
On the stabilizability of discrete-time positive switched systems

Ettore Fornasini and Maria Elena Valcher

Abstract— In this paper we consider the class of discrete-
time systems switching between an arbitrary numberp of
autonomous positive subsystems. Necessary and sufficient con-
ditions for the existence of (either linear or quadratic) copositive
Lyapunov functions, whose values can be decreased in every
positive state, by suitably choosing one ofp subsystems, are
obtained. When these conditions are fulfilled, state-dependent
switching strategies, which prove to be stabilizing, can be
adopted. Finally, the performances of these Lyapunov based
strategies are compared.

I. I NTRODUCTION

A discrete-time positive switched system (DPSS) consists
of a family of positive state-space models [5], [13] and
a switching law, specifying when and how the switching
among the various subsystems takes place. This class of
systems has some interesting practical applications. They
have been adopted for describing networks employing TCP
and other congestion control applications [21], for modeling
consensus and synchronization problems [12], and, quite
recently, to describe the viral mutation dynamics under drug
treatment [10].

In the context of positive switched systems, most of the
research results about stability and stabilizabilty have been
derived in the continuous-time case [2], [9], [14], [16], [17],
[18], [24]. While results based on linear copositive functions
find a straightforward extension to the discrete-time case,
this is not true when dealing with quadratic stability and
stabilizability, and at our knowledge the only contributions
on this subject are [7], [15].

In this paper we consider the the stabilizability property of
DPSS switching betweenp (unstable) susbystems. We focus
on state-feedback switching strategies, which are based on
(either linear or quadratic) copositive Lyapunov functions,
and prove that they stabilize the system under the simple
condition that at each time instant the Lyapunov function
decreases for (at least) one of thep subsystems. Equivalent
conditions for the existence of stabilizing switching strategies
based on linear copositive functions are provided, and it
is shown that when any of these conditions is satisfied
then stabilizing strategies, based either on positive definite
quadratic functions or, more generally, on quadratic coposi-
tive functions, can be found.

Before proceeding, we introduce some notation.R+ is the
semiring of nonnegative real numbers. A matrix (in particu-
lar, a vector)A with entries inR+ is callednonnegative, and
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if so we adopt the notationA ≥ 0. If, in addition,A has at
least one positive entry the matrix ispositive(A > 0), while
if all its entries are positive it isstrictly positive(A ≫ 0).

A square matrixA is said to beMetzler if its off-diagonal
entries are nonnegative. A square matrixA is Schur if all
its eigenvalues lie within the unit circle, and it isHurwitz if
all its eigenvalues have negative real part. It is easily seen
[5] that A ∈ R

n×n is a positive Schur matrix if and only if
A − In is Metzler Hurwitz.

1n is then-dimensional vector with all entries equal to1.
Given a positive integerp, we set[1, p] := {1, 2, . . . , p}.

A square symmetric matrixP is positive definite (≻ 0)
if for every nonzero vectorx, of compatible dimension,
x⊤Px > 0, and positive semidefinite (� 0) if for every
nonzero vectorx, of compatible dimension,x⊤Px ≥ 0. P is
negative (semi)definite (≺ 0) if −P is positive (semi)definite.

II. STABILIZABILITY

The class ofdiscrete-time positive switched systemswe
consider in this paper is described by the following equation

x(t + 1) = Aσ(t)x(t), t ∈ Z+, (1)

where x(t) denotes the value of then-dimensional state
variable at timet, σ is an arbitrary switching sequence,
taking values in the set[1, p], and for eachi ∈ [1, p] the
matrix Ai is the system matrix of a discrete-time positive
system, which means thatAi is an n × n positive matrix.
The initial conditionx(0) is assumed to be nonnegative.

For this class of systems we introduce the concept of stabi-
lizability, also known in the literature on (general) switched
systems [22] as pointwise asymptotic stabilizablility.

Definition 1: The DPSS (1) isstabilizable if for every
positive initial statex(0) there exists a switching sequence
σ : Z+ → [1, p] such that the corresponding state trajectory
x(t), t ∈ Z+, converges to zero.

Clearly, the stabilization problem is a non-trivial one only
if all matricesAi’s are not Schur. So, in the following, we
will steadily make this assumption.

