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Auditory data display is an interdisciplinary field linking au-
ditory perception research, sound engineering, data mining, and
human–computer interaction in order to make semantic contents
of data perceptually accessible in the form of (nonverbal) audible
sound. For this goal it is important to understand the different ways
in which sound can encode meaning. We discuss this issue from the
perspectives of language, music, functionality, listening modes, and
physics, and point out some limitations of current techniques for au-
ditory data display, in particular when targeting high-dimensional
data sets. As a promising, potentially very widely applicable ap-
proach, we discuss the method of model-based sonification (MBS)
introduced recently by the authors and point out how its natural
semantic grounding in the physics of a sound generation process
supports the design of sonifications that are accessible even to un-
trained, everyday listening. We then proceed to show that MBS
also facilitates the design of an intuitive, active navigation through
“acoustic aspects,” somewhat analogous to the use of successive
two-dimensional views in three-dimensional visualization. Finally,
we illustrate the concept with a first prototype of a “tangible” soni-
fication interface which allows us to “perceptually map” sonifica-
tion responses into active exploratory hand motions of a user, and
give an outlook on some planned extensions.

Keywords—Auditory perception, exploratory data analysis,
human–computer interaction, sonification.

I. INTRODUCTION

Auditory data display denotes a rather young and rapidly
evolving set of techniques also known under the term sonifi-
cation to make data from a wide range of application domains
accessible to auditory inspection, analysis and summariza-
tion [1]. Creating auditory data displays, thus, challenges us
with the task to devise mappings from data to sound patterns
in such a way as to exploit the highly developed capabilities
of the human auditory system to uncover meaning in sound
by detecting a rich variety of auditory patterns and “gestalts”
(see Section IV-A). In this way, auditory data display offers
a new and very promising tool to uncover hidden structures
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and meaning in massive collections of data that would be dif-
ficult to scan, explore, or summarize by more conventional
means.

With this goal, auditory data display can be seen as a
highly interdisciplinary field at the interface between re-
search in auditory perception, sound processing algorithms,
data mining and human–computer-interaction [2]–[4]. From
the perspective of this Special Issue, we will be particularly
interested in the connections between sound semantics
and musical listening and, further, basic forms of human
listening. From a more application-oriented point of view,
we will argue that a particularly promising aspect is the
use of auditory data display techniques to aid and enhance
the currently much wider established techniques of data
visualization for the purpose of interactive, or exploratory
data analysis [5], [6]. A major reason for this is that the
specific properties of sound perception as compared to
visual perception make auditory data displays highly suited
to offer an additional route to meaning in data that is both
synergistic and complementary to visualization. Particular
strengths in this regard are: 1) the capability of our auditory
system to process several streams of nformation in parallel;
2) to offer a high temporal resolution; 3) its high sensitivity
for structured motion, in particular, rhythm; and 4) its ability
to function well even in noisy contexts.

Regarding the task of creation of auditory displays that are
easily interpreted by human listeners, we discuss the issue
of meaning in auditory displays from a number of different
perspectives, ranging from language and music, function,
listening modes, and finally, to the semantic grounding of
sounds in the physical process of their generation. After a re-
view of existing approaches in the field, we then present an
approach based on a concept of user-controlled, virtual sound
objects. This technique of model-based sonification (MBS)
has been introduced by the authors [7], [8] and allows for
a very intuitive design of a wide class of sonification inter-
faces that can take important dimensions of sound semantics
into account by grounding them in physical sound generating
processes in a natural and user-transparent way. Whereas in
the papers cited above the technical aspects of sonification
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systems dominate, here the relation of sound and meaning in
auditory display is focused explicitely and brought in rela-
tion to the meaning of sound in other domains.

Section II discusses the meaning of sound from different
perspectives including music, language, function, and
physics. Section III summarizes existing sonification tech-
niques and describes the listening type used for interpreting
the sound. Section IV then presents the framework of MBS
and contrasts it to the approaches in the previous section.
The particle trajectory sonification model is presented to
highlight various aspects of MBS, including the relation
of sound and meaning. Section V addresses the topic of
interaction with sound, caused by interaction with sounding
objects. A haptic controller is presented as a means for
manipulating sonification models, to control sonifications
in real time while maintaining the high-dimensional expres-
siveness that human hands provide. The paper closes with a
conclusion and summary.

II. SOUND AND MEANING

Meaning in sound is what makes ears useful to their
owners. The often amazingly highly developed auditory
sense and its ubiquity in the animal kingdom provides telling
evidence about the richness of acoustic information that can
be conveyed and extracted in this important sensory domain,
even in the absence of the very special capacities of language
and music that give us an even enhanced perspective on
sound as a carrier of semantics. We are aware that the issue
of meaning in sound is of extremely wide scope and that we
can in the following only touch on a very limited part of the
rich levels of meaning unfolding in the brain of a human
listener.

To disentangle the multitude of semantic dimensions
offered by our auditory sense, let us perhaps start with the
highest levels, spoken language and music, which are also
evolutionarily most recent. Taking a perspective motivated
by ecological acoustics [9], we will then gradually work
backward in evolutionary history to bring into view increas-
ingly more basic constituents of auditory perception that
became particularly apparent as “basic expression,” and will
connect these to more elementary dimensions of meaning,
whose deepest roots ultimately can be seen in physics,
reflecting very fundamental laws that connect physical
and geometrical properties of our environment to sound
characteristics in a rather universal manner, invariant over a
wide range of conditions and time scales, so that evolution
found ample occasion and time to imprint these regularities
deeply into the brains of our predecessors and ourselves.

A. Sound and Meaning in Speech and Music

We usually find it extremely easy to listen to the nar-
rative of another person that is using our native language.
Moreover, we have the impression to listen to the same
story when the speaker is reading the same text to us again,
even though the visual inspection of the two sound pressure
curves—which is what arrives at our ears—would hardly
give us a clue to the fact that they contain the same meaning.

The pressure-curve-based comparison would become even
more hopeless if the second pass through the story were
made by a different voice, although this would hardly make
any difference for our immediate perception.

