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Abstract—In this paper, the packet delay statistics of a fully re-
liable selective repeat automatic repeat request (SRARQ) scheme
is investigated. The study is carried out assuming that the packet
error process can be characterized by means of a discrete time
Markov channel. The packets transmitted by the sender are
checked for errors at the receiver’s side, and acknowledgment
messages (ACK or NACK), assumed error free, are sent back
accordingly. It is assumed that the feedback message is known
at the transmitter m channel slots after the packet transmission
started. First, an analytical exact approach is described, in which
an appropriate Markov model is developed in order to find the
exact delay statistics. This allows to write close formulas related
to the delivery delay experienced by ARQ packets. Moreover, in
order to reduce the computational complexity of this analysis,
an approximate model is presented. The results obtained from
the approximate approach are in good agreement with the ones
derived from the exact analysis.

Index Terms—Automatic repeat request, data communication,
delay estimation, error analysis, Markov processes, modeling.

I. INTRODUCTION

MODERN communication systems are now facing an
increasing development of multimedia applications. In

this scenario, effective error control techniques are required,
especially for error-prone channels, like wireless links. In fact,
many multimedia applications are very sensitive to channel
impairments, which may occur with higher probability than the
application can tolerate. Thus, the need for good performance in
terms of data reliability, latency, and efficient bandwidth usage
implies a careful design of error control techniques as well as a
deep understanding of the underlying mechanisms.

In this work, we focus on automatic repeat request (ARQ)
techniques, whose study in recent years is enjoying renewed
popularity. Link layer retransmission techniques are already
used, in combination with physical layer forward error cor-
rection (FEC), by the universal mobile telecommunications
system (UMTS) and general packet radio service (GPRS) [1].
In these systems, ARQ is coupled with FEC-like strategies to
ensure data integrity while keeping both acceptable delays and
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tolerable consumed energy levels. ARQ strategies are also used
for Bluetooth piconets [2], and analogous solutions are consid-
ered in mobile satellite communication systems [3], where the
higher level retransmissions, e.g., transmission control protocol
(TCP), and the physical layer processing often do not suffice to
achieve acceptable performance.

Another fact showing the importance of having an accurate
description of the ARQ recovery process is that the perfor-
mance of higher level packets, in terms of delay/jitter and error
probability, is directly affected by its behavior. In other words,
a correct ARQ setting is key in achieving the needed higher
level quality of service. Hence, an exact study of the delivery
delay process at the ARQ level is pivotal to accurately assess
the performance perceived by the user.

In ARQ, the transmitter sends packets (protocol data units,
PDUs) consisting of payload and error detection codes. At
the receiver side, based on the outcome of the error detection
procedure, acknowledgment messages are sent back to the
transmitter (ACK or NACK according to the result of error
detection). The sender performs packet retransmissions based
on such feedback. In general, ARQ protocols are variants of
the following basic schemes: stop-and-wait (SW); go-back-N
(GBN); and selective repeat (SR). In SW, only one packet in
a round-trip time is transmitted, i.e., a new packet is transmit-
ted only when the ACK of the current one is received. This
scheme is not very efficient, especially when the round-trip
delay is large. In GBN, packets are transmitted continuously,
without waiting for acknowledgment messages. When a NACK
is received, the transmitter simply retransmits the erroneous
packet and all the subsequent ones. The SR scheme is the
most efficient: Here, packets are transmitted continuously, and
only negatively acknowledged packets are retransmitted, i.e.,
retransmissions are selectively triggered by NACK messages.
When the round-trip delay goes to zero all the schemes become
identical. In the literature [4], [5], this situation is referred to as
an “ideal” SR ARQ.