As clarified in the previous definition, the stabilizing
switching sequenceσ (depends on the initial statex(0), and)
is a function of time. So, it can be thought of as an open-
loop control action that we apply to the system in order to
ensure the converge to zero of its state evolution. In [7] it has
been shown that such a switching sequence can always be
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periodic and independent of the initial state. Such a solution,
however, is not robust and an alternative solution can be
that of searching for a stabilizing switching sequence whose
value at timet depends on the specific value that a suitable
Lyapunov function takes on the statex(t).

More specifically, we search for a copositive Lyapunov
functionV (x) (by this meaning a function that takes positive
values on the positive states, and is zero in the origin) such
that

min
i∈[1,p]

∆Vi(x) < 0, ∀ x > 0, (2)

where
∆Vi(x) := V (Aix) − V (x). (3)

This idea will be explored in the next two sections.

III. L YAPUNOV FUNCTIONS FORDPSSS

In this section, we want to investigate what conditions
on the positive matricesAi, i ∈ [1, p], ensure the existence
of different kinds of copositive Lyapunov functions for the
DPSS (1) that satisfy (2). In detail, we will focus on quadratic
copositive functionsV (x) = x⊤Px, P being a symmetric
matrix, and on linear copositive functionsV (x) = v⊤x, v a
vector that is necessarily strictly positive. Clearly, quadratic
positive definite functions are a subset of quadratic copositive
functions.

Proposition 1: Let A := {A1, A2, . . . , Ap} be a set of
n × n positive matrices. If

a) there exist a quadratic positive definite functionV (x) =
x⊤Px andαi ∈ [0, 1], with

∑p

i=1 αi = 1, such that for
everyx > 0

p
∑

i=1

αi∆Vi(x) =

p
∑

i=1

αix
⊤(A⊤

i PAi − P )x < 0,

then any of the following equivalent facts holds:

b1) ∃ αi ∈ [0, 1], with
∑p

i=1 αi = 1, such that
∑p

i=1 αiAi

is Schur;
b2) there exists a linear copositive functionV (x) = v⊤x

and αi ∈ [0, 1], with
∑p

i=1 αi = 1, such that for all
x > 0

∆Vα(x) :=

[

v⊤

(

p
∑

i=1

αiAi

)

− v⊤

]

x < 0;

b3) there exists a linear copositive functionV (x) = v⊤x

such that for everyx > 0

min
i∈[1,p]

∆Vi(x) = min
i∈[1,p]

v⊤(Ai − In)x < 0;

b4) there exists a quadratic copositive function of rank1
V (x) = x⊤Px (by this meaning thatrankP = 1) such
that for everyx > 0,

min
i∈[1,p]

∆Vi(x) = min
i∈[1,p]

x⊤(A⊤
i PAi − P )x < 0.

If any of the equivalent conditions b1)÷ b4) holds, then

c) there exists a quadratic positive definite function
V (x) = x⊤Px such that for everyx > 0

min
i∈[1,p]

∆Vi(x) = min
i∈[1,p]

x⊤(A⊤
i PAi − P )x < 0.

If c) holds, then

d) there exists a quadratic copositive functionV (x) =
x⊤Px such that for everyx > 0

min
i∈[1,p]

∆Vi(x) = min
i∈[1,p]

x⊤(A⊤
i PAi − P )x < 0.

Proof: a)⇒ b1) The proof follows the same reasoning
adopted in [8]. IfP ≻ 0, then
[

A⊤
i PAi A⊤

i P
PAi P

]

=

[

A⊤
i

In

]

P [ Ai In ] � 0, ∀ i ∈ [1, p].

Consequently

p
∑

i=1

αi

[

A⊤
i PAi A⊤

i P
PAi P

]

=





(
∑p

i=1 αiA
⊤
i PAi

) (
∑p

i=1 αiA
⊤
i

)

P

P (
∑p

i=1 αiAi) P



 � 0.

By the Schur complement’s formula, this implies that for
everyx, and hence, in particular, for everyx > 0,

x
⊤

" 

p
X

i=1

αiA
⊤

i PAi

!

−

 

p
X

i=1

αiA
⊤

i

!

P

 

p
X

i=1

αiAi

!#

x ≥ 0,

namely

x⊤

[

p
∑

i=1

αi(A
⊤
i PAi − P )

]

x

≥ x⊤

[(

p
∑

i=1

αiA
⊤
i

)

P

(

p
∑

i=1

αiAi

)

− P

]

x.

As the left hand-side is negative for everyx > 0, so is the
right hand-side. But this implies thatV (x) = x⊤Px is a
quadratic copositive function such thatV ((

∑p

i=1 αiAi)x) <
V (x) for everyx > 0. So,

∑p

i=1 αiAi is a Schur matrix.