This example illustrates the extreme culmination point
reached in our ability to extract meaning from sound
patterns, provided they are drawn from a certain family
of “privileged” encoding schemes delineated by the pho-
netic and syntactic structure of human language. If this
requirement is fulfilled, our auditory system can bridge an
incredible gulf that exists between the raw waveform of
the auditory signal and the extremely rich semantic level of
meanings that can be expressed in spoken language.

A significant part of this capacity is most likely genetically
encoded in the brain areas that process language. However,
another significant part is the result of learning and requires
a sufficiently long prior listening experience of our native
language. The same learning capacity permits us even in later
life to implement a remarkable variety of different mappings,
at least from the family of sound patterns spanned by the
structure of human languages into the rich semantic space
spanned by human narrative.

While the learned part of meaning in spoken language
is encoded in the largely conventional association between
phonetic patterns and their word meanings (with the excep-
tion of some words that mimic acoustic features of processes
or events that they denote, e.g., “to scratch,” “to bounce,”
“to sizzle,” etc.), there is also a substantial amount of infor-
mation that is encoded along further nonverbal dimensions
that are largely orthogonal to the verbal meaning of text and,
therefore, can be accessible to a considerable extent also to a
listener not familiar with the particular language.

While language itself is already some, albeit very coarse,
indicator of membership to a particular community, finer de-
lineations are superimposed by the different dialects, which
can enable experts to spot the origin of speakers to geo-
graphic regions of remarkably restricted extent. Even without
training, we can easily classify most voices as being male or
female and we are accustomed not only to recognize indi-
vidual persons in a highly selective way from their voice, but
also to infer important additional aspects of their emotional
state and even their health or momentary condition, such as
being tired or out of breath.

Prosody is a major channel across which many of the
above features become transmitted. It is the major feature
that makes speech more impressive than writing by allowing
us to annotate narrative with emotional contents that is not
encoded in the choice of words alone, but in the way they are
spoken. By its capacity to encode emotional information, it
also plays an important role in providing us with clues about
the emotional state of the speaker himself.

Prosody shares its major elements with music: intensity,
melody, articulation, and rhythm. Obviously, this close rela-
tionship comes most vividly to the fore in human singing,
where we see the smooth perfection from prosody to music:
while most forms of singing still stick to language, the im-
portance of the verbal layer now falls by a large margin be-
hind the suitability of the used language as a carrier medium
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for melodic sounds, leading to an interesting differentiation
of languages according to that criterion. Too much attention
to the verbal layer may even lead to distractive interference
with the musical experience itself. This, together with the
particular musical characteristics of some languages, such as
Italian, may explain why the inability of understanding the
language of a song even may increase our readiness for its
musical appreciation.

Another important layer of musical meaning may be un-
derstood from its production process: a performer controls
a sounding object or instrument with the aim of expressing
his or her emotions and intentions in sound. The activity
of performing is in a way similar to storytelling. Meaning
then becomes “condensed” in interrelation of musical
elements, e.g., in harmonic, rhythmic, or melodic structures.
A change of tension and relaxation is created similarly
as in telling a story. Musical relations, perhaps through
their close relation with prosodic elements, are able to
provoke emotional reactions. By the same token, they are
able to particularly strongly activate the listener’s memory.
Recognition of themes is important for binding meaning to
musical sounds and most pieces of music include repetitive
structures and transformations of central themes to evoke
memorization [10]. Some elements of music can be easily
related to emotional value, for instance consonance/dis-
sonance (pleasant/unpleasant) or major/minor harmonies
(happy/sad), but this contributes only marginally to an
explanation of the relation between sound and meaning.

A feature that music shares with language is the strong role
of culture imprint for the constitution of meaning. However,
in contrast to language, the interpretation of musical meaning
can be extremely subjective. Besides the musical semantic
value, the listener can attend other meaningful aspects of mu-
sical sounds, e.g., the quality of a musical instrument.

B. Meaning From the Perspective of Function

Meaning usually is closely related with function [11]. Con-
sidering language and music, their predominant functions
may be seen as communication and enjoyment. However, be-
yond language and music, our daily life is pervaded with a
rich variety of further acoustic experiences, bringing to the
fore layers of meaning that stem from additional functions
not primarily encountered in language or music, or exempli-
fying in a more genuine way functions which partly play also
a role in language or music, but largely hidden under their
more typical and predominant functional layers of commu-
nication and enjoyment.

The simplest and oldest function of sound is alerting.
While for the simplest forms of alerting, such as being
shocked by a very loud and sudden sound, already very
simple processing can be sufficient, the high value of
alerting gave rise to the evolution of much more sophisti-
cated capabilities for extracting additional meaning from
sound events that might indicate a potential threat.

A first example is the capability of auditory localization.
Localization of sound sources is a complex computational
process, and yields geometric information of crucial rele-
vance for the rapid assessment of the closeness of danger and

choice of a safe escape route. The same capability can then
also be used for other means, e.g., for localizing prey, or a
task of not always entirely different character, for localizing
a mating partner. In both cases, the ability of localization can
benefit significantly from the ability of acoustic recognition.
Already in insects we see highly developed auditory systems
specialized on a remarkably accurate recognition and local-
ization of sound signals from conspecifics and even the ex-
traction of features correlated with important properties of
the emitter, such as fitness or size.

In humans, but also in many higher animals, we find the
ability not only to discriminate a very large number of dif-
ferent sound events, but also to rapidly learn new ones. This
permits single sound events to attain iconic meaning, indi-
cating events such as the slamming of a door, the arrival of
a particular person from the sound of her footsteps, or the
starting of a car. We also encounter conventionalized forms
of acoustic icons, such as the use of bells or sirens for various
signalling purposes.

Complex mixtures of natural or artificial acoustic events
can be perceived as an “acoustic scenery,” telling us about
the current weather, the situation on a busy city place, or what
is happening in a forest. Well-trained listeners, such as blind
people, impressively demonstrate the wealth of information
that can be extracted in such sceneries.