The overall PDU delay with ARQ protocol can be subdivided
in three contributions. These quantities will be referred to as
queueing delay, transmission delay, and resequencing delay, as
usually done in the literature [6], [7]. The first is the time spent
in the source buffer queue, i.e., the time between the instant of
the first PDU transmission over the channel and its release by
higher levels. This term depends on both the channel behavior
and the PDU arrival process. The second contribution is the
time between the first transmission and the correct reception
of the PDU, which only depends on the channel behavior. The
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last term is the time spent in the receiver resequencing buffer.
In fact, even though the sender transmits packets in order, they
can arrive out of sequence due to random errors and consequent
retransmissions. Hence, a correctly received PDU must wait in
the receiver resequencing buffer until all the PDUs with lower
identifier have been correctly received. This last term is the
most complicated because it depends on errors experienced
by other PDUs. In the following, the term “resolution” (of a
packet) will mean correct reception, whereas “delivery” (or
equivalently, “release”) refers to the joint resolution of the
considered packet as well as of all packets with a smaller
identifier (id). In this paper, we are interested in the statistics
of the delivery delay, defined as the time between the first
transmission of the packet and its successful release from the
resequencing buffer; in other words, the sum of the second and
third terms.

Several studies have been performed on the delay perfor-
mance of the SR protocol over a wireless channel [5]–[12].
In [8], Konheim proposes an analytical model for deriving
the distribution of packet delay and buffer occupancy at the
transmitter of an SR ARQ control system and considering a
static channel. In [9], an alternative approach for the same
problem considering a Bernoulli arrival process is proposed by
Anagnostou and Protonotarios. Rosberg and Shacham [10] and
Rosberg and Sidi [11] analyzed in detail resequencing delay
and resequencing buffer occupancy at the transmitter and at the
transmitter and the receiver jointly, respectively, but again in
the independent error case. The impact of time-varying channel
was considered for example in [13], [14], though for SW and
GBN only. An analysis of correlated errors for SR ARQ by
means of flow graph theory was presented for the first time by
Lu and Chang [12], where both Markovian models for the chan-
nel and gap functions are considered. The scope of the investi-
gation is mainly about the throughput, and it is proven that the
performance of ARQ is not degraded (in certain cases, it is even
improved) in the presence of channel correlation. Fantacci [5]
carried out another analysis considering a nonstationary chan-
nel and deriving mean values for the queue length at the trans-
mitter and for the packet delay. Exact quantities are obtained
for the ideal SR, whereas approximated formulas are given to
match the finite round-trip delay case. Another approximate
analysis is presented by Chang and Yang [6], with the additional
hypothesis of an adaptation in the SR ARQ protocol. Here, an
estimate of the total end-to-end delay is presented. Finally, Kim
and Krunz [7] accounted for a time-varying channel and a finite
round-trip delay by developing a detailed analysis for all the
ARQ delay contributions. However, several approximations are
introduced, for example, the hypothesis of ideal SR is used for
the queueing delay evaluation, so that only approximate mean
values for the three components can be quantified.

The goal of this paper is to extend all the above contribu-
tions, by considering as general a scenario as possible. Hence,
we study the delay performance of the SR ARQ scheme,
considering both time-varying channel and finite round-trip
time, taking into account the effect of bursty channel errors.
Moreover, our goal is to provide exact expressions, rather than

approximations, where possible. In particular, we present an
exact analysis for the delivery delay statistics, which has never
been obtained before. This contribution greatly extends the
existing literature since we do not give just approximate mean
values, that in certain cases could be misleading, but we derive
the complete statistical description, so that the performance can
be exactly evaluated. In the following, some assumptions will
be made to simplify the formal description. However, note that
the generality of the results is not affected. In fact, the analytical
method that we present does not critically rely on any of these
assumptions, which are chosen only for the sake of clarity in
the presentation. This means that, if needed, every hypothesis
can be relaxed to extend the model to more complicated cases
(at the only price of having a more cumbersome analysis, but
without substantial changes in the formal approach).

As shown next, an exact analysis has, however, the drawback
of a notable computational complexity. Nevertheless, we solve
this drawback with another contribution, which is an approxi-
mate evaluation of the delivery delay statistics. This is obtained
using the same approach adopted for the exact analysis, but
keeping the complexity linear in the round-trip delay value,
rather than exponential. We also prove that, in spite of this
adjustment, the approximate approach achieves results that are
in excellent agreement with the exact ones. Thus, also in the
approximate analysis, the novelty of our contribution is main-
tained. The proposed approach is computationally convenient,
even for very long round-trip delays. Hence, it enables the
computation of the delivery delay statistics in resource-limited
wireless systems.

