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Controllability and Reachability of 2-D Positive
Systems: A Graph Theoretic Approach

Ettore Fornasini and Maria Elena Valcher, Senior Member, IEEE

Abstract—When dealing with two-dimensional (2-D) discrete
state-space models, controllability properties are introduced in
two different forms: a local form, which refers to single local
states, and a global form, which instead pertains the infinite
set of local states lying on a separation set. In this paper, these
concepts are investigated in the context of 2-D positive systems
by means of a graph theoretic approach. For all these properties,
necessary and sufficient conditions, which refer to the structure of
the digraph, are provided. While the global reachability index is
bounded by the system dimension , the local reachability index
may far exceed the system dimension. Upper bounds on the local
reachability index for some special classes of positive systems are
finally derived.

Index Terms—Controllability, finite memory systems, influence
digraph, reachability, strong connectedness, two-dimensional
(2-D) positive systems, zero controllability.

I. INTRODUCTION

TWO-DIMENSIONAL (2-D) positive system theory
is concerned with 2-D state-space models whose input,

state, and output variables take positive (or at least nonnegative)
values. Research interests in this topic have been stimulated by
a series of contributions dealing with river pollution modeling
[5], modeling of a single-carriageway traffic flow [11], gas
absorption, and water stream heating [19], diffusion of a tracer
into a blood vessel [22], etc. These contributions share two
common features. On the one hand, all “internal” variables
are intrinsically nonnegative, as they represent concentrations,
pressures, numbers of vehicles, etc., on the other hand, the
dynamics is well described by a (quarter plane causal) 2-D
state-space model, as the system variables depend on a time
and a space coordinate and obey a quarter plane causality law.

The results on 2-D positive system theory, aiming at pro-
viding a theoretical framework for the aforementioned models,
have grown consistently in the last decade. The first contribu-
tions were oriented to extend positive matrix theory to matrix
pairs, thus leading to a fairly complete analysis of the free state
evolution [9], [10], [12] of 2-D positive systems and to a char-
acterization of their asymptotic stability [21]. More recently, re-
search in 2-D positive systems has concentrated on the analysis
of their structural properties, and some results about reachability
and controllability have been presented in [13]–[17].

When dealing with 2-D systems, the concepts of reachability,
controllability and zero controllability are naturally introduced
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in two different forms: a weak (local) form, which refers to
single “local states”, and a strong (global) form, which pertains
the infinite set of local states lying on some “separation set” [2],
[6]. In this paper, these concepts are introduced and investigated
in the context of 2-D positive systems described by the following
first-order state-updating equation [6]:

(1)

where the -dimensional local states and the -dimen-
sional inputs take nonnegative values, and are non-
negative matrices, and are nonnegative ma-
trices, and the initial conditions are assigned by specifying the
(nonnegative) values of the state vectors on the separation set

, namely by assigning all
local states of the initial global state

.

As in the one-dimensional (1-D) case, the positivity of the
input sequence represents a tight constraint, as it may prevent,
for instance, local/global reachability of nonnegative states that
yet could be reached by resorting to unconstrained input se-
quences. Also, under the positivity assumption, structural prop-
erties exhibit a combinatorial nature, which motivates a graph
theoretic approach to their analysis. Indeed, to every 2-D posi-
tive state-space model of dimension with inputs one can as-
sociate a 2-D influence digraph [10], [12], [13] with vertices,

sources and two types of arcs interconnecting the sources and
the vertices, and every structural property admits both algebraic
and graph-theoretic characterizations.

The paper is organized as follows. Section II introduces some
notations and provides both local and global definitions. In Sec-
tion III, local and global zero controllability are addressed. Both
properties turn out to be equivalent to finite memory, a property
which has been investigated in detail in [8] and [9]. Local and
global reachability, as well as the corresponding indices,
and , are fully characterized in Sections IV and V, where
it is shown that the global reachability index is bounded by the
system dimension , while the local reachability index may far
exceed the system dimension and even reach . Local
and global reachability criteria are applied, in Section VI, to a
2-D positive system describing the self-purification process of a
polluted river. Though a general upperbound on the local reach-
ability index seems a nontrivial goal to pursue, upperbounds on

are presented in Section VII, for special classes of 2-D sys-
tems with scalar inputs.
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Fig. 1. 2-D influence digraph corresponding to (2).

