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On the stabilizability of discrete-time positive switched systems

Ettore Fornasini and Maria Elena Valcher

~ Abstract—In this paper we consider the class of discrete- if so we adopt the notatiod > 0. If, in addition, A has at
time systems switching between an arbitrary numberp of  |east one positive entry the matrix p@sitive(A > 0), while
autonomous positive subsystems. Necessary and sufficient Con-it all its entries are positive it istrictly positive(A > 0).

ditions for the existence of (either linear or quadratic) copositive L . o -
Lyapunov functions, whose values can be decreased in every A square matrixA is said to beMetzlerif its off-diagonal

positive state, by suitably choosing one op subsystems, are  €ntries are nonnegative. A square matrixis Schurif all
obtained. When these conditions are fulfilled, state-dependent its eigenvalues lie within the unit circle, and it idurwitz if

switching strategies, which prove to be stabilizing, can be gl jts eigenvalues have negative real part. It is easily seen
adopte_d. Finally, the performances of these Lyapunov based [5] that A € R™*" is a positive Schur matrix if and only if
strategies are compared. A— I is Metzler Hurwitz
n .
|. INTRODUCTION 1,, is then-dimensional vector with all entries equal to

. . . . ._Given a positive integep, we set[1,p] :={1,2,...,p}.
A discrete-time positive switched system (DPSS) consists square symmetric matriP is positive definite § 0)

of a _fam_ily of positive_ _state-space models [5], [13] aan for every nonzero vectowx, of compatible dimension,
a switching Iavx_/, specifying when and how the S_W'tCh'nngPx > 0, and positive semidefinite-( 0) if for every
among the various subsystems takes place. This class n(gnzero vectok, of compatible dimensiarxTPx >0.Pis

systems has some interesting practical applications. Th : N e e o L e
have been adopted for describing networks employing TC@;(‘(‘:]{J‘“\/e (semi)definite-(0) if — P is positive (semi)definite.

and other congestion control applications [21], for modeling
consensus and synchronization problems [12], and, quite
recently, to describe the viral mutation dynamics under drug Il. STABILIZABILITY

treatment [10]. The class ofdiscrete-time positive switched systems

In the context of positive .S.WltChed sys_tgms_, most of th%onsider in this paper is described by the following equation
research results about stability and stabilizabilty have been

derived in the continuous-time case [2], [9], [14], [16], [17], x(t+1) = Ay1)x(1), teZy, (2)
[18], [24]. While results based on linear copositive functions ) ,

find a straightforward extension to the discrete-time cas¥/Nere x(t) denotes the value of the-dimensional state
this is not true when dealing with quadratic stability and/@riable at timet, o is an arbitrary switching sequence,
stabilizability, and at our knowledge the only contributiond@king values in the sefl, p], and for eachi € [1,p] the
on this subject are [7], [15]. matrix A; is the system matrix of a discrete-time positive

In this paper we consider the the stabilizability property ofYSt€mM. which means that; is ann x n positive matrix.
DPSS switching betweem (unstable) susbystems. We focus! Ne |n|t|_al conditionx(0) is ass_umed to be nonnegative. _
on state-feedback switching strategies, which are based orf ©F this class of systems we introduce the concept of stabi-
(either linear or quadratic) copositive Lyapunov functions!iZaPility, also known in the literature on (general) switched
and prove that they stabilize the system under the simpRYStems [22] as pointwise asymptotic stabilizablility.
condition that at each time instant the Lyapunov function o ) - .
decreases for (at least) one of thesubsystems. Equivalent ~Definition 1: The DPSS (1) isstabilizableif for every
conditions for the existence of stabilizing switching strategieBOSitive initial statex(0) there exists a switching sequence
based on linear copositive functions are provided, and & : Z+ — [L, p] such that the corresponding state trajectory
is shown that when any of these conditions is satisfied(t),t € Z+, converges to zero.
then stabilizing strategies, based either on positive definite

quadratic functions or, more generally, on quadratic coposi- Clearly, the stabilization problem is a non-trivial one only
tive functions, can be found. if all matrices A;’s are not Schur. So, in the following, we

will steadily make this assumption.