A different function of sound is to aid coordination of ac-
tions. A classical example is the coordination of footsteps of
marching soldiers. During other activities, such as brushing
our shoes or when locking a door, the associated sounds pro-
vide us with feedback confirming the orderly progression of
an intended chain of events. Numerous simpler interaction
sounds that occur when we put two rigid objects into contact
share this function of confirmative “acknowledgment” that
one phase of an action, such as setting a cup onto its plate,
has been successfully completed.

C. Meaning From the Perspective of Listening

Listening is an active process and humans can use auditory
perception in different modes. For example, a listener can di-
rect auditory attention to a single instrument in an orchestra
performance; but he can also focus on the symphony “as a
whole.” Such categories are referred to as listening types.
Again, there are several aspects along which such categories
can be formed. We will here follow a classification of Gaver
(see [12] and [13]) into musical listening and everyday lis-
tening, since it proves helpful for the later discussion.

If listeners attend the pitch, melody, or harmonic organi-
zation or rhythmical patterns of a sound signal, they use mu-
sical listening. In this mode of listening, properties of the
sound itself are attended to. The sound properties are not ac-
cessed to obtain knowledge about the object or instrument
itself, e.g., its tension or excitation, but listening is focused
on the sound itself: sound is attended to as the end and not
as the means. This type of listening is investigated in psy-
choacoustics. Musical listening is not limited to music. For
instance, listening to a bouncing ball, we can attend the rhyth-
mical changes, the brightness of the sound, and its level.
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However, in everyday life, we usually experience sound
in a quite different way: the very first thing we usually try is
to identify the sound source and to generate a mental model
about what interaction could have happened to cause the
sound. At the same time, we identify the relative location
of the sound source and are possibly concerned with an
appropriate reaction. From the perspective of evolution,
this source-oriented interpretation appears highly plausible.
People who are asked to tell what they hear frequently use a
description of an imagined sound source or process and only
rarely a characterization of acoustic properties as they are
addressed in musical listening. For example, “the sound of a
big metal gong” as a reply is more common than “a mixture
of decaying tones with decreasing brightness.” Everyday
listening is performed permanently without directing any
effort to the listening process.

Besides these two types of listening, a third type shall
be introduced now: analytical everyday listening [8]. In
contrast to everyday listening, here the focus is not on
an adequate reaction, but on learning about properties of
the sound-producing process. When we shake an opaque
box and try to guess its contents from the sound, we use
analytical everyday listening. Listeners are quite good in
discerning various attributes in analytical everyday listening,
like size, shape, velocity, material of colliding objects, or the
underground of rolling objects [14]. In contrast to everyday
listening, a high amount of attention is directed to the event
that caused the sound and the object is explored by using
its sound. Obviously, this type of listening becomes very
central when considering sonification.

D. Meaning From the Perspective of Physics

While we have seen that many aspects of meaning in
sound, particularly in language or when using sound to
transmit signals, have their origin in conventions, we also
saw that there are numerous other layers of meaning whose
origin appears to be less arbitrary. This is particularly true
when the meaning of an acoustic event is primarily rooted in
conveying information about important physical properties
of an object or process.

A major class of such events are interaction sounds.
Beyond their already mentioned significance of providing
confirmatory feedback, they also allow us to discriminate a
remarkable number of object properties, including material,
such as metal, plastic, or wood; geometric properties, such
as wall thickness of a drinking glass or grain size of gravel
in a box; and state properties, such as a filled or an empty
bottle or even the presence of a crack in a plate.

Additionally, interaction sounds also convey important in-
formation about the relative movements bringing the objects
into contact. We get important clues about the forcefulness
of the event, and we can distinguish different geometric mo-
tion patterns, such as hitting, sliding, rolling, tottering, etc.

The roots for our ability to access these many facets of
meaning can be found in the laws of physics. Any sound
that is generated is the product of an oscillatory process in

the physical environment. Mechanical excitation and energy
transfer from the object via air pressure waves to the lis-
tener’s ears are the fundamental connection between physics
and listening. In the case of a contact sound, the impact ex-
cites two physical objects. The stronger the impact, the more
energy will be exchanged between the objects, and the higher
will be amplitude of the objects’ vibrations, leading to sounds
of a higher level. The frequency spectrum of the caused vi-
brations can be a complicated function involving the stiffness
of the involved material, its density, and its geometric shape,
but also the locus of the impact point. Further properties, in
particular, energy dissipation due to internal or external fric-
tion, become reflected in the sound amplitude envelope.

Given a detailed specification of the sound generating
event, the laws of physics provide all the necessary in-
formation to compute the generated sound from first
principles [15]. The resulting computational link between
the aforementioned situational features and the emitted
spatio-temporal sound pattern constitutes a so-called for-
ward model of the sound generating process. The situation
is analogous to computer graphics, where physical laws
for light reflection can be used to compute the visual
appearance of objects to a high degree of accuracy. One
drawback is that such models, by their use of first principles,
can be computationally too heavy for many purposes, e.g.,
real-time operation at a high frame rate. This has motivated
techniques for creating more approximate models, often
working directly on more global sound features, such as
the temporal shape of the energy distribution in different
frequency bands, or even on short patches of recorded real
sounds that are then suitably filtered and blended together.

However, to uncover meaning in sound requires the in-
verse modeling path, i.e., to infer from sound patterns the
features that caused their emission. This is more compli-
cated than forward modeling, since, as in other modalities
as well, connection between an effect and its cause usually
is nonunique: different causes can produce mutually indis-
tinguishable sounds. Resolving this ambiguity succeeds only
with additional a priori information (or, in their absence, by
making assumptions) about the sound source. For instance,
when hearing repetitive noises, many interpretations are pos-
sible. With the additional information of being in a stairway,
a likely cause are footsteps of a person, and if we addition-
ally know that we are in our own house, the required inverse
model may be restricted even further to the identification of
a member of our family.