II. NOTATIONS AND PRELIMINARY DEFINITIONS

Before proceeding, it is convenient to introduce some basic
definitions and preliminary concepts that will be used in the
paper. The Hurwitz products of two matrices and
are inductively defined [6] as

when either or is negative

if

if

if

Notice that .
A 2-D influence digraph is a directed graph

which exhibits two types of arcs and input flows [10],
[12], [13]. In detail, it is a sextuple ,
where is the set of sources,

is the set of vertices, and
are subsets of whose elements are called -arcs and

-arcs, respectively, while and are subsets of
whose elements are called -arcs and -arcs, respectively.

To every 2-D positive system (1), we associate a 2-D influence
digraph with vertices,
and sources . There is an arc (an arc)
from to if and only if the th entry of (of ) is
nonzero. There is a arc (a arc) from to if and only
if the th entry of (of ) is nonzero.

Example 1: The positive system with a single input de-
scribed by the matrices

(2)

corresponds to the 2-D digraph, with 4 vertices and a single
source, of Fig. 1. We have represented arcs and arcs by
means of thick lines, while arcs and arcs by means of thin
lines. This will be a steady assumption throughout the paper.

A path in is a sequence of adjacent
arcs and, in particular, an -path is a path which originates
from the source . A path is specified by assigning its vertices
and the type of arcs they are connected by.

If we denote by the number of arcs and arcs and
by the number of arcs and arcs occurring in , then

is the composition of and its length.
A path whose extreme vertices coincide is a cycle. In particular,
if each vertex appears exactly once as the first vertex of an arc,
the cycle is a circuit.

An -dimensional vector is said to be an th monomial
vector if it can be expressed as , being the th vector
of the standard basis in and is some positive coefficient.
A monomial matrix is a nonsingular (square) matrix whose
columns are monomial vectors. Given a matrix , by

we mean the set of nonnegative combinations of the
columns of , i.e., the (polyhedral) cone generated in by
the columns of . is the vector of size with all entries
equal to 1, while the symbol represents the Hadamard product
(entry by entry) of two matrices.

As previously recalled, two distinct definitions of reacha-
bility can be considered [6] for state-space models (1): local and
global reachability. Local reachability refers to the possibility
of “reaching” an arbitrary local state in some point

, starting from zero initial conditions, while
global reachability amounts to the possibility (starting, again,
from zero initial conditions) of obtaining an arbitrary sequence
of local states on some separation set

Of course, all input sequences involved have supports included
in the half-plane . Similarly,
controllability and zero controllability properties can be given in
a local and in a global form, depending on whether one considers
a single local state on the (final) separation set or the entire
global state

We first introduce the local versions of the aforementioned
structural properties under the positivity constraint.

Definition 2.1: A 2-D state-space model (1) may exhibit the
following structural properties.

• It is (positively) locally reachable [6] if, upon as-
suming , for every there exist

, , and a nonnegative input sequence
such that . When so, we will say

that is reachable in steps and the smallest
number of steps which allows to reach every nonneg-
ative local state represents the local reachability index

of the 2-D positive system.
• It is (positively) locally controllable if, corresponding

to any nonnegative and any , there exist
, , and a nonnegative input

sequence such that .
• It is (positively) locally zero controllable if, corre-

sponding to any nonnegative , there exist
, , and a nonnegative input sequence
such that .

In the following, the specification “positively” will be
omitted. The global versions of the previous properties are
introduced in Definition 2.2, below.

Definition 2.2: A 2-D state-space model (1) may exhibit the
following structural properties.
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• It is globally reachable [6], [7] if, upon assuming
, for every global state with entries in ,

there exist and a nonnegative input sequence
such that the global state

coincides with . When
so, we will say that is reachable in steps. The
smallest number of steps which allows to reach every
nonnegative global state represents the global reacha-
bility index of the system.