The remaining part of the paper is organized as follows:
In Section II, the ARQ policy and the channel model are
described; in Section III, the exact analysis of the delivery
delay is reported; the complexity of the resulting Markov chain
is exponential in m. In Section IV, we report an approximate
approach for the computation of such statistics by keeping the
model complexity linear in m. Section V reports some results,
and finally, in Section VI, some conclusions are given.

II. MODEL FOR ARQ PROCESSES

We consider a pair of nodes that communicate through a
noisy wireless link using a fully reliable link layer protocol
(unlimited retransmission attempts) to counteract channel im-
pairments. We assume that both transmitter and receiver have
unlimited buffer size and adopt the SR ARQ protocol at the
link layer. This implies that data packets (ARQ PDUs) and
ACKs/NACKs flow in the forward and backward direction,
respectively.

Let us assume that the wireless channel is characterized by
means of a two-state discrete time Markov chain (DTMC),
with states 0 and 1. We assume that transmissions in state 1
are always erroneous, whereas state 0 is error-free. This is a
reasonable assumption in many cases [4]. From a theoretical
point of view, even such a simple model is able to give the
necessary insight for the analysis. However, if desired, this can
be extended to account for a more complex system, like a higher
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order Markov chain [12], without changing the nature of the
analytical approach.

The channel transition probability matrix P and the corre-
sponding i-step transition probability matrix P(i) are as follows:

P =
( p00 p01

p10 p11

)
, P(i) = Pi =

( p00(i) p01(i)
p10(i) p11(i)

)
. (1)

From this equation, the steady-state channel error probability
and the average error burst length can be derived as ε =
p01/( p10 + p01) and b = 1/p10, respectively.

Moreover, our analysis can be easily extended to account
for erroneous ACKs/NACKs. In this case, it is reasonable to
assume that forward and backward error processes are inde-
pendent. Then, if the ACK error process is independent iden-
tically distributed (i.i.d.), the extension is trivial and consists
of accounting for the single ACK error probability εACK so
that every packet correctly delivered on the forward link has
a probability εACK of not being acknowledged. Instead, in
the case where the backward channel has memory, its error
process can be tracked, e.g., by introducing a second transition
matrix and considering a packet transmission as successful only
when both the forward and the backward channels are error-
free. This only leads to complications in the calculus without
changing the formal approach. An example of the usage of the
feedback channel matrix is given in [15]. As a side remark,
note that in real systems, feedback packets are usually assumed
to be error-free since they are much shorter than data packets.
In addition, they are often protected with coding techniques,
thereby making the impact of ACK/NACK errors negligible as
shown in [16].

We consider the SR ARQ scheme as a generalization of
the protocol described in [17]. In this system, the sender con-
tinuously transmits new PDUs from its buffer in increasing
numerical order as long as ACKs are received. For the purpose
of analysis, we assume that time is slotted with the time slot
duration corresponding to the constant transmission of a PDU.
We also assume that the value of the round-trip time is an
appropriate integer number of slots m, as commonly done in the
literature [18], where m is referred to as the ARQ window size.
Thus, the sender receives the ACK/NACK message for each
packet after the transmission of m− 1 subsequent PDUs, which
can be new PDUs or retransmissions of erroneous packets.
Due to the SR procedure, m slots after each transmission, i.e.,
when the feedback packet is received, the PDU is immediately
retransmitted in case of NACK, else a new PDU is sent.

The main goal of this paper is to give an explicit expression
for the computation of the delivery delay statistics (sum of
transmission and resequencing delay). In particular, our con-
tribution is to jointly track the Markov channel evolution and
the correct reception of the packets. This study only marginally
depends on the arrival process. In particular, the delivery sta-
tistics is influenced by the number and the position of the
packets which can block the in-order delivery. However, once
this information is given, the analysis presented in the following
can be applied without substantial changes.