From a more extreme position, the laws of physics them-
selves can be viewed as a kind of context information for
extracting meaning from sound events. Compared to other
contexts, the context given by physical laws was stable all the
time, so that evolution had ample time to adapt our brains ex-
tremely well to the ways how physics links sounds and their
causes. This is reflected in a number of rather “universal” re-
lationships that are deeply engrained in the way we—usually
subconsciously—pick up meaning from sound events. They
involve a number of very basic sound attributes, such as in-
tensity, frequency, envelope, and further temporal aspects of
a sound signal that contain cues about a situation.
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Intensity is a very direct signifier of the amount of power
(in the very literal sense) that is in the cause of a sound event.
This has biased our perception toward associating danger
with very loud sounds.

Frequency is strongly correlated with two different fea-
tures of a sound source: the natural oscillation frequencies of
an object decrease with its mass and its size; they increase
with its stiffness and its tension. Therefore, high frequency
alone could signify high tension and, therefore, danger, but
also a small and, therefore, relaxing harmless sound source,
while low-frequency tones would signify big and potentially
dangerous sound sources or low tension and soft material
and, therefore, low danger.

These opposing interpretations can be disambiguated by
the simultaneously observed intensity. As a result, pitch at
the extremal ends of the frequency spectrum reinforces the
threatening character of intense sounds and the comforting
character of weak sounds.

Additional clues are provided by the sound envelope. A
short and sharp envelope indicates rapid change and high
dissipation and is typical for situations involving high forces
and stiff materials, factors tending to be correlated again with
danger. Sounds of long duration, with only weak gradients
of change are an indication of the stability of a situation and,
thus, may—contingent on other context factors—be felt as
comforting.

Further strong cues are contained in the temporal evolu-
tion of a sound. Since size and stiffness of an object usually
are rather constant, an increase of frequency of a tone is an al-
most certain indicator of a buildup of force and tension and,
therefore, can be a warning that we may be approaching a
critical event, such as the breaking of some support structure.
Conversely, a decaying pitch signals that we may be receding
from a critical situation. The same pattern is also caused by
the Doppler effect [15] (although the underlying physical
mechanism is entirely different): sounds of a very rapidly ap-
proaching object are shifted toward higher frequencies, with
a rapid drop in frequency when the object has passed by and
is receding. For similar reasons, fluttering noises indicate an
element of undecidedness or uncertainty by tending to be cor-
related with causes in which some weak material is involved.
Analogous remarks can be made regarding gradients in the
temporal spacing of discrete sound events.

By virtue of their strong signaling character, these very
basic patterns are also present in our prosody when we ex-
press emotions, and they are consciously exploited in music
in order to convey a buildup of tension (increasing pitch and
loudness; speeding up of rhythm) or provoke a calm and
comforting atmosphere (“warm” sounds of a low frequency,
slowing down of rhythm).

Below, we will argue that the same universal relationships
provide important design guidelines for the creation of
auditory displays in such a way that they facilitate an imme-
diate and natural perception of meaning event without prior
training. Training then can serve the purpose to enhance
our discrimination with the aid of additional attributes
which—similar to language—may have their origin in
pure conventions. An interesting intermediate position is

occupied by sounds that derived their semantic significance
not by the above, very universal physical relationships, but
still from conditions which have already become either
“hard-wired” into our brain or learned from extensive
everyday experience. A rich reservoir for such sounds is
provided by human language, which certainly comprises
many learned features, but most likely also a considerably
number of perceptual patterns rooted even more deeply by
evolutionary processes.

III. AUDITORY DISPLAYS

The oldest approach and most direct approach to obtain an
auditory display of a given data set is to use the data values
directly as a series of sound pressure values. This technique
is called audification [1], and is usually applied to time series
data, where the data set is naturally sorted by a time attribute,
e.g., seismic data [16]. Necessary parameters are a time com-
pression factor and a level scaling factor. Filters are usually
applied to preprocess the sound further. The technique can be
extended to a high-dimensional data display either by mixing
different audifications together or by using a multichannel
sound system.

Although the generation of audifications is very simple, it
already makes a number of useful data properties directly ac-
cessible to the human ear: the variance of the data becomes
audible as sound level, data set size as duration, and pitch and
timbre can reflect many aspects of the detailed time-resolved
variation of the series. Obviously, by attending to these at-
tributes, musical listening is used to interprete such sounds.

However, due to its simplicity, audification is only appli-
cable for limited sorts of data sets and requires many data
points to deliver reasonably long sounds. Adapting the gen-
erated sounds to the perceptual characteristics of the ear is
restricted to scaling and filtering. Therefore, audification is
mainly useful for data in which important regularities are al-
ready reflecting temporal variations which happen to match
well with the perceptual capabilities of the human ear, such
as, e.g., periodicities.

Significantly more flexibility for tailoring sonifications to
the capabilities of the human ear is gained with parameter
mapping [17], which is the currently dominating sonification
technique. Parameter mapping sonifications are generated
by superimposing data-driven sound events, e.g., instrument
sounds, according to given parameters like onset time, du-
ration, pitch, and amplitude. Each data point now is mapped
into the parameters of a separate sound event, which gives the
method its name and offers much more flexibility than audi-
fication, since both the underlying instrument sounds as well
as the data-to-parameter mapping can be specified by the de-
signer of the sonification according to the special needs of
the data analysis task at hand. Obviously, parameter mapping
sonifications again are based on passive, musical listening,
and they can equally easily also be generated for data points
of arbitrary size and dimensionality. However, the increased
flexibility also comes at a price: without explicit knowledge
of the employed mapping a parameter mapping sonification
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may be very difficult to interprete. Moreover, the specifi-
cation of a good mapping can turn out to be a nontrivial
requirement in many applications and the dimensionality of
the display is fixed and given by the number of parameters
of the chosen mapping.

With increasing complexity of the auditory events, they
may be recognized and used in isolation to convey meaning
in an auditory display. This idea is followed in earcons,
a very different sonification technique [18]. Earcons are
auditory patterns, usually composed of musical sounds, that
represent a message in a short musical motive. Therefore,
the association from an earcon to its meaning has to be
learned. Again, musical listening is used to process earcons.
Themes recognition is required to infer an earcon’s meaning.
With regard to semantics, earcons are similar to linguistic
sounds: each earcon represents an entire message of its
own; several earcons can be combined into a sequence
to represent more complex messages just as words can
be combined to generate a sentence. This makes earcons
very suitable to convey symbolic messages, but limits their
use for displaying continuous-valued or high-dimensional
data items. However, sonifications of such data by other
means can benefit from earcons by embedding them as
symbolic acoustic markers to annotate particular parts of the
underlying continuous sonification.