• It is globally controllable if, corresponding to any
nonnegative initial global state and any nonnega-
tive , there exist and a nonnegative input
sequence such that the global state coincides
with .

• It is globally zero controllable if, corresponding to
any nonnegative initial global state , there exist

and a nonnegative input sequence such that
the global state is identically zero.

Clearly, each global property ensures the corresponding local
one, and a 2-D positive system is locally (globally) controllable
if and only if it is both locally (globally) reachable and locally
(globally) zero controllable. These results are consistent with
the analogous ones for standard 2-D systems.

“Global” properties, as defined in this paper, refer to the
straight-line structure of the separation set which constitutes
the support of the initial conditions. Separation sets with dif-
ferent shapes have been also considered in the literature, mainly
when dealing with Roesser models or the so called “general”
2-D systems [17]. While local definitions are essentially the
same, independently of the shapes of the separation sets,
global reachability and controllability definitions for Roesser
and “general” 2-D positive systems, by naturally taking into
account the different supports of the global states, significantly
differ from those investigated in this paper.

III. ZERO CONTROLLABILITY AND FINITE MEMORY

As a first step, we aim at showing that, when dealing with
2-D positive systems, local zero controllability and global zero
controllability are equivalent properties and they both coincide
with the finite memory property [2], [9].

A standard (i.e., not necessarily positive) 2-D system is said
to be finite memory if for every initial global state there
exists such that the corresponding free state evolu-
tion goes to zero within separation sets, namely .
The finite memory definition for 2-D positive systems is ob-
tained by simply introducing the positivity constraint on the ini-
tial global state . Several characterizations of finite memory
positive systems have been provided in [9]. In particular, the fi-
nite memory property for 2-D positive systems corresponds to
the lack of cycles in the associated 2-D digraph.

It is immediately apparent that, when dealing with positive
systems, both local and global zero controllability are properties
which just pertain the free state evolution, as nonnegative inputs
could not make the task of obtaining a zero local or global state
easier! Based on this simple remark, which holds true also for
1-D positive systems, the proof of the following proposition be-
comes almost straightforward.

Proposition 3.1: Given a 2-D positive system (1), of dimen-
sion , the following facts are equivalent.

i) The system is locally zero controllable.
ii) The system is finite memory.
iii) The system is globally zero controllable.

Proof:

i) ii) Suppose that the system is locally zero control-
lable and choose as the positive global state whose
local states , , are all equal to the vector

. For every , with , we have
. Since there exists

such that , we have also
, which ensures [9] the finite memory property of

the 2-D system described by the positive matrix pair
.

ii) iii) For every nonnegative , just leave the system
evolve freely.

iii) i) Obvious.

At this point, it is clear that a 2-D positive system is locally
(globally) controllable if and only if it is both finite memory
and locally (globally) reachable. Since finite memory property is
easy to check, by either algebraic means or graph inspection, our
interest will focus on local and global reachability properties.
Characterizations of such properties will immediately lead to
characterizations of local and global controllability.

Remark: Controllability (to zero) of positive 2-D systems
has been defined and investigated, for various classes of 2-D
positive state-space models, in Chapter 6 of [17]. Control-
lability to zero of 2-D positive systems in “general” form is
strictly related to local zero controllability discussed in this sec-
tion, the main difference stemming from the slightly different
state-updating equation the two models adopt. Theorem 6.9 in
[17] shows that also for 2-D positive systems in “general” form
controllability to zero is equivalent to the finite memory prop-
erty. Proposition 3.1 in this paper shows, in addition, that when
dealing with 2-D positive systems (1) local zero controllability
is strong enough to ensure the corresponding global property.
This result could be easily extended to the class of 2-D positive
systems in “general” form.

IV. LOCAL REACHABILITY

When dealing with standard 2-D systems, local reachability is
easily tested by evaluating the column span of the reachability
matrix in steps [6], i.e.,

as varies over the set of positive integers. Indeed, reachable
states in steps, i.e., local states that can be reached in any as-
signed position of the separation set , starting from ,
constitute a linear subspace , spanned by the columns
of . Clearly, the ascending chain
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eventually reaches stationarity and this necessarily happens, by
the 2-D Cayley–Hamilton theorem [8], in no more than steps.
As a consequence, if the system is locally reachable, the point

where can reach the desired value (see Defi-
nition 2.1) can always be chosen on the separation set .

