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Abstract

In the paper stability and stabilizability properties are
analysed in the context of two-dimensional (2D) be-
haviors. Searching for a comparison with traditional
2D input/output and state-space models, the interest
is focused on linear, shift-invariant, complete behav-
iors whose autonomous part updates according to a
quarter-plane causality law. For this class of behav-
iors, stabily and stabilizability definitions are intro-
duced and related to the varieties of certain ideals,
which can be obtained by suitably factorizing the Lau-
rent polynomial matrices involved in the behavior de-
scription.

1 Introduction

The interest in two-dimensional system modelling is
largely motivated by a number of physical processes,
depending on a pair of independent variables, which
make their appearance in several contexts such as
seismology, X-ray image enhancement, image deblur-
ring, digital picture processing, etc. The reasearch in
this field was first concerned with two-dimensional in-
put/output (i/o) and state-space descriptions [1, 3, 12],
and in these settings the relevant stability issues, i.e.
BIBO (bounded input bounded output) [9, 10] and in-
ternal [4] stability, have been fully investigated.

Stability definitions one refers to formalize the property
of a system to produce trajectories which estinguish in
the “future”, provided that they satisfy certain regular-
ity constraints in the “past”. The underlying causality
notion is quite obvious for ordinary 1D systems, and is
based on the common interpretation of the independent
variable t as time coordinate. For 2D systems, instead,
there is no natural ordering in Z×Z, and hence no ob-
vious future direction can be singled out in the system
evolution. A reasonable choice, however, is the par-
tial ordering of the discrete grid which corresponds to
the quarter plane causality assumption. This induces
a stability notion for 2D i/o maps and state models
that refers to the trajectories evolution on the sepa-
ration sets St := {(h, k) ∈ Z × Z : h + k = t} as t
goes to +∞, and represents the setting under which

2D BIBO and internal stability have been investigated
in the literature.

The behavioral approach was introduced in the eight-
ies by J.C.Willems [13] for describing one-dimensional
dynamical systems, and later extended to the multidi-
mensional case [6, 11]. Its distinguishing feature is that
it focuses on the set of system trajectories, the behav-
ior, while making no a priori distinction between inputs
and outputs. Input/output and state space descrip-
tions have to be deduced only later, from the math-
ematical equations, provided that the analysis of the
behavior has enlightened some cause/effect structure.

In the 2D case a (discrete) dynamical system Σ is a
triple Σ = (Z×Z,Rq

,B), where Z×Z is the indepen-
dent variables set, Rq the set of the values of system
trajectories (the signal alphabet) and B ⊆ (Rq)Z×Z

the set of admissible trajectories (the behavior). In or-
der to make it possible a comparison with the previ-
ous models, we restrict our attention to linear, shift-
invariant and complete behaviors, namely behaviors
that can be described by means of a set of 2D lin-
ear difference equations, or equivalently, as kernels of
Laurent polynomial matrices. Furthermore, the stabil-
ity/stabilizability definitions refer to a quarter plane
causality structure.

The purpose of this contribution is to introduce these
notions and to relate them to the algebraic features
of the (Laurent) polynomial matrices involved in the
behaviors descriptions. More precisely, section 2 deals
with stability property of autonomous behaviors, while
section 3 analyses the stabilizability problem for gen-
eral (nonautonomous) behaviors.

Throughout the paper R[z1, z2], R[z1, z2, z−1
1 , z−1

2 ] and
R(z1, z2) denote the rings of polynomials and Lau-
rent polynomials (L-polynomials) and the field of ra-
tional functions, respectively, in the indeterminates z1
and z2, with coefficients in R. Any two-dimensional
sequences w = {w(h, k)}h,k ∈ Z ∈ (Rq)Z×Z will be
identified with the corresponding formal power series∑
h,k ∈ Z w(h, k) zh1 z

k
2 , and its support (or, equiva-

lently, the support of the associated power series) will
be defined as supp(w) := {(h, k) ∈ Z ×Z : w(h, k) 6=
0}. For sake of brevity, the sequence space (Rq)Z×Z



will be denoted by Rq∞.