Auditory icons [19] follow the same purpose as earcons,
to convey abstract symbolic messages by using nonspeech
audio. In contrast to earcons, they do not base their meaning
on a mere convention (which can only be acquired by
learning), but instead employ a crisp sound metaphor to
encode their message. For example, a trash can sound can
be an auditory icon to confirm the deletion of a file on
the computer desktop. This kind of encoding also offers
an additional benefit: unlike the so far discussed auditory
displays, which all require rather attentive musical listening,
interpretation of auditory icons succeeds already with
less-demanding everyday listening. The main problem with
auditory icons is that for many messages (e.g., “silence”) it
can be very difficult or even impossible to find an adequate
sound pattern. As for earcons, this auditory display is not
really suited for presenting high-dimensional data sets.

Parameterized auditory icons are an extension that bor-
rows some additional features from parameter mapping in
order to convey additional analog information by suitably
controlling the parameters of the icon sound [19]. In the ex-
ample above, the two parameters sound level and sharpness
of the trash can sound could be made to reflect the size of
the deleted file and the elapsed time since the most recent
modification date. Parameterized auditory icons preserve the
advantage of easy understandability by their users, since the
metaphorical association facilitates the reference from the
sound to its meaning. This can be made true even for their
analogical part if the parameter mapping succeeds to reflect
physical properties that admit a natural relationship to sound
attributes, as discussed in Section II-D.

Although useful in many situations, the above sonifica-
tion techniques still suffer from some significant limitations:
audifications, earcons, and auditory icons are not suited for

generic high-dimensional data sets, since they can reflect
only a small set of carefully selected attributes. This limi-
tation is not shared by parameter mapping sonifications, but
only at the price of burdening the user with a complicated
mapping specification that must be kept in mind by a highly
attentive and musical listener in order to interprete the sound
with respect to the data. Even then, the simultaneously dis-
playable number of dimension usually is limited to about 20.

In the next section we will describe MBS, a very versatile
framework for sonification that the authors have developed
recently in order to cope better with most of the above limita-
tions. MBS can be applied for a wide range of data types and
application situations. It offers a very high amount of flexi-
bility to create sonifications that can be made well-adapted to
the discrimination and learning abilities of human listeners.

IV. MODEL-BASED SONIFICATION

The motivation for MBS [8] was the desire for a principled
connection between data and sound, a generic strategy which
on the one hand allows auditory displays for arbitrary data
sets concerning dimensionality and size, and on the other
hand to provide—from the design of the sonification tech-
nique—a natural means for interacting with a sonification
system.

In the new framework of MBS, these two objectives are
achieved by using a parameterized sound model as the cen-
tral device to create the auditory display. This sound model
can be imagined as a virtual object responding with sound,
for instance when being “struck” by the user. This offers a
very flexible, two-level design approach for a sonification:
the specification of: 1) the virtual sound object (characterized
by a range of acoustic modes and involving the specification
of how the data determines the concrete setup) and 2) the
specification of how the user interacts with the virtual object
in order to query and explore its properties from the sound.
To get a first picture of the range of possibilities opened up
by MBS, let us look first a bit more closely at possible ways
to fill design steps 1) and 2).

A first way chooses the virtual sound object and its modes
of interaction in close analogy to familiar physical situations,
such as, e.g., striking of a drumhead. Even in this case, the in-
teraction rules need not be precisely confined to what physics
would permit in the real world. Instead, one may introduce
modified or additional laws to accentuate the perceptibility of
particular data properties. Examples might include data-de-
pendent modifications of the drumhead’s shape, membrane
tension, or damping properties, effects that would be difficult
or impossible to implement in reality. Here, a major impor-
tant point is that any such modifications can act in a familiar
context of a physics-based sound generation process. This
can significantly aid the understandability and learnability of
the resulting MBS.

A second way would exploit the freedom of creating
sound generation processes in a virtual world more aggres-
sively by lifting restrictions such as the three-dimensionality
of ordinary space, the limits of familiar materials, and
their internal dynamics, as well as constructive constraints,
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such as limits of realizability of unorthodox, e.g., fractal
geometries and the like. Even then, significant parts of
such models can still embody general process structures of
familiar physical processes, although in a virtual world of
otherwise possibly strange “physical” laws. This gives them
a decisive advantage over purely abstract parameter mapping
techniques while at the same time offering a tremendous
amount of freedom in “sculpting” the sound generation
process in a cognitively penetrable manner.

Both of the above two approach styles permit sonifica-
tions that are well suited for analytical everyday listening.
However, from a perspective of music, the specification of
the virtual sound object(s) also shares many analogies with
the construction and tuning of a (in this case virtual) mu-
sical instrument, whose detailed properties are, however, de-
termined and parameterized by the data set at hand.

This musical analogies provides designer and user of
MBS with further rich possibilities for selecting model
classes in such a way that they can benefit from musical
listening skills as well. In this way, the new framework of
MBS can address most of the problems encountered with
parameter mapping and provides a qualitatively comple-
mentary link between data and their acoustic representation.
However, as a subset of MBS, the data may be transformed
to entities in model space that act on other acoustic model
components, such that actually the data stream literally
“plays the virtual instrument,” a perspective which relates
MBS and parameter mapping sonification.

Specifically, MBS offers the following advantages.

• Limited number of parameters: A sonification
model can be formulated so that only few parameters
need to be tuned. The number of parameters only
depends on the model. In contrast, parameter mapping
needs as many parameters as available sound attributes
and is only capable to represent data of that dimension
without loss.

• Semantic grounding of parameters: While param-
eters in parameter mapping are related to sound at-
tributes, parameters in MBS control physical source at-
tributes. They may affect the sound in a complex way,
but since the model is always grounded in a physical
sound generation process that can be familiar from ev-
eryday experience, the connection between sound and
data can be made to appear natural and easy to pick up.