Once we constrain the input sequence to be nonnegative, the
reachability subspaces , , are replaced by the reacha-
bility cones , . In fact, the set of all local states
that can be reached in any assigned position of the separation
set , by means of nonnegative inputs and starting from ini-
tial zero conditions , obviously coincides with the set
of all nonnegative combinations of the columns of , namely

. Consequently, a system is locally reachable
if and only if there exists such that .
When so, the smallest such represents the reachability index

of the (locally reachable) 2-D positive system. It is worth
remarking, however, that as in the case of 1-D positive systems
[18], the chain of reachability cones does not necessarily reach
stationarity and, indeed, certain positive states can be reached
only asymptotically.

Positive local reachability is trivially equivalent to the pos-
sibility of reaching (starting from zero initial conditions) every
vector of the standard basis in by means of nonnegative in-
puts, which in turn amounts to saying that there exists
such that the reachability matrix in steps, , includes an

monomial submatrix [1], [4] (similar results hold for
Roesser and “general” 2-D positive models [17]). Keeping in
mind the structure of the columns of , the previous condition
can be equivalently stated by saying that a 2-D system is locally
reachable if and only if there exist pairs ,

, and indices such
that is an th
monomial vector. If so

is an th monomial vector

and, for systems with scalar inputs

is an th monomial vector

Notice, finally, that all pairs are necessarily distinct,
but the case may occur that for .

As for 1-D positive systems, local reachability of 2-D posi-
tive systems is a structural property, by this meaning that it only
depends on the nonzero patterns of the system matrices and not
on the specific values of their nonzero elements. However, dif-
ferently from the 1-D case and the standard 2-D case, the reach-
ability index of a (locally reachable) 2-D positive system is
not bounded by the system dimension.

Fig. 2. 2-D influence digraph corresponding to Example 2.

Fig. 3. 2-D influence digraph corresponding to Example 3.

Fig. 4. 2-D influence digraph generalizing Example 3.

Example 2: The positive system described by the matrices

corresponds to the 2-D digraph of Fig. 2.
It is easy to verify that the system is locally reachable and

, as

Example 3: In the 2-D positive system

which corresponds to the 2-D digraph of Fig. 3, the local reach-
ability index is 16 while the system dimension is . The
above example can be generalized to 2-D influence digraphs
consisting of two loops including and vertices, re-
spectively, connected by arcs of type 1 and 2 as indicated in
Fig. 4. The reachability index turns out to be of the same order
as , namely of the same order as

, since .
A necessary condition for local reachability is the following

one, which extends a similar result obtained for 1-D positive
systems [20].
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Proposition 4.1: If the positive system (1) is locally reach-
able, then includes an monomial
submatrix.

Proof: If the system is locally reachable, then there exist
nonnegative pairs , , and

indices such that

is an th monomial vector. If , the th monomial
vector is a column either of or of . If , the
th monomial vector is a column either of or of (possibly

both).
As for 1-D positive systems, local reachability admits an in-

teresting and useful characterization in terms of the 2-D influ-
ence digraph associated with the system. Indeed, saying that

is an th mono-
mial vector just means that the set of -paths of composition

is not empty and each of them reaches the
vertex alone. If so, we will say that the vertex is determin-
istically reached by all -paths of composition .

As a consequence, the 2-D system (1) is locally reachable if
and only if for every there exists such
that the vertex is deterministically reached by all -paths of
some composition . Moreover

paths

of composition deterministically reach (3)

V. GLOBAL REACHABILITY

When addressing global reachability, it suffices to focus on
the reachability of global states consisting of all zero (local)
states except for one of them, which coincides with ,

. Indeed, if the system is globally reachable then, in
particular, all such global states must be reachable. On the other
hand, if all such global states are reachable, each of them can be
reached by means of a suitable finite support nonnegative input
sequence. So, by superposing nonnegative combinations of such
finite support input sequences, one can reach every nonnegative
global state. Obviously, if denotes the minimum number of
steps required to reach any global state consisting of all zero
local states except for one, which coincides with , then it is
easily seen that the global reachability index, , coincides
with .