Given any nonzero L-polynomial p, let zi1z
j
2 be the

(unique) monic monomial in R[z1, z2, z−1
1 , z−1

2 ] such
that p∗ := zi1z

j
2p ∈ R[z1, z2] and supp(p∗) intersects

both coordinate axes in Z×Z. The Laurent variety of
p, VL(p) is, by definition, the variety V(p∗) of p∗, i.e.

VL(p) := {(α, β) ∈ C×C : p∗(α, β) = 0}. (1)

Similarly, if I is a set of polynomials in
R[z1, z2, z−1

1 , z−1
2 ], in particular an ideal, its Lau-

rent variety VL(I) is the intersection of the Laurent
varieties of all its elements.

Unless differently specified, all primeness properties of
a matrix, even a strictly polynomial one, will refer to
the ring of Laurent polynomials.

2 Stability of autonomous behaviors

Consider a dynamical system Σ = (Z × Z,Rq
,B),

whose behavior B is described as follows

B = kerHT := {w ∈ Rq∞ : HTw = 0}, (2)

for some m × q matrix HT , which can be assumed,
without loss of generality, strictly polynomial.

The most significant property the behavior B can be
endowed with is undoubtely zero-controllability [6, 11]
which expresses the possibility of “embedding” any
portion of a behavior trajectory into a new one, whose
support slightly exceeds that of the available portion.
More precisely, we say that B is zero-controllable if
there exists a positive integer δ such that, for every
finite set T ⊂ Z × Z and every w ∈ B, there is a
trajectory w̃ ∈ B, which coincides with w in T and
whose support is included in T δ := {(i, j) ∈ Z × Z :
d((i, j), T ) < δ}, where the distance d((i, j), T ) is de-
fined as min {|i−h|+|j−k|; (h, k) ∈ T }. Controllability
induces a very peculiar polynomial matrix description
for the behavior B. Indeed, 2D controllable behaviors
are kernels of left factor prime L-polynomial matrices
or, equivalently, image spaces of suitable L-polynomial
operators [11], i.e. we have

B = ImG := {w ∈ Rq∞ : w = Gu,u ∈ Rm∞}, (3)

for some G ∈ R[z1, z2, z−1
1 , z−1

2 ]q×r.

A property which is somehow opposite to controllabil-
ity is autonomy. A behavior B is autonomous [5, 11] if
there exists a solid cone K in R×R, with vertex in the
origin, such that the restriction w|K of any behavior
trajectory w to K∩ (Z×Z) allows to uniquely retrieve
the remaining portion of w. In the following, we will
refer to K as to a characterizing cone of the behavior,

and, with a slightly abuse of notation, we will use K to
denote K∩(Z×Z). Autonomous behaviors are kernels
of full column rank L-polynomial matrices [11].

Controllable and autonomous behaviors constitute the
building blocks for constructing all other behaviors,
since every complete behavior B can be expressed [5]
as the sum B = Bc+Ba of its “controllable part” Bc,
i.e. the greatest controllable behavior included in B,
and of a suitable autonomous behavior Ba.

Looking for possible comparisons with the stability
property of quarter-plane causal state models consid-
ered in the literature, the stability definition we intro-
duce is somehow tailored for analysing the trajectories
on the halfplane H+

0 := {(h, k) ∈ Z × Z : h + k > 0}
and, in particular, on the positive orthant N×N. No-
tice, however, that many alternative definitions could
be given, and a more general approach to 2D behaviors
stability is carried on in [7].