• Good learnability: As a consequence of the previous
point, MBS inherits all the strengths of parameterized
auditory icons while lifting their limitations through the
strongly increased flexibility offered by the two-stage
MBS design process. Compared to parameter mapping,
the sounds of a sonification model are much more co-
herent in structure with different data sets. Thus, the
listener can rapidly become familiar with the sounds of
a model and improve in perceiving subtle patterns.

• Generality: Sonification models can be formulated so
that they operate on data of arbitrary dimensionality
and data set size.

• Intuitive time axis: Time matches to temporal evo-
lution of the model and is, thus, intuitively related to

changes or events with the process described by the
model.

• Intuitive interface: Sonification models can offer
many flexible and natural “handles” for the access to
and manipulation of the sound generating process and
can use concepts grounded in a physical world. Sound
is used as a feedback to user actions, which matches
to our expectations from manipulating objects in the
real world.

• Active user: Interaction rules connect the user’s ac-
tions with the sound feedback. Since user interaction
may not only provide excitations of the model but also
continuously control model parameters, MBS supports
a new style of active data exploration with the model-
driven auditory display in a closed loop with the user.

• Ergonomic factors: Avoiding annoyance by auditory
data display is a crucial issue. If the sound is the system
answer to a user’s action, as in MBS, the annoyance is
reduced—in fact, users may get so much used to the
auditory feedback that it is missed if it is absent.

• Symmetry: Sonification models may be designed to
be invariant to transformations of a data set that have
no semantical relevance, such as global rotations or
scaling, which is impossible, e.g., for audification.
Their design makes it also easy to respect symmetries
in data space. In parameter mapping, such symmetries
are for instance broken by assigning a single attribute
to the time axis.

The detailed specification of a sonification model and its
parameterization principles, which describe how to incor-
porate the data set, may at first sight appear complicated.
However, one should note that one needs to go through the
full development cycle only in rare cases—typically only
once—when creating a new model. From a practical view-
point, one would start with a library of different types of
sonification models, geared toward different families of data
types and analysis purposes. For a concrete application, then,
one would only need to tailor a chosen model to the de-
tailed specifics of the task at hand after which the sonifica-
tion could start. Still, when the need arises, MBS offers the
necessary breadth to develop highly optimized sound models
that can then act as very specialized “resonators” to endow
the user with an “acoustic fovea” that can support his nat-
ural acoustic perception with highly domain-specific audi-
tory zooming capabilities that may be required to solve very
delicate data analysis tasks.

In the following section we will illustrate some of these as-
pects more closely with a concrete example intended to sup-
port interactive cluster analysis. The example is intentionally
chosen as rather simple in order to exemplify how already
very few ingredients suffice to obtain an acoustically rich and
versatile sonification model.

A. The Particle Trajectory Sonification Model

Our example uses as its sound generating process a model
of the motion of a number of ficticious particles under the
influence of a force field that is created from the data points
of the data set under analysis [7]. We use this example for
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Fig. 1. Particle trajectory sonification connects system dynamics and auditory representation.
(a) Five thousand steps of a typical particle trajectory in the data potential V for a clustered data set
in two dimensions. (b) Obtained sound signal by low-pass filtering the instantanous kinetic particle
energy. (c) Spectrogram. The pitch stabilizes during convergence of the trajectory to the mode of V .

a concrete illustration of five general aspects that must be
specified for the complete definition of a sonification model:
1) the setup; 2) the dynamics; 3) the sound-link variables;
4) the listener characteristics; and 5) the interaction types.

Setup. In the present case, we define the model setup a
potential function , which we choose as a superposition of
distance-dependent potentials

(1)

centered at the given data points , .
Intuitively, it makes sense to restrict each data point’s po-

tential contribution to the vicinity of its location
. This motivates the choice

(2)

where is a particle mass, is the mass of a data point,
and is a bandwidth parameter. Different from the gravi-
tational law, here a negative Gaussian is taken for two
reasons: numerical instabilities are avoided, since has no
singularity, and the approximately parabolic shape of close
to the origin gives rise to harmonic (pitched) sounds, as will
become clear soon.1

Dynamics. In the present model, we specify the dynam-
ical elements with a set of ficticious (test) particles injected
into data space to probe the potential . For the particles’ dy-
namics we choose Newton’s law of motion with a damping
term

(3)

where is the resistance constant and the particle mass.
Due to the damping term , the particles’ kinetic energy
decays until they come to rest in a local minimum of . If

1The deviation from parabolic shape at larger distances, however, is
important. Without it (i.e., all �() are purely quadratic), V (~x) would be
quadratic as well and, thus, most of the information in the positions ~x
would become “averaged out.”

the data set exhibits a cluster structure, such minima will tend
to be located near cluster centers. The parameter will con-
trol the scale at which clusters are seen: potential “valleys”
of data points closer then will “fuse” into a common, large
valley while empty regions extending over distances signifi-
cantly larger that will separate different clusters.

Sound-Link Variables. The sonification is simply
obtained by adding the kinetic particle energies

of all particles , giving
the role of the sound-link variable. Since the

kinetic energy is always a nonnegative number, the sound
signal will show a dc bias, which can easily be removed
using a high-pass filter.

Listener Characteristics. Although the sonification
model uses a spatial description, in this model the listener
shall not be located into listening space: all kinetic energy
terms contribute with the same weight to the sound and,
therefore, the model may be denoted as nonspatial.

Interaction Types arise from the model definition: one
can either “throw” particles into model space, or “hit the
model” to increase all particle energies. Further possible in-
teractions are discussed in Section V. Currently, only the first
excitation type is implemented and the resulting sounds will
be described.