As for the local case, global reachability may be characterized
in terms of the columns of the reachability matrix.

Proposition 5.1: A 2-D system (1) is globally reach-
able if and only if there exist pairs ,

, and indices such
that

is an th monomial vector (4)

with (5)

Proof: Let denote a global state consisting of all
zero local states except for one of them, located e.g., in ,
which coincides with , and suppose that is globally
reachable after steps. By the system nonnega-
tivity, the support of any input sequence that allows reaching

can be restricted to the triangular region

In particular, there exists at least one input sequence which is
identically zero, except in some point of , where
it coincides with some monomial (say th) vector.

But then, it is immediatelyseen that thevalueofeach local state
generatedbysuchinputontheseparationset coincides

with the(nonnegativemultipleof the) thcolumnof theblockma-
trix .As
a consequence, the global state can be reached if and only if
there exists an integer pair andsome

such that (4) and (5) hold. Since this condition must be
verified for every , the proposition is proved.

Not unexpectedly, global reachability is stronger than local
reachability. This clearly arises by comparing the results of Sec-
tion IV with Proposition 5.1, but it is also shown by means of
the simple Example 2.

Proposition 5.1 can be interpreted in graph theoretic terms:
the 2-D system (1) is globally reachable if and only if for every

there exists such
that the vertex is deterministically reached by all -paths
of a given composition , and no -path exists, having
the same length and different composition. Moreover,

s.t. all -paths of
composition deterministically reach and there is no

-path of length and different composition .
The following lemma leads the way to further characteriza-

tions of global reachability.
Lemma 5.2: If the 2-D system (1) is globally reachable, then

the 1-D positive system described by the pair
is (positively) reachable.
Proof: From Proposition 5.1 it follows that if the

2-D system (1) is globally reachable there exist pairs
, , and indices

such that

for some . This ensures [4] that is
(positively) reachable.

For systems with scalar inputs, Lemma 5.2 leads to a “canon-
ical” global reachability form.

Proposition 5.3: For a 2-D positive system (1) with scalar
inputs the following facts are equivalent.

i) The system is globally reachable.
ii) There exist pairs , ,

such that
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iia) is an th
monomial vector;

iib) ,
with .

iii) There exists a permutation matrix such that

. . .
. . .

...
...

. . .

...

(6)

where and represent a nonnegative and a positive
entry, respectively, and

...

(7)
Proof: For the sake of simplicity, as positive (either 1-D

or 2-D global) reachability does not depend on the values of
the nonzero entries of all matrices involved, within the proof all
nonzero entries will be assumed unitary.

1) i) ii) is obvious from Proposition 5.1.
2) ii) iii) If the system is gloibally reachable, by the

first part of the proof, conditions iia)–iib) hold. Also, by
Lemma 5.2, the pair is (positively)
reachable and hence [4], [18] there exists a permutation
matrix such that (6) holds. The generality of the proof
will not be affected by assuming . We first show
that only one among and is nonzero. If not, by
(6), both of them should coincide with , but this would
ensure that for every either

for every or there would be two consecutive nonnegative
values of such that

thus contradicting iia)–iib). This proves the first identity
in (7). Suppose, now, w.l.o.g., and . By
applying the same reasoning to

and making use of conditions iia)–iib), it can be shown
that only one among and
coincides with , while the other is zero. This means
that only one among and is , while the
other is zero. By proceeding in this way, we show that
only one among and is an th monomial
vector, , while the other is zero.

3) iii) ii) Conditions (6) and (7) easily imply that there
exist pairs , , such
that iia) and iib) hold.

Remarks: As a consequence of the previous proposition, all
pairs , that make iia)–iib) satisfied, sum up to dis-
tinct integers none of them exceeding . This means
that the set of all such , , coincides with
the set and hence, in particular, the global reach-
ability index for 2-D (globally reachable) systems with scalar
inputs coincides with . This situation is quite different from
the one arising when local reachability is concerned, since the
local reachability index can far exceed the system dimension.