Intuitively speaking, a behavior B is stable if every
trajectory w ∈ B which is bounded in some suffi-
ciently large region of the halfplane H−0 := {(h, k) ∈
Z × Z : h + k ≤ 0} (the past) converges, at least, in
the positive orthant (the future), i.e. ‖w(h, k)‖ → 0
as h + k → +∞. This immediately rules out all be-
haviors with a nontrivial controllable part Bc. In fact,
as Bc includes at least one finite support trajectory
wf 6= 0, there exists a pair of positive integers (`,m)
such that

∑
i ∈ N z

i`
1 z

im
2 wf is an infinite support trajec-

tory which does not asymptotically estinguish. Conse-
quently, stability notion concerns only autonomous be-
haviors and among them, by the previous assumptions
on the system evolution, only those for which the cone
K, where the trajectories can be uniquely recognized
[5], is included in H−0 . This is possible, in particular,
when the behavior B is described as the kernel of a
polynomial matrix HT ∈ R[z1, z2]m×q with HT (0, 0)
full column rank. For sake of simplicity, in this contri-
bution we will afford only this special case and consider
as characterizing cone any cone K which properly in-
cludes the negative orthant {(h, k) ∈ Z × Z : h <
0, k < 0}, is included in the halfplane H−0 and contains
the halflines {(`,−`) : ` > 0} and {(`,−`) : ` < 0} as
internal radii. It is immediately seen that w|K uniquely
determines the remaining portion of w.

Definition 1 Let Σ = (Z × Z,Rq
,B) be a system,

endowed with a complete autonomous behavior B =
kerHT , HT ∈ R[z1, z2]m×q of rank q and let K be a
characterizing cone of B, that includes the negative
orthant. We say that B is K-stable if every sequence
w ∈ B bounded on the strip

(
K + suppHT

)
\
(
K −

suppHT
)

satisfies ‖w(h, k)‖ → 0 as h + k → +∞.
Otherwise, B is said to be K-unstable. B is stable if
there exists a characterizing cone K such that B is K-
stable.



As in the case of state space models, stability of the
autonomous behavior B = kerHT can be related to
the intersections of the algebraic variety of the maximal
order minors of HT with the closed unit polydisk

P̄1 := {(z1, z2) ∈ C×C : |z1| ≤ 1, |z2| ≤ 1}. (4)

Proposition 1 Let Σ = (Z × Z,Rq
,B) be a sys-

tem, endowed with a complete autonomous behavior
B = kerHT , and assume that HT is an m×q (strictly)
polynomial matrix, with HT (0, 0) full column rank. B
is stable if and only if the variety VL(HT ) of the max-
imal order minors of HT does not intersect the closed
unit polydisk P̄1.

Proof Let K be a characterizing cone of B, which
fulfills the aforementioned constraints. If VL(HT ) ∩
P̄1 = ∅, there exists also ρ > 1 such that VL(HT )∩P̄ρ =
∅, with P̄ρ := {(z1, z2) ∈ C × C : |z1| ≤ ρ, |z2| ≤ ρ}.
Thus, the ideal generated in R[z1, z2, z−1

1 , z−1
2 ] by the

maximal order minors mi of HT includes a polynomial
pρ =

∑
i cimi ∈ R[z,z2] whose variety V(pρ) does not

intersect P̄ρ (and hence, in particular, pρ(0, 0) 6= 0).

If Si denotes the selection matrix corresponding to mi,
then miI = adj(SiHT )SiHT , and consequently

L :=
∑
i

ci adj(SiHT )Si

is an L-polynomial matrix satisfying LHT = pρI.
Consider a trajectory w ∈ B which is bounded on(
K + suppHT

)
\
(
K − suppHT

)
, and let w− and w+

denote the restrictions of w to K and (Z × Z) \ K,
respectively. Since HT (w+ + w−) = 0, the sequence
s := HTw+ = −HTw−, and hence also s̃ := Ls, have
supports included in some suitable strip around the
generating lines of K. So, two integer pairs (h1, k1)
and (h2, k2) can be found, with h1 < 0 < h2 and
k1 < 0 < k2, such that the support of s̃ is included
in

T :=
(

(h2, k2) +K
)
\
(

(h1, k1) +K
)
,

and is bounded therein.