We now prove that b1)÷ b4) are equivalent conditions.

b1) ⇔ b2) Set A :=
∑p

i=1 αiAi and notice that
∑p

i=1 αiIn = In. The equivalence is based on two facts:
(1) A is positive Schur if and only ifÃ := A − In is a
Metzler Hurwitz matrix; (2) a Metzler matrix̃A is Hurwitz
if and only if [3], [11] there exists a vectorv ≫ 0 such that
v⊤Ã ≪ 0.

b2)⇒ b3) From b2) it follows that, for every positive vector
x, one gets
[

vT

p
∑

i=1

αi(Ai − In)

]

x =

p
∑

i=1

αi

[

vT (Ai − In)x
]

< 0,

whencemini∈[1,p] v⊤(Ai − In)x < 0.
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b3) ⇒ b2) By assumption, there exists a strictly positive
vectorv such that for everyx > 0 the vector





v⊤(A1 − In)
...

v⊤(Ap − In)



x ∈ R
p×1

has at least one negative entry. So, once we set

W :=





v⊤(A1 − In)
...

v⊤(Ap − In)



 ,

we can claim that no positive vectorx can be found such
that Wx ≥ 0. But then, by Lemma 1, in the Appendix, a
positive vectory exists such thatyT W ≪ 0. As it entails
no loss of generality rescalingy so that its entries sum up
to 1, this means that nonnegative coefficientsαi exist, with
∑p

i=1 αi = 1, such that

0 ≫ [ α1 . . . αp ] W = vT

p
∑

i=1

αi(Ai − In),

thus proving b2).

b3) ⇒ b4) Let v be a strictly positive vector such that for
everyx > 0 conditionv⊤Aix < v⊤x holds for at least one
index i ∈ [1, p]. This implies that for everyx > 0, condition

x⊤A⊤
i vv⊤Aix = |v⊤Aix|2 < |v⊤x|2 = x⊤vv⊤x

holds for at least one indexi ∈ [1, p]. So, b4) is satisfied for
P := vv⊤.

b4) ⇒ b3) If rank P = 1 and P = P⊤, then P can be
expressed asP = vv⊤, for some vectorv. As x⊤Px > 0
for every x > 0, it follows that v has entries which are
all nonzero and of the same sign. So, it entails no loss of
generality assuming that they are all positive. On the other
hand, from the fact that at every pointx > 0 there exists an
index i ∈ [1, p] such that

x⊤[A⊤
i PAi−P ]x = (x⊤A⊤

i v)(v⊤Aix)−(x⊤v)(v⊤x) < 0

namely

|v⊤Aix|2 = (x⊤A⊤
i v)(v⊤Aix) < (x⊤v)(v⊤x) = |v⊤x|2,

and by the nonnegativity of bothv⊤Aix andv⊤x, it follows
that v⊤Aix < v⊤x. This proves that condition b3) holds.

b4)⇒ c) Assume w.l.o.g. that the matrixP that makes b4)
satisfied is expressed asP = vv⊤ for somev ≫ 0. Set
P̃ := P + εIn, with ε > 0. Clearly, P̃ is symmetric. We
want to show that̃P is positive definite for every choice of
ε > 0. Indeed, for everyx 6= 0,

x⊤P̃x = x⊤Px + ε‖x‖2
2 = (v⊤x)2 + ε‖x‖2

2 > 0.

Consider, now, the compact setS := {x ∈ R
n
+ : ‖x‖2 = 1}.

The two functions

f(x) = min
i∈[1,p]

x⊤[A⊤
i PAi − P ]x,

g(x) = max
i∈[1,p]

|x⊤[A⊤
i Ai − In]x|,

are continuous functions inS. So, by Weierstrass’ theorem,
both functions have maximum inS and it is easily seen that

max
x∈S

g(x) = max
x∈S

max
i∈[1,p]

|x⊤[A⊤
i Ai − In]x| = M ≥ 0,

while, by the assumption b4),

max
x∈S

f(x) = max
x∈S

min
i∈[1,p]

x⊤[A⊤
i PAi − P ]x = −δ < 0.