For systems with scalar inputs, Proposition 5.1 can be restated
in terms of the reachability matrix in steps. Indeed, can
be block-partitioned as ,
where represents the block matrix including all columns

, with . Equa-
tions (4) and (5) (and hence global reachability) hold if and only
if, for every , there exists such
that consists of all zero columns except for one which is an
th monomial vector.

Example 1 (Continued): The 2-D positive system of Ex-
ample 1 is locally reachable with local reachability index

, however it is not globally reachable. It is easily seen,
however, that if is replaced by the zero column vector, the
system is just in the canonical form (6) and (7), for ,
and hence is globally reachable (as well as locally reachable
with ).

When dealing with systems with several inputs, Lemma 5.2
leads to a characterization of global reachability similar to the
one given in Proposition 5.3. This requires, however, to consider
the canonical forms available for reachable 1-D positive systems
with several inputs [3], [20]. As such forms are rather compli-
cate, except when the 1-D system matrix ( , in this case)
is devoid of zero columns, we restrict ourselves to this special
case.

Proposition 5.4: For a 2-D positive system (1) with inputs
and devoid of zero columns, the following facts are
equivalent.

i) The system is globally reachable.
ii) , , and suitable permutation matrices,

and , such that the equation at the bottom of the next
page is true, where

. . .
. . .

...
...

. . .

. . .
. . .

...
...

. . .

for

where and represent a nonnegative and a pos-
itive entry, respectively, and collects the “un-
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necessary” column of . Moreover,
has all zero columns except, possibly, for those cor-
responding to the first columns of the blocks (namely
the columns of indices ) and

.

Remarks: The proof of the previous proposition can be ob-
tained by resorting to the canonical form given in [20] and to
the same reasonings adopted within the proof of Proposition
5.3. Moreover, from the structure of the canonical form one can
deduce that the global reachability index coincides with

.

VI. EXAMPLE: POLLUTANT DIFFUSION IN A RIVER

In modeling the self-purification process of a polluted river
[5], we may introduce the following assumptions:

a) The variety of pollutants dissolved in the river can be re-
duced to a single class of oxidizable substances, whose
concentration is measured by the amount of oxygen (BOD
= biological oxygen demand) needed for their complete
biochemical oxidation. The selfpurification process is es-
sentially due to dissolved oxygen.

b) A (spatially) one-dimensional model is assumed for the
river. The stream and the diffusion velocities are supposed
constant and the diffusion wavefront progresses with a ve-
locity which is smaller than the river velocity (actually,
a half). The river is divided into elementary reaches of
length . The time step and the length of the elemen-
tary reach are connected through the stream velocity
by the equation , so that the water element
centered in at time will be centered in at
time .

We denote by the concentration of BOD in the elemen-
tary reach centered in at time . The evolution of the BOD
concentration is expressed on the basis of a discretized balance
equation accounting for different contributions. In fact:

• Diffusion is modeled by assuming that the BOD content of
the elementary water volume, centered in at time ,
undergoes in a variation proportional to the
differences and .

• Self-purification: in the time interval the
BOD concentration in the th river reach decreases by an
amount , .

• BOD sources, increasing the BOD concentration, deter-
mine a nonnegative exogenous input to the system, which
is denoted by .

By making the above assumptions, we obtain the following
2-D recursive equation:

(8)

where and are suitable positive coefficients. To get a 2-D
state-space model (1), we introduce first a coordinate transfor-
mation in the discrete grid , and rewrite (8) as

Next, we assume the following local state vector
and obtain model (1)

with and

If the elementary river reach and the time steps are sufficiently
small, the positive coefficients and are much smaller than 1
and, consequently, the previous model is positive.