For what concerns the traffic model, one could observe
that it mainly affects the queueing delay, that is out of the
scope of our analysis, whereas the delivery delay only slightly
depends on it.1 So, it is reasonable to consider a simple model
for the arrival process, although our analysis could again be
extended with a more complicated scheme if necessary. Hence,
we suppose that once a PDU is correctly transmitted, a new
one is always present in the source buffer. This model is
referred to in the literature [7] as “Heavy Traffic” condition,
and describes exactly a continuous packet source. Thus, it
holds, for example, for a TCP file transfer protocol (FTP)-
like session or video/audio continuous data streaming. Reli-
able ARQ almost completely avoids TCP timeouts (when the
channel error rate is not too large) and the TCP level, after
filling the bandwidth-delay product, behaves as a continuous
packet source (the TCP window size is not decreasing because
error recovery is never triggered). Should the Heavy Traffic
assumption not be verified, the delivery delay computed with
it can be seen as a good approximation. However, note that an
evaluation relaxing this hypothesis, omitted here due to space
constraints, would still be possible. In fact, Yoshimoto et al.
[19] already gave useful considerations about the effect of more
complicated arrival processes in SR ARQ systems, in particular,
the average queue length is analytically evaluated. By means
of this contribution and considering an approach similar to the
one followed in [11], it is possible to generalize the statistics
derived in the present paper to arbitrarily complicated cases.

III. COMPUTATION OF THE DELIVERY DELAY STATISTICS

In this section, we compute the delivery delay statistics of
SR ARQ for a single PDU. The basic idea is to mark a PDU
of interest, called in the following tagged PDU, and to track
its successful delivery. Note that this implies that all previous
PDUs must be jointly tracked as well, as they must also be
correctly received before the tagged PDU can be released
(in order) to the higher layers.

Let t = m be the slot in which the tagged PDU is transmitted
for the first time, which implies that a successful transmission
occurred a round-trip time earlier, i.e., in slot t = 0 (otherwise,
a retransmission would take place in slot m). The m-sized win-
dow from slot 1 to slot m will be called fundamental window,
due to the important role that it plays in the analysis. The tagged
PDU is finally released when all PDUs in the fundamental
window are correctly received. It can be shown that these are
the only ones that need to be considered, i.e., PDUs that are
not transmitted in the fundamental window play no role in the
delivery of the tagged PDU. (A formal proof of this statement,
as well as a more precise treatment of the following discussion,
can be found in [20].)

Note that due to the finite round-trip time, there is a time
difference between the transmission process at the sender
and the reception process at the destination, which depends

1This behavior has been observed by simulation and is not reported here due
to space constraints.
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on the propagation and processing delays involved. While
we take this explicitly into account in studying the effect of
successive retransmissions (which must be separated by the
round-trip time of m slots), in order to simplify the notation,
we ignore it in the definition of the delay. That is, if all PDU
transmissions are successful, the delay in our analysis is zero
(which means that a PDU is correctly received and passed up
to the higher layers with the minimum possible delay). The
neglected contribution tc, which has a constant value and is
approximately equal to m/2, can be added to find the absolute
delay values. Thus, in the following, we will study the statistics
Pd[k], defined as the probability that the delivery delay equals
k slots plus the constant term tc.

In view of the above discussion, the problem to be solved is
therefore to find the time that it takes for all PDUs transmitted in
slots 1 through m to be eventually received correctly, given that
a successful transmission occurred in slot 0. When this happens,
the tagged PDU is finally released to the higher layers.

Consider the transmission of the fundamental window, fol-
lowing the (necessarily successful) transmission in slot 0. Some
of the slots in {1, 2, . . . ,m} are successful, and we denote them
as resolved (a resolved slot corresponds to a PDU that does
not need retransmission). Note that if slot i is resolved, all
slots i + κm, with κ a positive integer, will correspond to the
transmission of PDUs whose id is higher than the tagged PDU,
and therefore can be ignored for our purposes. Thus, if slot i is
resolved, all slots i + κm, with κ a positive integer, will also be
denoted as resolved (regardless of the channel state).

On the other hand, a slot of the fundamental window in which
a transmission failure occurs is denoted as unresolved, which
means that a retransmission of the failed PDU must take place
m slots later. If the retransmission is successful, the slot be-
comes resolved (and all future slots at m-slot intervals will
also be resolved), otherwise, it will remain unresolved until
eventually a successful retransmission occurs.