Let ε be a positive number such thatεM < δ. It is easily
seen that, for everyx ∈ S,

min
i∈[1,p]

x⊤(A⊤
i P̃Ai − P̃ )x

= min
i∈[1,p]

[

x⊤(A⊤
i PAi − P )x + ε

(

x⊤(A⊤
i Ai − In)x

)]

≤ max
x∈S

min
i∈[1,p]

[

x⊤(A⊤
i PAi − P )x

+ ε
(

x⊤(A⊤
i Ai − In)x

)]

≤ max
x∈S

min
i∈[1,p]

[

x⊤(A⊤
i PAi − P )x

]

+ ε · max
x∈S

max
i∈[1,p]

|(x⊤(A⊤
i Ai − In)x|

= −δ + εM < 0.

Clearly, for everyx > 0, one finds

min
i∈[1,p]

x⊤(A⊤
i P̃Ai − P̃ )x ≤ (−δ + εM)‖x‖2

2 < 0,

and hence the result is proved.
c) ⇒ d) is obvious.

Remark 1:While condition c) implies d), the converse is
not true, as shown by the following example.

Example 1:Consider the positive matrices

A1 =

[

2 0
0 0

]

A2 =

[

0 0
0 2

]

.

It is easy to verify that the symmetric matrix of rank 2

P =

[

2 3
3 2

]

is such that for everyx ∈ R
2
+,x > 0, we havex⊤Px > 0

and either

x⊤(A⊤
1 PA1 − P )x = 6x2

1 − 6x1x2 − 2x2
2 < 0

or

x⊤(A⊤
2 PA2 − P )x = −2x2

1 − 6x1x2 + 6x2
2 < 0.

On the other hand, no symmetric positive definite matrix
P can be found such that in every pointx > 0 either
x⊤(A⊤

1 PA1−P )x or x⊤(A⊤
2 PA2−P )x is negative. Indeed,

if such a matrix would exist, it could be described w.l.o.g.
in the form

P =

[

1 c
c b

]

,

with b > c2, and in every nonzero point either one of the
following inequalities would be satisfied:

x⊤(A⊤
1 PA1 − P )x = 3x2

1 − 2cx1x2 − bx2
2 < 0

x⊤(A⊤
2 PA2 − P )x = −x2

1 − 2cx1x2 + 3bx2
2 < 0.
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Since forx1 = 0 the first equation is obviously satisfied, we
assume nowx1 6= 0 and sety := x2/x1. So, the previous
inequalities become:

p1(y) := −by2 − 2cy + 3 < 0 (4)

p2(y) := 3by2 − 2cy − 1 < 0, (5)

Upon observing thatb = c2 + ε for someε > 0, our goal is
that of proving that, for every choice ofc ∈ R and ε > 0,
there existsy > 0 such that both−by2 − 2cy + 3 ≥ 0 and
3by2−2cy−1 ≥ 0. Indeed, the two zeros of the polynomial
p1(y) are

λ−,+ :=
−2c ±

√
4c2 + 12b

2b
=

−c ±
√

4c2 + 3ε

c2 + ε
,

and it is easy to prove thatλ− < 0 < λ+. On the other
hand, polynomialp2(y) has zeros

µ−,+ :=
2c ±

√
4c2 + 12b

6b
=

c ±
√

4c2 + 3ε

3(c2 + ε)
.

In order to ensure that in everyy ≥ 0 either (4) or (5)
holds, it should be true thatµ− < 0 andλ+ < µ+. The first
condition is easily proved to be verified, however condition
λ+ < µ+ amounts to

−c +
√

4c2 + 3ε

c2 + ε
<

c +
√

4c2 + 3ε

3(c2 + ε)
,

namely
2c >

√

4c2 + 3ε,

a condition that, of course, is never verified. So, for every
choice ofc and ε > 0 all positive pairs(x1, x2) such that
µ+ < x2/x1 < λ+ make both∆V1(x) and∆V2(x) positive.

IV. STATE-FEEDBACK STABILIZATION

In Section III we have investigated under which conditions
on the positive matricesAi, i ∈ [1, p], a copositive Lyapunov
function V (x) can be found for which (2) holds, with
∆Vi(x) defined as in (3). This amounts to saying that a
functionV (x) can be found such that, in every nonzero point
x of the positive orthant, the differenceV (Aix) − V (x) is
negative for at least one indexi ∈ [1, p]. So, the function
V (x) represents an “energy function” that can always be
decreased at every step along the state trajectories (within
the positive orthant), by suitably choosing when and how to
switch.