It is easily seen, by applying the previous criteria, that this
system is locally but not globally reachable. This result is con-
sistent with physical intuition as, indeed, the components of the
local state vector represent the BOD concentrations at
the same time instant in three consecutive elementary reaches,
and hence they can be arbitrarily assigned by acting on the spe-
cific local BOD sources. On the contrary, due to the physical
relationship between the values of on the points belonging to
the same separation set, it is not possible to reach, starting from
zero initial conditions, all positive global states.

VII. LOCAL REACHABILITY/CONTROLLABILITY ANALYSIS:
SOME SPECIAL CASES

In this section, 2-D positive systems (1) with scalar inputs,
having one of the two input-to-state matrices which is zero, are
considered. This condition is, of course, restrictive. For certain
classes of systems, however, e.g., globally reachable systems
with scalar inputs, it becomes a necessary one. Upon setting

and , (1) becomes

(9)

where , are in and is in . Our goal is that of
providing some bounds on the local reachability index for
special classes of systems of this type.

A. 2-D Influence Digraphs Devoid of Cycles

2-D positive systems (9) whose 2-D influence digraph is de-
void of cycles are finite memory, or equivalently zero control-

...
. . .

...
...

. . .
...
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Fig. 5. 2-D influence digraph with minimum I .

lable. So, they are locally reachable if and only if they are lo-
cally controllable. The proof of the following result concerning

strongly relies on the graph-theoretic interpretation of local
reachability, described at the end of Section IV.

Proposition 7.1: If a 2-D positive system (9), with 2-D in-
fluence digraph devoid of cycles, is locally
reachable, then is a monomial vector and

(10)

Proof: Since is (positive and) nilpotent, it entails
no loss of generality [9] assuming that (and hence
and , separately) is in upper triangular form with zero diag-
onal. If the system is locally reachable, then, by Proposition 4.1,
the columns of must include also an th monomial
vector, which is necessarily .

Since , all Hurwitz products are
zero whenever and the reachability cones satisfy

, . If is an th monomial vector, the only
outgoing arc from the source reaches vertex . On the other
hand, due to the fact that only two types of arcs are available,
-paths of length with a common initial arc and distinct

compositions may reach deterministically at most vertices.
This means that the minimum number of steps required to de-
terministically reach each vertex is the smallest positive integer

such that . The upperbound is obvious.

The lowerbound provided in (10) is tight and examples of 2-D
positive systems (9) of order , with nilpotent and index

that takes the minimum value given in (10), can be easily
constructed for every . Actually, if we assume ,
we construct a 2-D influence digraph with the structure of a
binary tree, having at the th level exactly vertices for all

. The outgoing arcs from each vertex have to be suitably chosen
in order to guarantee that all -paths of the same length (i.e.,
reaching vertices of the same level) have distinct compositions
(see Fig. 5).

The value can be obtained by connecting the source
and all vertices along a single path.

B. 2-D Influence Digraphs Consisting of Either One or Two
(Disjoint) Circuits

Consider, first, single input systems (9) with 2-D influence
digraphs consisting of a single circuit (by this meaning that all
vertices belong to a circuit and each pair of ad-
jacent vertices is connected by a single arc). This assumption

amounts to saying that and is a permuta-
tion matrix, which thus can be reduced to the following form

. . .
. . .
. . .

(11)

When consists of a single circuit, every
monomial vector makes locally reachable
with . However, differently from the 1-D case, the local
reachability of such a system does not require to be a mono-
mial vector [13]. When is the sum of distinct monomial
vectors and the system is locally reachable, the local reacha-
bility index may take quite smaller values.

Proposition 7.2: Let be a 2-D positive system
such that consists of a single circuit and
assume w.l.o.g. that is expressed as in (11) with

. If the system is locally reachable and has
nonzero entries, of indices , then

.
Proof: Suppose, for the sake of simplicity, that

. Keeping in mind
the structure of and, in particular, the fact
that is not monomial, it is clear that all -paths
of composition deterministically reach cannot be
smaller than the length of the -path that, starting
from the source, reaches at the first step and later enters
without passing through the other vertices for . The
identity (3) completes the proof.

When , the previous bound becomes
.

Consider, now, the case of a system (9) with 2-D influence di-
graph consisting of two disjoint circuits. We have the following
result.