-
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(h1, k1) +K

set T

(h2, k2) +K
K �
��

Set, now, S := sup{‖ s̃(i, j) ‖, (i, j) ∈ T }. From s̃ =
LHTw+ = pρw+, it follows that the sequence w+ =

s̃/pρ satisfies

w+(h, k) =
∑

(i,j) s.t. (h−i,k−j) ∈ T

s̃(h− i, k − j) qij .

where qij are the coefficients of the power series expan-
sion 1/pρ =

∑
i,j∈N qi,jz

i
1z
j
2 which is absolutely conver-

gent in P̄ρ. As a consequence, there exists a positive
real K such that∑

i+j=t

|qij | < K/ρt, ∀t ∈ N.

and for (h, k) ∈ H+
0 }, with h + k sufficiently large, we

have

‖w(h, k)‖ = ‖w+(h, k)‖
≤

∑
(i,j) s.t. (h−i,k−j) ∈ T

|s̃(h− i, k − j)| |qij |

≤ S

h+k−h1−k1∑
i+j=h+k−h2−k2

|qij |

≤ SK

h+k−h1−k1∑
t=h+k−h2−k2

1
ρt
.

Therefore, ‖w(h, k)‖ → 0 as h+k → +∞, thus proving
stability.

Suppose, now, that V(H̄T ) intersects P̄1 in some point
(α, β), with |α| ≤ 1 and |β| ≤ 1. Notice that, by the as-
sumption on HT (0, 0), (α, β) 6= (0, 0). Then H̄T (α, β)
has not full column rank and there exists some nonzero
vector u belonging to its kernel. Consider the (complex
valued) trajectory w defined by:

w(h, k) =
1
αh

1
βk

u, ∀ (h, k) ∈ Z×Z,

if α and β are both nonzero,

w(h, k) =
{
β−ku, if h = 0
0 elsewhere

∀ (h, k) ∈ Z×Z,

if α = 0, and similarly if β = 0. The trajectory w satis-
fies HTw = 0, is bounded on a suitable characterizing
cone K which properly includes the negative orthant
and does not includes the halflines {(`,−`) : ` > 0} and
{(`,−`) : ` < 0}. Finally, ‖w(h, k)‖ is not infinitesimal
as h + k goes to infinity. Thus either the real part or
the immaginary part of w represents a vector sequence
in B, bounded in K and not asymptotically estinguish-
ing in the positive orthant, thus proving that B is not
stable.

3 Stabilizability of nonautonomous behaviors

As previously remarked, any complete behavior B =
kerHT , can be represented as the sum of its control-
lable part Bc and of an autonomous behavior Ba. The



controllable part Bc is easily computed upon factoriz-
ing HT as HT = FH̄T , F a full column rank and H̄T

a left factor prime L-polynomial matrix, respectively.
Indeed, Bc coincides with the kernel of H̄T . On the
other hand, Ba can be selected with a certain degree
of freedom but, differently from the 1D case, in general
it is not possible to guarantee that Bc + Ba is a direct
sum [5].

As a result of the above representation, every trajectory
w of B can be thought of as the sum of a trajectory
wc ∈ Bc and of a trajectory wa ∈ Ba. Replace now
wc with a trajectory w′c ∈ Bc which coincides with wc

in H−0 and is zero for all (h, k) with h+k ≥ δ, δ a suit-
able nonnegative integer. If we assume, as before, that
every trajectory of the autonomous part is uniquely
determined by its restriction to the halfplane H−0 , it is
immediate to realize that the possibility of asymptoti-
cally driving to zero a behavior trajectory only depends
on the autonomous part Ba. These arguments lead to
the following definition of stabilizability.