To get an intuitive picture of the sound generation process,
imagine a single particle moving around in of a data set
with Gaussian distributed data points. Fig. 1 shows a typical
two-dimensional (2-D) projection of the particle trajectory.
If the particle passes through a minimum of , its kinetic
energy has a maximum. As in a pendulum, kinetic and po-
tential energy are transformed periodically so that the kinetic
energy as a function of time shows an oscillatory behavior,
audible as sound. If the potential function would be a har-
monic potential, i.e., is a quadratic form, the newtonian
dynamics would lead to damped sinusoidal sounds [15]. The
nonlinearities of , however, cause the period to be longer if
the particle reaches the tails of a potential trough, since the
restoring force decays with distance to the data. So the sound
of a particle is characterized by pitched sounds with an in-
creasing pitch, converging to a pitch value that is determined
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Fig. 2. Sonogram of a bandwidth sweep of particle trajectory sonifications. As � is decreased,
the clustering structure becomes audible. A plateau of the pitched particle sound contributions,
visible near “C,” reflects the presence of stable clusters at that length scale. The corresponding
sonification contains are polyphonic texture at the corresponding time.

by the curvature of near a cluster center. Sound example
S1 illustrates this behavior.2

Let us assume that a particle moves around in a data space
with data distributed according to a mixture of two normal
distributions with different mean and covariance. Further-
more, assume that is large enough so that the individual
point potentials “fuse” to yield only two separate potential
troughs in . Then a particle of energy

will be able to move within the limited domain where
. Initially, it will perform quasi-chaotic motions

that contribute to the sound signal with a noisy chaotic pat-
tern. Gradually the initial energy decays so that the particle
becomes caught in one of the two potential troughs. As a re-
sult, the sound pattern turns into an increasingly harmonic
oscillation that finally fades out as a pure sinusoidal with a
frequency proportional to the curvature at the mode. Thus,
clusters of higher mass lead to increased attraction on the par-
ticles, the increased tension resulting in higher pitched tones,
while the broader valleys of larger sized clusters will give
rise to lower sounds, again in accordance with the physical
semantics of everyday sounds.

From single particle sounds, only limited information
about can be withdrawn. This changes when using an
ensemble of particles, since there will likely be particles that
converge to different clusters and, thus, contribute to the
sonification with a different characteristic sound, making
the clustering structure audible from the polyphony of the
sonification. Sound examples S2 and S3 (see [20]) illustrate
such sounds for a data set with one and with three clusters.

Obviously, a very limited number of parameters are re-
quired to control the model: the particle mass , the initial
energy , the resistance constant , and the bandwidth .
They all have a clear meaning for the model, and the resulting
sound changes on parameter variation are intuitively under-
stood. For example, it is obvious that by increasing the
sounds will decay faster while choosing a larger particle mass
will shift the sounds toward a lower frequency. A particularly

2The sounds can be found on the Web site [20].

interesting parameter is the bandwidth that controls the
spatial resolution of probing the data. With very large values
of , looks like a single (scaled) potential. At interme-
diate values, reflects data clusters as separated smooth po-
tential troughs. Finally for very small values, contains as
many local minima as there are data points, all having the
same shape of . Such a resolution parameter is well suited to
be controlled interactively according to interests on the data.
Fig. 2 shows a sonogram of a sequence of 30 particle sonifi-
cations, obtained for a geometrically spaced set of values
decaying with time, remaining constant during the single par-
ticle sonifications whose start can be seen from the vertical
bars in the figure. Since the sonification model mimics a
physical process, meaning and sound are related as in a phys-
ical analogue: excitations cause an acoustic feedback and the
sound level decays with time. From model design and from
understanding how the model works, it is evident to relate the
perceived pitch to the cluster mass (number of data points
that contribute to a cluster) and to the cluster variance: the
higher the cluster mass, the stronger the restoring force that
attracts a particle; the larger the cluster variance, the lower
the pitch. As with real-world object interaction, stronger ex-
citations will cause louder sounds; thus, interacting with the
sonification model addresses the same perceptual skills as we
use in analytical everyday listening.

A second important way—complementary to analytical
listening—is based on auditory gestalt perception which can
occur as a result of repeated experiences with a sonifica-
tion model. The concept of auditory gestalts is in analogy
to visual gestalts: a subset of acoustical elements perceptu-
ally bound together into a “unit” as a result of a particular
coherence, characterized by one of the “gestalt laws,” e.g.,
similarity (e.g., of timbre), good continuation (e.g., of pitch),
common fate (similarity of changes, common onset of tones).
For more on gestalt laws and a further discussion, see, e.g.,
[2]. Any sound pattern that is discerned as such a gestalt can
be related to knowledge about the underlying structure of the
data. From experiencing the sonification model with a large
number of different data sets, the listener can gradually learn
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Fig. 3. Picture of the haptic interface ball for controlling and interacting with sonification models. It
contains FSRs, two 2-D accelerometers, and a motor to generate active vibration.

to relate the perceived sound to the known structure of the
data, and in this way develop semantic categories that are
not only related to a single acoustic attribute but to the sound
as a whole. Sonification models support this learning pro-
cesses by supplying an invariant process to be used in the
same manner for very different data sets.

V. SOUND AND INTERACTION

Most everyday activities are accompanied with sound
feedback. Every keystroke on the keyboard as well as any
footstep causes an acoustic result. Humans can actively
elicit acoustic feedback by interacting with objects in
various ways, such as hitting, rubbing, scratching, plucking,
shaking, or deforming objects. Most of the interactions
can be varied in strength, duration, or location and, thus,
represent multidimensional queries to the object properties.
In real-world situations, the following aspects are most
relevant: 1) immediate response—the sound corresponds
directly to actions with a latency of less than 10 ms, e.g.,
the contact sound when putting an object on a table signals
that a motion is finished; 2) information—the sound delivers
often useful information for performing a task, e.g., using
a drill—absence of sound would cause vagueness; and
3) control loop—acoustic feedback sounds can provide
valuable cues to refine an action or to “to keep it on track,”
e.g., filling a bottle with water.

An interesting analogy can be drawn with visualization.
In sonification, each single interaction sound contributes a
single “auditory aspect” of a situation and, therefore, appears
as analogous to a visual 2-D view on a scene. We are accus-
tomed to an active navigation through a sequence of such
views in order to pick up the three-dimensional (3-D) layout
of the depicted situation in computer-assisted visualization.
Very similarly, we should expect that active user control for
navigating through a sequence of auditory aspects, offered in
the form of interaction sounds in a sonification, will play an
important role in gaining a more complete understanding of
a collection of data items from listening.