Accordingly, we can adopt a “min-projection” switching
strategy [20] (also known as “variable structure control”
[23])1

σ(x(t)) := min{k : ∆Vk(x(t)) ≤ ∆Vi(x(t)),∀ i ∈ [1, p]}. (6)

1It is worthwhile noticing that the switching law we chose assigns a
unique value toσ(x) in every pointx > 0. Indeed, whenever∆V1(x) =
∆V2(x), the switching rule setsσ(x) = 1. The opposite choice, or the
choice of a conservative policy that keeps memory of the value ofσ at
the previous time instant, or even a random choice would not make any
difference in terms of convergence.

It is rather intuitive that this strategy is stabilizing, by this
meaning that it ensures that the state evolution converges to
the origin for every choice of the positive initial state. We
want to provide a formal proof for the classes of functions
that we have considered in Proposition 1.

We consider first the case whenV (x) is a quadratic
copositive Lyapunov function.

Proposition 2: Given a discrete-time positive switched
system (1), if there exists a quadratic copositive Lyapunov
function V (x) = x⊤Px satisfying (2), then the state feed-
back switching rule (6) stabilizes the system.

Proof: The functionf(x) := mini∈[1,p] ∆Vi(x) is a
continuous function that takes negative values in every point
of the compact set

S := R
n
+ ∩ {x ∈ R

n : x⊤Px = 1}.

So, by Weierstrass’ Theorem,maxx∈S f(x) = −ν, with 0 <
ν ≤ 1, and this ensures that for every positive statex, f(x) ≤
−νx⊤Px. Consequently

V (x(t + 1)) = V (x(t)) + f(x(t)) ≤ (1 − ν)x⊤(t)Px(t)

≤ (1 − ν)t+1x⊤(0)Px(0),

and henceV (x(t)) converges to zero, thus guaranteeing that
x(t) converges to zero in turn.

Remark 2:Both the result and the proof of Proposition 2
obviously extend to the class of quadratic positive definite
Lyapunov functionsV (x).

We consider, now, the case of linear copositive Lyapunov
functions.

Proposition 3: Given a discrete-time positive switched
system (1), if there exists a linear copositive Lyapunov
functionV (x) = v⊤x satisfying (2), then the state feedback
switching rule (6) stabilizes the system.

Proof: The proof follows the same lines of the previous
one upon assuming

S := R
n
+ ∩ {x ∈ R

n : v⊤x = 1}.

For the class of positive switched systems (1) for which a
convex Schur combination of the matricesAi, i ∈ [1, p], can
be found, we can apply different state feedback switching
strategies. Indeed, as a consequence of Proposition 1, we
may either resort to a linear copositive function or to a
quadratic copositive function (or rank1 or of higher rank)
or to a quadratic positive definite function. So, it is natural
to ask which of the available strategies ensures the best
performances.

We first notice that the switching strategies based on linear
copositive and on quadratic copositive functions of rank1 are
just the same. In fact, as clarified in the proof of Proposition
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1, the matricesP = P⊤ of rank 1 that satisfy condition
b4) of Proposition 1 are those and those only that can be
expressed asP = vv⊤ for some vectorv satisfying b3) of
the same proposition. On the other hand, by the nonnegativity
of the quantities involved,

min{k : v⊤(Ak − In)x ≤ v⊤(Ai − In)x, ∀ i}
= min{k : v⊤Akx ≤ v⊤Aix, ∀ i}
= min{k : x⊤A⊤

k vv⊤Akx ≤ x⊤A⊤
i vv⊤Aix, ∀ i}

= min{k : x⊤(A⊤
k vv⊤Ak − vv⊤)x

≤ x⊤(A⊤
i vv⊤Ai − vv⊤)x, ∀ i},

and hence the switching sequences (6) based onv⊤x and
on x⊤vv⊤x are just the same.

On the other hand, we may design switching strategies
based on the broader class of quadratic copositive Lyapunov
functions (of arbitrary rank) fulfilling condition d). Clearly,
this class of switching laws encompasses those based on
quadratic copositive functions of rank1, and hence it ensures
convergence performances at least as good as the previous
ones.

Similarly, since the class of positive definite functions is
included in the class of quadratic copositive functions, the
stabilizing switching laws described in Remark 2 are a subset
of those described in Proposition 2. So, resorting to switching
laws based on quadratic copositive functions allows to obtain
better converge performances.
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APPENDIX

Lemma 1 (see [1], Corollary 3.49):Let W be ann × p
real matrix. Then one and only one of the following alterna-
tives holds:

a) ∃ y > 0 such thaty⊤W ≪ 0;
c) ∃ x > 0 such thatWx ≥ 0 (namelyWx ∈ R

p×1
+ ).
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