In this setting, whenever we have that m consecutive slots
are marked as resolved, the whole fundamental window will
be correctly received, and therefore the tagged PDU can be
released to the higher layers. That is, the tagged PDU in-order
delivery delay is the time from its first transmission (slot m) to
the time when the last unresolved slot becomes resolved.

As an example, let m = 3 and suppose that a good channel
state at t = 1 is followed by a burst of four erroneous slots
and then the channel is again good for three more slots. The
algorithm gives: 1 = resolved; 2 = unresolved; 3 = unresolved;
4 = resolved (despite the channel error, as it was previously
marked); 5 = unresolved; 6 = resolved; 7 = resolved; 8 =
resolved. After slot 8, there is no need to go further, since
every slot in a higher position is marked as resolved. This means
that the delivery of the tagged PDU occurs in slot 8. Note in
fact that slot 8 is the last slot of the first sequence of three
slots comprising all resolved slots (starting in slot 6).

To evaluate when such a sequence of m consecutive resolved
slots occurs, we proceed slot by slot, as in the example above.
At any given time t, we need to know the status of slots t−
m + 1, t− m + 2, . . . , t− 1. We do so by keeping a bitmap b,

where bk = 1 if slot t− m + 1 + k is still unresolved, and bk =
0 otherwise, for k = 0, 1, . . . ,m− 2. For convenience, in the
analysis we will also use an integer representation of b, i =∑m−2

k=0 bk2k.
In addition to keeping memory of the past m− 1 slots, we

also need to specify the status of the current slot, i.e., slot t. In
this case, a binary variable is no longer sufficient, since we also
need to track the channel state, which is necessary to determine
the future evolution of successful transmissions. Notice that
the Markovian nature of the channel evolution makes it possi-
ble to ignore the channel state in slots t− m + 1, t− m +
2, . . . , t− 1 once the channel state in t is known. The only
channel state required for the analysis is thus that of the current
slot. Three situations are possible: the channel is good, which
implies that the slot is resolved (if it was not resolved already,
the good channel state makes it resolved now); the channel
is bad and the slot is resolved (in a previous transmission);
the channel is bad and the slot is still unresolved. These three
possibilities will be denoted by 0, 1, and 2, respectively, and the
associated variable will be denoted by ω.

Consider now the random process X(t) = (i(t), ω(t)), which
jointly tracks slot by slot the Markov channel evolution and
the status of the m latest slots. This process is a Markov chain.
The full resolution of the fundamental window corresponds
to the first transition of this Markov chain to states (0,0) or (0,1).
In fact, the current slot is resolved if ω ∈ {0, 1} and unresolved
if ω = 2, whereas the other slots are all resolved if i = 0. This
will be taken into account next in the closed-form computation
of the delivery delay.

In order to determine the possible transitions X(t) → X(t +
1) = (i′, ω′) and the corresponding transition probabilities,
suppose that at time t the bitmap b is (b0, b1, . . . , bm−2), where
the most significant bit bm−2 denotes the status of the most
recent among the past slots. At time t + 1 this bitmap is clocked
one position into the past, i.e., b′ = (b′0, b′1, . . . , b′m−3, b′m−2) =
(b1, b2, . . . , bm−2, f (ω)), where f (ω) = 1 if ω = 2 (current
slot at time t was still unresolved), and f (ω) = 0 if ω = 0, 1.
More compactly, in this case f (ω) = �ω/2�.

Regarding the value of ω′ = ω(t + 1), note the following.
If b0 = 0 at time t, the corresponding slot has already been
resolved, and therefore ω′ = 0 or 1 according to the channel
state at time t + 1. On the other hand, if b0 = 1, the slot
is still unresolved at time t, hence, we have ω′ = 0 if the
channel at time t + 1 is good (slot is resolved at this time), and
ω′ = 2 otherwise (slot remains unresolved). There are only two
possible destinations for X(t + 1), given X(t), since the shift of
the bitmap is deterministic and the only random variable is the
channel state, which can assume two values. More precisely,
the transition probabilities are given as follows:

• if i is even (i.e., b0 = 0), then

P
[
X(t + 1) = (i′, ω′)|X(t) = (i, ω)

]
=

{
pxy if i′ =

⌊
i
2

⌋
+

⌊
ω
2

⌋
2m−2,

x =
⌈

ω
2

⌉
, ω′ = y, y = 0, 1

0 otherwise

(2)
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Fig. 1. Diagram for the computation of the system starting probabilities.