Definition 2 Let Σ = (Z × Z,Rq
,B) be a system,

endowed with a complete behavior B = kerHT , HT an
m × q polynomial matrix, and let Bc be the control-
lable part of B. We say that B is stabilizable if there
exists a decomposition B = Bc + Ba, Ba = kerHT

a

autonomous with characteristic cone K, such that for
every sequence w ∈ B, which can be expressed as
w = wc+wa, with wc ∈ Bc and wa ∈ Ba bounded on
the strip

(
K + suppHT

a

)
\
(
K − suppHT

a

)
, there exists

w̃ ∈ B, which coincides with w on the halfplane H−0
and satisfies ‖w̃(h, k)‖ → 0 as h+ k → +∞.

It is easily seen that stabilizability is equivalent to the
possibility of expressing B as the sum of its control-
lable part and of a stable autonomous behavior. Con-
sequently, the following proposition provides a charac-
terization of stabilizability.

Proposition 2 Let Σ = (Z × Z,Rq
,B) be a sys-

tem, endowed with a complete behavior B = kerHT ,
and assume that HT ∈ R[z1, z2]m×q can be expressed
as HT = FH̄T , for some polynomial matrix F , with
F (0, 0) full column rank, and some left factor prime
polynomial matrix H̄T . B can be expressed as

B = Ba + Bc, (5)

for some stable autonomous behavior Ba, if and only
if VL(F ) ∩ P̄1 = ∅.

Proof By Proposition 1, we need to prove that
VL(F ) ∩ P̄1 = ∅ is a necessary and sufficent condi-
tion for the existence of a polynomial matrix HT

a , with
HT
a (0, 0) full column rank and VL(HT

a ) ∩ P̄1 = ∅, such
that B = kerHT

a + Bc.

Assume, first, that VL(F )∩ P̄1 = ∅. Then, there exists

a polynomial matrix X such that

sIr = XF,

for some polynomial s ∈ R[z1, z2], belonging to the
ideal (in R[z1, z2, z−1

1 , z−1
2 ]) of the maximal order mi-

nors of F and satisfying VL(s) ∩ P̄1 = ∅ and, in par-
ticular, s(0, 0) 6= 0. Introduce the behavior B̄ :=
ker(sH̄T ). Since

ker(sH̄T ) = ker(XFH̄T ) = ker(XHT ) ⊇ kerHT ,

it follows that B̄ ⊇ B. Furthermore, it is easily seen
that the behavior Bc + ker(sIq) coincides with the set
of all trajectories w such that

 0
0
Iq

w =


H̄T 0

0 sIq

Iq Iq


[

w̄
wa

]
, ∃ w̄,wa,

and since

T := [−sIr −H̄T sH̄T ]

is a left factor prime matrix, of size r× (r+ 2q), whose
rows are orthogonal to the columns of

R :=


H̄T 0

0 sIq

Iq Iq

 ∈ R[z1, z2](r+2q)×2q,

it follows that Ker T = ImR and hence

Bc + ker(sIq) =

w :

 0
0
Iq

w ∈ kerT

 = B̄.

Consequently,

B = B ∩ B̄ = (B ∩Bc) + (B ∩ ker(sIq))

= Bc + (B ∩ ker(sIq)) = Bc + ker
[
sIq
HT

]
,

and the result holds true for HT
a :=

[
sIq
HT

]
.

Suppose, now, that (5) holds true for some stable
autonomous behavior Ba = kerHT

a , with HT
a ∈

R[z1, z2]l×q full column rank and satisfying VL(HT
a ) ∩

P̄1 = ∅. This implies that B can be expressed as

B =

w :

 0
0
Iq

w =

 H̄T 0
0 HT

a

Iq Iq

[ w̄
wa

]
,∃ w̄,wa

 .

Let [X Y Z ] be an (l + r − q) × (l + r + q) left
factor prime matrix whose rows are orthogonal to the
columns of

R :=

 H̄T 0
0 HT

a

Iq Iq

 .