Before proceeding, we introduce some notatign.is the  As clarified in the previous definition, the stabilizing
semiring of nonnegative real numbers. A matrix (in particusyitching sequence (depends on the initial statg0), and)
lar, a vector)A with entries inR . is callednonnegative, and js a function of time. So, it can be thought of as an open-

- . . o loop control action that we apply to the system in order to
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periodic and independent of the initial state. Such a solutionc) there exists a quadratic positive definite function

however, is not robust and an alternative solution can be
that of searching for a stabilizing switching sequence whose
value at timet depends on the specific value that a suitable

Lyapunov function takes on the statét).

V(x) = x' Px such that for everx > 0

min AVj(x) = min x' (4] PA; — P)x < 0.

i€[1,p) i€[1,p]

More specifically, we search for a copositive LyapunoVf ¢) holds, then

functionV (x) (by this meaning a function that takes positive d) there exists a quadratic copositive functidi{x)

values on the positive states, and is zero in the origin) such x' Px such that for everx > 0

that
min AVj(x) < 0, Vx>0, 2
i€[1,p]
where
AV;(x) = V(A;ix) — V(x). 3

This idea will be explored in the next two sections.

IIl. L YAPUNOV FUNCTIONS FORDPSS

In this section, we want to investigate what conditions
on the positive matricesl;,i € [1,p], ensure the existence
of different kinds of copositive Lyapunov functions for the
DPSS (1) that satisfy (2). In detail, we will focus on quadratic

copositive functiond/(x) = x' Px, P being a symmetric
matrix, and on linear copositive functiohgx) = v'x, v a

min AVj(x) = min x' (A4, PA; — P)x < 0.
i€[1,p] i€[1,p]

Proof: a) = b1) The proof follows the same reasoning
adopted in [8]. IfP > 0, then

{A;Z:‘lz A;P} _ [’i—} P[A; I,]=0,Viellp)].
Consequently
- [A;VPAi AIP}
— "I PA; P
(Zf:l O‘iAzTPAi) ( f:l O‘iAzT) P

= 0.

P (3 i) P

vector that is necessarily strictly positive. Clearly, quadratic T
positive definite functions are a subset of quadratic copositiy the Schur complement's formula, this implies that for

functions.

Proposition 1: Let A := {A;, As,...
n X n positive matrices. If
a) there exist a quadratic positive definite functiofx) =
x' Px ando; € [0,1], with 37| «; = 1, such that for
everyx > 0

,Ap} be a set of

P P
Z a; AV, (x) = Z a;x ' (A] PA; — P)x < 0,
i=1 i=1

then any of the following equivalent facts holds:

bl) 3 «; € [0,1], with >°F | o; =1, such thaty "}, ; A;
is Schur;

b2) there exists a linear copositive functidf(x) = v'x
anda; € [0,1], with >°*_ a; = 1, such that for all
x>0

AV, (x) == lv—r (i ozl-AZ) le x < 0;

b3) there exists a linear copositive functi®df(x)
such that for everk > 0

= VTX

min AVj(x) = min v'(4; — I,)x < 0;

i€[1,p) i€[1,p)

b4) there exists a quadratic copositive function of rank
V(x) = x" Px (by this meaning thatankP = 1) such
that for everyx > 0,

min AV;(x) = min x' (4] PA; — P)x < 0.

i€[1,p) i€[1,p]

If any of the equivalent conditions b1} b4) holds, then
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everyx, and hence, in particular, for every> 0,

P /4 /4
XT |:<Z OCZA;I—PAz) — <Z OézA;r) P <Z OCZAZ> X Z 07
=1 =1 =1
namely
P
x' [Z ai(A] PA; — P)| x
i=1
X.