• if i is odd (i.e., b0 = 1), then

P
[
X(t + 1) = (i′, ω′)|X(t) = (i, ω)

]
=

{
pxy if i′ =

⌊
i
2

⌋
+

⌊
ω
2

⌋
2m−2,

x =
⌈

ω
2

⌉
, ω′ = 2y, y = 0, 1

0 otherwise

(3)

where the use of ω′ = 2y in the latter case means that a good
channel y = 0 leads to ω′ = 0, whereas a bad channel y = 1
leads to ω′ = 2, i.e., the situation of bad channel and un-
resolved slot. According to the rule above, the transition proba-
bility matrix can be built, with two nonzero entries per row.

In order to find the delay statistics, we proceed as follows. Let
π = [π0 π1 . . . πK−1] be a 1 × K vector whose K = 3 · 2m−1

entries represent the probabilities that the system starts in a
given state. π is computed as follows:

if ω is even (0, 2) : π(i,ω) = p0b0

[
m−2∏
j=1

pbj−1bj

]
pbm−2

ω
2

if ω is odd (1) : π(i,ω) = 0. (4)

In order to explain (4), consider Fig. 1, where the first transmis-
sion of the tagged packet is depicted along with its fundamental
window. First, in slot m, it is impossible to have ω = 1, i.e.,
the event corresponding to bad channel state and resolved slot.
In fact, the tagged packet in that slot is at its first transmission
attempt and the slot label (resolved/unresolved) will therefore
correspond to the channel state at time m (good/bad). Hence, we
only have to consider the remaining cases ω ∈ {0, 2}. Given
that the probability that the system starts in a state (i, ω) is
a product of channel transition probabilities (matrix P). In
particular, the channel starts with a good state (slot 0), then
evolves according to the channel states in slots 1 through m− 1
(represented by bj’s) and ends in either good or bad state if
ω = 0 or ω = 2, respectively. Hence, the last channel transition
is bm−2 → ω/2.

Let e0 be a column vector of all zeros except for the entries
corresponding to states (0,0) and (0,1), which are equal to 1.

According to what was explained above, these are the only
two states where the fundamental window is resolved. If T is
the transition matrix of the Markov chain X(t), we can find
the probability that the delivery delay is less than or equal
to tc + k as

Pc[k] = πT ke0, k ≥ 0 (5)

and Pd[k] is determined as

Pd[0] = Pc[0], Pd[k] = Pc[k] −Pc[k− 1] ∀k > 0. (6)

Another interesting distribution is the cumulative complemen-
tary distribution of the delivery delay statistics, ccdf[k], de-
fined as

ccdf[k] = Prob{delay > tc + k} = 1 −Pc[k]. (7)

This value, which can be directly derived in our model, rep-
resents the probability that the delivery delay exceeds k slots.
Henceforth, it has great importance in estimating whether
delay constraints are met for real-time applications.

IV. APPROXIMATION OF THE DELIVERY

DELAY STATISTICS

Even though the analysis above is exact, it has the main draw-
back of having a complexity that is exponential in m. Hence, for
large values of the round-trip delay, the computation of the ex-
act statistics becomes both memory and time expensive. In this
section, we propose a simple approximation that allows us to
reduce the computational complexity, enabling the computation
of the statistics for large m. In the following, we will introduce
heuristic assumptions with the goal of simplifying the analysis
without losing adherence to the problem.