While in vision it is sufficient to make viewpoint and view
direction controllable, the different nature of sonification
may benefit from the simultaneous, coordinated control of a
larger number of parameters. While a suitable set of widgets
in a computer screen GUI may provide an obvious starting

point, a much better interface would directly use our ability
to carry out complex hand movements that involve the
rapid coordination of more than 10 degrees of freedom in
each hand (this is a conservative estimate, taking couplings
among joints into account).

While a dataglove provides an obvious input device, a
more challenging approach uses visual-based hand posture
recognition for realizing such an interface. For an initial pro-
totype example system, see, e.g., [21]. Here, we wish to de-
scribe results of recent work along a different line, aiming at
complementing the camera-based approach with an elastic,
palm-sized interface ball. While the camera-based approach
is contact free, here we pursue the goal of an interface that
offers a more “physical,” mixed-reality interface for inter-
acting with data. Thus, instead of providing just a controller
for manipulations in the computer, the interface shall take
the role of a tangible, physical representation of the data. To
achieve this, accelerations imparted to the interface ball must
be mapped onto suitable “acoustic aspects” of the data, and
these response patterns must be computed with perceptually
negligible delay in order to create for the user a convincing
perceptual illusion that the sounds are to be attributed to the
motion of the interface ball.

The current prototype of the device is shown in Fig. 3.
In an ergonomically shaped housing formed with air-drying
plasticine, force resistive sensors (FSRs) for each finger and
two 2-D accelerometers are mounted orthogonally. Addition-
ally, four buttons are provided which may be programmed
to provide additional commands for the user interface. The
FSRs permit to sense when the ball is being squeezed, while
the accelerometer allows to track (by temporal integration)
orientation (rotation) and (with a high-pass filter) to detect
sudden impacts like hitting or striking the ball. In a future
version, we also will mount a pad connected to four piezo-
mechanical sensors in order to resolve spatio-temporal im-
pact patterns.

Our first sonification model for this ball, described in
[22], uses the model of a data solid to explore high-dimen-
sional data sets from binary classification problems through
actively elicited interaction sounds. We employ a growing
neural gas [23] to condense the given data set to a more
manageable number of prototypical data items. Each data
item is considered as a small “data grain” with material
attributes assigned according to the predominant class label
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among all data points which have the data grain as its nearest
neighbor. The data grains are considered to be elastically
bound to their equilibrium positions in the high-dimensional
feature space. User-imparted shaking motion of the interface
ball will set the data grains into corresponding oscillatory
motion. The resulting contact sounds of colliding data
grains are rendered in real-time according to the properties,
with timbre determined from the grain material of colliding
objects and level dependent by the relative grain velocities.
In this way, the interaction generates an acoustic feedback
that provides the user with the perceptual illusion that the
data items are “inside the ball” and that the collisions are
the direct result of his shaking movements. This allows him
to probe in a very direct and intuitive way the nearness of
adjacent cluster borders and their population density with
data items from different classes.

The above sonification model based on particle trajecto-
ries will permit as a next step the comparsion of different po-
tential shapes with regard to their utility for listening-based,
physical exploration of interesting features of data distribu-
tions in an abstract feature space. In the simplest case, the
potential would become fixed to the coordinate frame of
the ball. Translations then cause a shift of the probing parti-
cles in the model. Shaking interaction removes the particles
from their equilibrium position and makes them contribute
to sound. Hitting the ball just provides additional kinetic en-
ergy to the particles. Spatially resolved hitting can be used to
activate particles in different regions of the data space, e.g.,
by identifying the ball axes with the first two principal axes
of the data set. Squeezing the ball may be assigned to con-
trolling the bandwidth parameter —another mapping of a
highly intuitive character. Implementation of these modes of
interactions with the ball are currently on its way and sound
examples will be reported on the Web site [20].

VI. CONCLUSION

This paper has addressed some aspects of the important
relation between sound and meaning in auditory data dis-
plays and their role for using auditory data displays to sup-
port exploratory data analysis of high-dimensional data sets.
Having started with the perspectives of speech and music, we
have considered the connection between various functional
roles of sound and its meaning, taken a closer look at dif-
ferent forms of listening, and finally discussed which aspects
of meaning in sound events can find their ultimate semantic
grounding in the laws of physics that govern their creation.

From a brief review of existing techniques of auditory dis-
plays, we derived the conclusion that most of them so far
focus on the use of musical listening, while offering only
little possibilities for everyday listening which would have
the advantage of a reduced need of training. More seriously,
the majority of techniques faces problems for the sonifica-
tion of high-dimensional data sets and no existing technique
so far considers the important issue of active, user-controlled
interaction with sound.

As a promising new alternative, we have presented a new
approach to data sonification which offers a generic strategy

for creating auditory displays for arbitrary data sets in close
combination with natural means of interacting with the soni-
fication system. This new framework of MBS achieves these
two objectives with a parameterized sound model deriving its
strength from its grounding in an intuitive, physical picture
of the sound generation process. We argued why it permits
insightful sonifications also for analytical everyday listening
and can help to solve some of the problems pertaining to the
existing approaches discussed previously.

We have illustrated the MBS approach with an example
using particle trajectories for sonification. Considering the
issue of interaction, we compare sequential, user-controlled
interaction with sonification models to navigation in visual
scenes and report about a first prototype of a “tangible phys-
ical representation-interface” in the form of an elastic ball
equipped with pressure and acceleration sensors, which al-
lows us to “perceptually map” sonification responses into
active exploratory motions of shaking and squeezing. We
conclude with an outlook on ongoing work toward the use
of the trajectory model in conjunction with the interface ball.

From our experience so far, we are very confident that the
approach of MBS is very suitable to open up interesting new
directions for utilizing sound in exploratory data analysis. We
hope that the method can stimulate the invention of new fam-
ilies of sonification models, their refinement, and their final
organization into useful and versatile toolboxes offering re-
searchers new ways to explore data for various properties like
clustering, intrinsic dimensionality, nonlinear dependencies,
class borders, and the like.
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