Clearly, B ≡ kerZ ≡ ker(XH̄T ). We aim to show that
X is a full column rank matrix, with VL(X) ∩ P̄1 = ∅.
The full column rank condition follows immediately
from the property that all generator matrices of B
share the same rank. Moreover, as a consequence
of Corollary A.2, every (l + r − q)th order minor of
[X Y Z ] which includes all the columns of X must
divide some suitable rth order minor of HT

a . This
guarantees that VL(X) cannot intersect the closed unit
polydisk. Since B = ker(XH̄T ) = ker(FH̄T ), the re-
sult is, now, an immediate consequence of Lemma A.3.

Remark In the context of 1D behaviors, important
properties like controllability and stabilizability are
captured by the characteristic polynomial χ of the be-
havior [14]. Given any kernel description of the be-
havior, B = kerHT , with HT of rank r, χ can be
uniquely recovered (modulo some unit in R[z, z−1]) as
the g.c.d. of the rth order minors of HT , and it is has
been proved that B is controllable if and only if χ is
unit in R[z, z−1], while it is stabilizable if and only if
χ is Hurwitz.

If B = kerHT is any 2D behavior and HT is expressed
as HT = FH̄T , for some L-polynomial matrix F and
some left factor prime matrix H̄T , it has been shown
that B is controllable if and only if F is right zero
prime, and hence VL(F ) = ∅, while is stabilizable iff
VL(F ) ∩ P̄1 = ∅. This suggests that, in the 2D case,
the notion of characteristic polynomial of a behavior
B should be replaced by that of characteristic variety,
VL(B), which can be obtained from the aforementioned
decomposition of any matrix HT such that B = kerHT

and it coincides with VL(F ). Notice that, as proved in
Lemma A.3, such a variety is uniquely determined and
does not depend on the particular matrix adopted for
the behavior description.

To conclude, it is worthwhile underlying that, differ-
ently from the 1D case, the information about the va-
riety VL(B) cannot be captured by a single “character-
istic polynomial”. This is immediately apparent when
considering varieties which consist of a finite number
of points. Finally, VL(B) does not coincide with the
variety of the maximal order minors of HT , and this is
due to the fact that the variety of H̄T , which is related
to the controllable part of B, does not affect stabiliz-
ability.

4 Appendix

Lemma A.1 Let T ∈ R[z1, z2, z−1
1 , z−1

2 ]k×n and
R ∈ R[z1, z2, z−1

1 , z−1
2 ]n×(n−k) be two L-polynomial

matrices, left and right factor prime, respectively, sat-
isfying TR = 0.

If mi(T ) denotes the ith maximal (= kth) order mi-
nor of T and mi(R) the maximal (= (n − k)th) order
minor of R, obtained by selecting in R rows of com-
plementary indices w.r.t. the columns selected in T ,
then mi(T ) and mi(R) coincide modulo some unit in
R[z1, z2, z−1

1 , z−1
2 ].

Proof Since T is left factor prime, there exist two L-
polynomial matrices, X1 and X2, and two polynomials,
g1(z1) ∈ R[z1] and g2(z2) ∈ R[z2], such that

TX1 = g1(z1)Ik and TX2 = g2(z2)Ik.

Consider for instance m1(T ), the maximal order mi-
nor of T corresponding to the selection of the first k
columns of T . Complete T into a square matrix by
resorting to a (n − k) × n matrix, whose columns are
all zero except for the last n − k, which consitute the
identity matrix. Thus[

T
0 In−k

]
[X1 | R ] =

[
g1(z1)Ik 0

Q M1(R)

]
, (6)

where M1(R) is the (n − k) × (n − k) submatrix of R
obtained by selecting the last n − k rows. Assuming
R1 := [ X1 R ] and µ1 := detM1(R), we get

m1(T ) detR1 = [g1(z1)]kµ1(R).

