columns of H̄T . Then, it is well-known [?] that B can be expressed
as B = Bc + Ba, with Bc = kerH̄T and

Ba =

{[
w1

0

]
: FH̄T

1 w1 = 0

}
.

Clearly, as Ba is a stable autonomous behavior, B is stabilizable.

5 OPEN PROBLEMS AND CONCLU-
SIONS

In this paper we have pointed out the relevance of the polynomial matrix
approach in the study of 2D systems. To this end we have surveyed
the three main models adopted for 2D systems description, and we have
shown that, as far as i/o and state models are concerned, stability notion
and other features, which arise in the stabilizing controller design problem,
are completely captured by the algebraic properties of suitable polynomial
matrices.

In the 2D behavioral setting several issues are still unexplored: in the
previous section we have introduced the notions of stability and stabiliz-
ability, and we have made a first attempt to relate them to the polynomial
matrices involved in the kernel descriptions of the behaviors.



The next goal is that of designing a stabilizing controller. This prob-
lem can be afforded, as shown by J.C.Willems [?] in the 1D case, as an
interconnection problem. More precisely, if Σ = (Z×Z,Rq

,B) is a plant
and Σc = (Z×Z,Rq

,Bc) a controller, we define the controlled system as
the system

Σ ∧ Σc := (Z×Z,Rq
,B ∩ Bc), (6)

obtained by interconnecting Σ and Σc, namely the system whose trajec-
tories obey to the laws of both systems simultaneously. The controlled
system is described in the following picture, and it is important to notice
that plant and controller play equivalent roles in the resulting connected
system.

Σ
... Σc

Although the above scheme may appear somehow restrictive, as, in
general, plant and controller are connected only through certain terminals,
all possible situations are easily reduced to the one just described, by
resorting to a suitable redefinition of the system variables of plant and
controller [?]. In this setting the stabilizing control problem is naturally
stated in the following terms: given a plant Σ = (Z × Z,Rq

,B) is it
possible to design a controller Σc = (Z×Z,Rq

,Bc) such that the resulting
interconnected system is autonomous and stable?

For this and other problems connected with stability and stabilizability
we refer the interested reader to a forthcoming paper [?].
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