() ()

As the left hand-side is negative for evexy> 0, so is the
right hand-side. But this implies thaf(x) = x' Px is a
quadratic copositive function such that(>~"_; a;4;)x) <
V(x) for everyx > 0. So,Zf’:1 «o; A; is a Schur matrix.

We now prove that b1} b4) are equivalent conditions.

bl) & b2) SetA P, aA; and notice that
Zleozifn = I,. The equivalence is based on two facts:
(1) A is positive Schur if and only ifA := A — I, is a
Metzler Hurwitz matrix; (2) a Metzler matrix is Hurwitz
if and only if [3], [11] there exists a vector > 0 such that
viA<o.

b2) = b3) From b2) it follows that, for every positive vector
X, one gets

lVT i ai(Ai — In)

whencemin;e(y ) v (4 — I,)x < 0.

P

X = Zai [VT(Ai -

i=1

In)x] <0,
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b3) = b2) By assumption, there exists a strictly positiveare continuous functions i§. So, by Weierstrass’ theorem,

vectorv such that for everk > 0 the vector

vi(A —1I,)
: x € RPX1
vi(A, - 1,)
has at least one negative entry. So, once we set
vi(A -1,
W .= ,
vi(A, - I,)

we can claim that no positive vectar can be found such
that Wx > 0. But then, by Lemma 1, in the Appendix, a
positive vectory exists such thay”W < 0. As it entails
no loss of generality rescaling so that its entries sum up
to 1, this means that nonnegative coefficieatsexist, with

P L a; =1, such that

0>>[O[ 27]71)7

thus proving b2).

b3) = b4) Letv be a strictly positive vector such that for
everyx > 0 conditionv ' A;x < v'x holds for at least one
indexi € [1, p]. This implies that for everx > 0, condition

x A"

JvvTAx=|vTAx]? < |v x?=x"

VVTX

holds for at least one indexe [1,p]. So, b4) is satisfied for

P:=vv'.

b4) = b3) If rank P = 1 and P = PT, then P can be
expressed a® = vv ', for some vectow. As x' Px > 0
for everyx > 0, it follows that v has entries which are

all nonzero and of the same sign. So, it entails no loss of

generality assuming that they are all positive. On the oth
hand, from the fact that at every poirt> 0 there exists an
index i € [1,p] such that

x'[A] PA;—Plx = (x" Al v)(vT Aix)—(x"v)(v'x) <0
namely
VIAx]? = (xTA/v)(vT Ax) < (xTv)(v %) = |v x]%,

and by the nonnegativity of both" A;x andv " x, it follows
thatv™ A;x < v'x. This proves that condition b3) holds.

b4) = c) Assume w.l.0.g. that the matrik that makes b4)
satisfied is expressed & = vv' for somev > 0. Set
P := P +¢l,, with ¢ > 0. Clearly, P is symmetric. We
want to show that? is positive definite for every choice of
e > 0. Indeed, for everk # 0,

x)2 + 5||x||§ > 0.
sl = 1}

(v’
Consider, now, the compact st:= {x € R}
The two functions

x' Px =x' Px + 5||x||§ =

fx) = ,H{l}n] x[A] PA; — Plx,
1€
g(x) = max [x"[A]A; - L]x|,

i€[1,p]
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both functions have maximum i and it is easily seen that

max g(x) = max max |x [AiTAZ- —L)x| =M >0,
x€S x€S i€[l,p]

while, by the assumption b4),
maxf( X) = max min XT[AZTPAi — Plx=-6<0.

xeS X€ES i€[l,p]

Let ¢ be a positive number such thal/ < ¢. It is easily
seen that, for everx € S,

min x| (AZTPAi — P)X
i€([1,p]

= T(A] PA; — P)x+e (x"(A] A; —

I)x)]

min [X
i€[1,p)

max min [X

(Al PA; — P)x
x€S i€(l,p]

+e(x" (A 4 — I,)x)]

max min [XT(A;FPAi — P)x]
x€S i€[l,p]
In)x|

IN

(A A -

+ - max max |(x
x€8 ic[1.p]

—d+eM <0.