Now replace X2 with X1 in (6) and let R2 := [ X2 R ].
We obtain

m1(T ) detR2 = [g2(z2)]kµ1(R).

So m1(T ) | [g1(z1)]kµ1(R) and m1(T ) | [g2(z2)]kµ1(R).
Since [g1(z1)]k and [g2(z2)]k are coprime, then

m1(T ) | µ1(R). (7)

Dually, as R is right factor prime, there exist two L-
polynomial matrices, Y1 and Y2, and two polynomials,
h1(z1) ∈ R[z1] and h2(z2) ∈ R[z2], such that

Y1R = h1(z1)In−k and Y2R = h2(z2)In−k.

We can proceed as before, getting[
T
Y1

] Ik R
0

 =
[
M1(T ) 0
T h1(z1)In−k

]
,

where M1(T ) is the k × k submatrix of T obtained by

selecting its first k columns. Assuming S1 :=
[
T
Y1

]
,

we get detS1 µ1(R) = m1(T )[h1(z1)]n−k, and, analo-
gously, detS2 µ1(R) = m1(T )[h2(z2)]n−k, where S2 :=[
T
Y2

]
.

Therefore µ1(R) is a common factor of
m1(T )[h1(z1)]n−k and m1(T )[h2(z2)]n−k, and then

µ1(R) | m1(T ). (8)



(7) and (8) together imply that m1(T ) and µ1(R) differ
in a unit of R[z1, z−1

1 , z2, z
−1
2 ].

Similarly, we can show that the same result holds for
any other pair of corresponding minors in T and in R.

Corollary A.2 Let T ∈ R[z1, z2, z−1
1 , z−1

2 ]k×n and
R ∈ R[z1, z2, z−1

1 , z−1
2 ]n×(n−k) be L-polynomial matri-

ces, T left factor prime and R full column rank, which
satisfy TR = 0, and let r ∈ R[z1, z2] denote a g.c.d. of
the maximal order minors of R.

If mi(T ) denotes the ith maximal order minor of T
and mi(R) the maximal order minor of R, obtained
by selecting the rows of R of complementary indices,
then mi(T ) coincides with mi(R)/r modulo some unit
in R[z1, z2, z−1

1 , z−1
2 ].

Proof Follows immediately from Lemma A.1, upon
factorizing R as R = R̄∆, with R̄ right factor prime
and ∆ nonsingular square. Clearly, det ∆ = c · r, c a
unit in R[z1, z2, z−1

1 , z−1
2 ].

Lemma A.3 Let H̄T
i , i = 1, 2, be left prime L-

polynomial matrix, and let X and F be full col-
umn rank L-polynomial matrices. If ker(FH̄T

1 ) =
ker(XH̄T

2 ), then H̄T
1 = UH̄T

2 for some unimodular ma-
trix U and VL(F ) = VL(X).

Proof Condition ker(FH̄T
1 ) = ker(XH̄T

2 ) implies

P (FH̄T
1 ) = XH̄T

2 Q(XH̄T
2 ) = FH̄T

1 , (9)

for suitable L-polynomial matrices P and Q. Since F
and X have full column rank, they admit left inverses
F−1 and X−1, and we get

(X−1PF )H̄T
1 = H̄T

2 (F−1QX)H̄T
2 = H̄T

1 .

This implies that H̄T
1 and H̄T

2 have the same rank and,
being left factor prime, they must differ [6] in some
L-polynomial unimodular factor U := F−1QX. Conse-
quently, (9) can be rewritten as

P (FH̄T
1 ) = XUH̄T

1 Q(XUH̄T
1 ) = FH̄T

1 .

Since H̄T
1 is full row rank, then PF = XU and QXU =

F , thus implying both VL(X) = VL(XU) ⊆ VL(F ) and
VL(F ) ⊆ VL(XU) = VL(X). This proves the result.
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