Proposition 7.3: Let be a 2-D positive system
such that consists of two disjoint circuits
and of length and , respectively. If the system is locally
reachable and has only two nonzero entries, one for each
cycle, then

(12)

Proof: Assume that the vertices in are (ordinately)
while the vertices in are (ordinately)

. Suppose, also, that the two nonzero entries
in correspond to the vertices and . The situation is
depicted in Fig. 6.

In this situation, any vertex is periodically
visited after steps (
steps, respectively). Moreover, for every there exist ex-
actly two -paths of length in , and they
reach vertex in and vertex in , respectively.
Such vertices are reached deterministically if and only if the two
-paths have distinct compositions. Let be the l.c.m. of and

and suppose, by contradiction, that none of the paths of length
deterministically reaches . Since after

steps we reach, at the same time and with the same composition,
the two vertices and just like after steps, the subsequent
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Fig. 6. 2-D influence digraph of Proposition 7.3.

Fig. 7. 2-D influence digraph corresponding to Example 4.

evolution will periodically repeat the same nonzero pattern, thus
preventing the possibility of deterministically reaching . By
applying the previous reasoning to all vertices of and and,
in particular, to and , (12) immediately follows.

Example 3 shows that the previous bound is tight.

C. Strongly Connected 2-D Influence Digraphs Including Only
Two Circuits

A 2-D influence digraph is strongly
connected if for any two vertices and there is a path (of ar-
bitrary composition) connecting to . This ensures that every
vertex that can be reached in steps can also be reached in a
larger number of steps, say , and that no proper subgraph of

acts as a “trap”, by this meaning that once
one gets in, there is no way out. This could lead to believe that,
due to the increasing number of intersecting paths, at least in the
special case when is a monomial vector, each vertex is either
deterministically reached within steps or it will never be. As
a matter of fact, even for a locally reachable 2-D system with a
strongly connected 2-D influence digraph, the local reachability
index may exceed the system dimension.

Example 4: Consider the 2-D positive system
with

which corresponds to the strongly connected 2-D digraph of
Fig. 7.

In this case, while the system dimension is .
The above structure can be generalized. If the 2-D influence
digraph of a 2-D positive system has the previous structure, by
this meaning that it consists of two small loops, each of them
including vertices and connected by arcs of type 1 and 2,
and a large loop passing through all vertices, as indicated in
Fig. 8, then turns out to be .

To conclude, we aim at affording the special class of 2-D
positive systems (9) with a strongly connected 2-D influence
digraph that includes only two circuits, and . Examples of
systems of this type are given in Fig. 9.

The subsequent results depend on the following intuitive
graph-theoretic lemma.

Fig. 8. 2-D influence digraph generalizing Example 4.

Fig. 9. 2-D influence digraphs strongly connected including 2 circuits.

Lemma 7.4: [13] If is a strongly con-
nected 2-D influence digraph with vertices and including only
two circuits, say and , then the following hold.

i) Every vertex belongs either to or to and at least
one vertex belongs to both circuits.

ii) Each path of length includes at least one
vertex and, conversely, each path of length

includes at least one vertex .
iii) .

Proposition 7.5: Let be a 2-D positive system
such that is strongly connected and includes
only two circuits and . If is locally reach-
able, then the local reachability index cannot exceed

.
Proof: Set , and note that

. Also, let denote the set of vertices corresponding to the
nonzero entries of . Suppose that there exists a vertex which
is deterministically reached from the source by all -paths of
composition , with , but cannot be
reached deterministically in a smaller number of steps.

Consider a path of composition connecting some
vertex of to the vertex . As , the path
includes a circuit, e.g., . Let be the path, ending in ,
obtained by removing from . As cannot be reached
deterministically by the paths having the same composition
as , there must be a path , of that same composition,
from some vertex in to some vertex . Since

, by the previous
lemma at least one vertex of belongs to . But then, a new
path can be obtained by adding to . So, two paths,
and , of composition can be found, connecting to
the vertices and , respectively. Equivalently, there are two
-paths of composition reaching vertices and .

This contradicts the original assumption and hence must
be smaller than .
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