Clearly, for everyx > 0, one finds
‘H[llin] x" (Al PA; — P)x < (=6 +eM)|z[3 <0,
1€|l,p

and hence the result is proved.

c) = d) is obvious. ]

Remark 1:While condition c) implies d), the converse is
not true, as shown by the following example.

Example 1:Consider the positive matrices

W[ aefp Y]

0 0 0 2

fis easy to verify that the symmetric matrix of rank 2

2 3
3 2

[

is such that for everx € R3,x > 0, we havex” Px > 0
and either

x' (A] PA; — P)x = 622 — 6129 — 223 < 0
or
x' (Ag PAy — P)x

On the other hand, no symmetric positive definite matrix
P can be found such that in every poiat > 0 either
xT(A] PA;—P)xorx" (A] PA,— P)x is negative. Indeed,

if such a matrix would exist, it could be described w.l.0.g.
in the form

= —2:5% —6x122 + 6:5% < 0.

with b > ¢2, and in every nonzero point either one of the
following inequalities would be satisfied:

x' (A] PA; — P)x 323
x' (Ag PAy — P)x r] — 2cry1w2 + 3bas < 0.

— 2cx129 — bz% <0
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Since forz; = 0 the first equation is obviously satisfied, we It is rather intuitive that this strategy is stabilizing, by this
assume nows; # 0 and sety := z2/x1. S0, the previous meaning that it ensures that the state evolution converges to
inequalities become: the origin for every choice of the positive initial state. We
9 want to provide a formal proof for the classes of functions
pi(y) = —by” —2cy+3 < 0 (4)  that we have considered in Proposition 1.
p2(y) :==3by® —2cy -1 < 0, (5) We consider first the case wheli(x) is a quadratic

Upon observing thak = ¢* + ¢ for somees > 0, our goal is copositive Lyapunov function.

that of proving that, for every choice ef¢ R ande > 0,
there existsy > 0 such that both-by? — 2cy +3 > 0 and
3by? —2cy — 1 > 0. Indeed, the two zeros of the polynomial

pily) are

Proposition 2: Given a discrete-time positive switched
system (1), if there exists a quadratic copositive Lyapunov
function V(x) = x' Px satisfying (2), then the state feed-
back switching rule (6) stabilizes the system.

— Va2 +1 — VAac? . .
_ T2eEvACH 1 et vie +357 Proof: The function f(x) := min;cp ;) AVi(x) is a

2
2b ¢t t+e continuous function that takes negative values in every point
and it is easy to prove that_ < 0 < A;. On the other of the compact set

hand, polynomiaps(y) has zeros

2c V42 +120  cE V42 + 3e . )
Mt = 6D = 332 +e) So, by Weierstrass’ Theoremaxxes f(x) = —v, with 0 <

) ) v < 1, and this ensures that for every positive state (x) <
In order to ensure that in every > 0 either (4) or (5) _,xT px. Consequently
holds, it should be true that . < 0 andA; < p4. The first .
condition is easily proved to be verified, however condition V (x(t + 1)) = V(x(t)) + f(x(t)) < (1 —v)x (t)Px(t)

)\_7+ :

S=R;N{xeR":x"Px=1}.

Ay < p4+ amounts to < (1—v)"x"(0)Px(0),
—c+V4c? +3c e+ Vit + 3¢ and hencé/ (x(t)) converges to zero, thus guaranteeing that
?+e 3(c2+e) x(t) converges to zero in turn. |
namely Remark 2:Both the result and the proof of Proposition 2
9¢ > /A2 + 3¢, emark 2:Both the result and the proof of Proposition

obviously extend to the class of quadratic positive definite
a condition that, of course, is never verified. So, for everyapunov functions/ (x).
choice ofc ande > 0 all positive pairs(z1,z2) such that
Lt < xo/x1 < Ay make bothAV; (x) and AV (x) positive. We consider, now, the case of linear copositive Lyapunov
functions.
IV. STATE-FEEDBACK STABILIZATION Proposition 3: Given a discrete-time positive switched
In Section 11l we have investigated under which conditionsystem (1), if there exists a linear copositive Lyapunov
on the positive matriced;, i € [1, p], a copositive Lyapunov functionV (x) = v ' x satisfying (2), then the state feedback
function V(x) can be found for which (2) holds, with switching rule (6) stabilizes the system.
AV;(x) defined as in (3). This amounts to saying that a ) : .
func(tio)n V(x) can be found such that, in every nonzero point Proof: The p.roof follows the same lines of the previous
x of the positive orthant, the differendé(A;x) — V(x) is one upon assuming

negative for at least one indexc [1,p]. So, the function S=RiN{xeR": vix= 1}.

V(x) represents an “energy function” that can always be

decreased at every step along the state trajectories (within u

the positive orthant), by suitably choosing when and how to

switch. For the class of positive switched systems (1) for which a

Accordingly, we can adopt a “min-projection” switching COnvex Schur combination of the matricds, i € [1, p], can

strategy [20] (also known as “variable structure controlb® found, we can apply different state feedback switching
[23])* strategies. Indeed, as a consequence of Proposition 1, we
may either resort to a linear copositive function or to a
quadratic copositive function (or rank or of higher rank)
or to a quadratic positive definite function. So, it is natural

it is worthwhile noticing that the switching law we chose assigns 4o ask which of the available strategies ensures the best
unique value tar(x) in every pointx > 0. Indeed, wheneveAV) (x) = performances.
AVz(x), the switching rule sets(x) = 1. The opposite choice, or the  \\fe first notice that the switching strategies based on linear
choice of a conservative policy that keeps memory of the value af - . - .

ppositive and on quadratic copositive functions of rame

the previous time instant, or even a random choice would not make an oF : -
difference in terms of convergence. just the same. In fact, as clarified in the proof of Proposition

o(x(t)) := min{k : AVr(x(t)) < AVi(x(t)),V i € [1,p]}. (6)
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1, the matricesP = PT of rank 1 that satisfy condition

(8]

b4) of Proposition 1 are those and those only that can be

expressed a® = vv ' for some vectow satisfying b3) of

[9]

the same proposition. On the other hand, by the nonnegativity

of the quantities involved,

min{k:v' (Ap — L,)x <v' (4; — I,)x,Y i}
min{k: v' Apx < v A;x,V i}

min{k : x' Af vv' Apx <x' Al vvT Aix,V i}
min{k : x" (Al vvT 4, —vvT)x

<x"(AfvvTA; —vvx,V i},

and hence the switching sequences (6) based bx and
onx'vv'x are just the same.

(10]

(11]

(12]

(13]

(14]

On the other hand, we may design switching strategies
based on the broader class of quadratic copositive LyapunBv!

functions (of arbitrary rank) fulfilling condition d). Clearly,

this class of switching laws encompasses those based [a6]

quadratic copositive functions of rarikand hence it ensures
convergence performances at least as good as the previous

ones.

(17]

Similarly, since the class of positive definite functions is

included in the class of quadratic copositive functions, thﬁ8

stabilizing switching laws described in Remark 2 are a subset
of those described in Proposition 2. So, resorting to switching
laws based on quadratic copositive functions allows to obta'[rﬂg]

better converge performances.

ACKNOWLEDGMENT

The Authors are indebted with Richard Middleton for th

proof of b4)=- c) in Proposition 1.

APPENDIX
Lemma 1 (see [1], Corollary 3.49)tet W be ann x p

[20]

[21]
Te21

(23]

real matrix. Then one and only one of the following alternag4]

tives holds:

a) 3y > 0 such thaty ' W < 0;
¢) 3 x > 0 such thatWx > 0 (namelyWx € RZ*").
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