In particular, instead of tracking the state and the position
of each unresolved PDU, we propose to analyze the resolving
process by just tracking the number of remaining slots to be
resolved. We consider rounds of m slots and build a Markov
chain in which the state is represented by X(r) = (ne(r),C(r)),
r ≥ 1, where ne(r) and C(r) are the number of unresolved
slots in round r and the channel state in the last slot of that
round, respectively, i.e., we only track the number of still
unresolved PDUs in every round. This Markov chain evolves
round by round, i.e., m slots at a time. We define round 1
as the one comprising slots 1 through m. Moreover, in order
to keep track of errors and corrections, i.e., to compute X(r)
from X(r − 1), we need to position the ne(r − 1) unresolved
PDUs in round r − 1 (to derive the number of slots that are
still unresolved in round r). To this end, several strategies
are possible. As an example, one could randomly distribute
the ne(r − 1) unresolved PDUs inherited from the previous
round (r − 1) according to a given probability distribution.
On the other hand, one could think of placing these packets
following a predefined deterministic pattern. In this sense, we
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checked several possible approximations such as the uniform
random placement and the deterministic placement. More-
over, regarding the last one, we tried both the uniform and
the bursty positioning methods. At the end, we selected the
bursty deterministic strategy because of its simplicity and its
good agreement with the exact analysis. In this method, the
unresolved slots are deterministically placed at the end of every
round. By the definition of the process X(r) and the introduction
of these approximations, we have been able to neglect the exact
position of the unresolved slots and to achieve a complexity
linear in m.

Let slot k be the slot where the fundamental window is
resolved. Here, we refer to the round containing this slot as
the final round, whereas the previous round is referred to as
prefinal. To derive Pd[k], we proceed as follows. We first
consider X(r) and the resolving strategy discussed above to
derive the distribution for ne(r) up to and including the pre-
final round. Then, we apply a further resolution strategy for the
last round only. This last resolution strategy is also determinis-
tic and is needed to account for the relative position (within the
prefinal round) of the last unresolved PDU, which equals the
relative position where the tagged packet is finally released in
the final round. In the following, we first present the procedure
considered to derive the distribution for ne(r), i.e., the analysis
considered up to and including the prefinal round.

Let ϕij(s, n), i, j ∈ {0, 1} be the probability that s slots in
{1, 2, . . . , n} are successful and the channel state is j at time n,
given that the channel state was i at time 0. This is a well-known
function that can be derived in recursive [21] or close [22] form.

Now, let Ψ0j(e, r) be the probability of having e (1 ≤ e ≤ m)
unresolved slots in round r and that the channel in the last slot
of round r is j given that the channel in slot 0 was correct. This
function can be computed recursively as follows:

Ψ0j(e, r) =




ϕ0j(m− e,m) r = 1
m∑
x=e

∑
i∈{0,1}

Ψ0i(x, r − 1)Rij(x− e, x) r > 1

(8)

where

Rij(q, x) =

{
ϕij(q, x) x = m∑
c∈{0,1}

pic(m− x)ϕcj(q, x) x < m. (9)

The function Rij(q, x) is used to compute the probability that
q slots out of x are resolved in round r, and that the channel
state in the last slot of round r is j given that the channel
state in the last slot of the previous round (r − 1) was i, and
that all unresolved slots are deterministically grouped at the
end of each round. Note that the recursive expression (8) is
initialized (round r = 1) by exploiting the knowledge of the
channel at time 0 and computing the mean probability of having
e erroneous transmissions in any order in that round. Moreover,
the probability to have e unresolved slots, 1 ≤ e ≤ m, at the
end of the generic round r, r > 1 (Ψ0j(e, r)) is obtained by

considering the probability of having x (Ψ0i(x, r − 1), e ≤
x ≤ m) unresolved slots after r − 1 rounds and of having ex-
actly x− e of these slots resolved in round r (Rij(x− e, x)). Fi-
nally, these probabilities are summed over e ≤ x ≤ m and over
i ∈ {0, 1} to account for all the feasible values of unresolved
slots and channel states at the end of round r − 1. Observe that
the probability of being in state X(r) = (ne(r),C(r)), 1 ≤ ne ≤
m, C ∈ {0, 1}, r ≥ 1 is given by Ψ0C(ne, r).

Next, we report the approaches followed to track the reso-
lution taking place in the final round, i.e., where all the PDUs
in the fundamental window are eventually resolved. To this end,
we write slot k as k = ξm + η, where ξ ≥ 0 and 1 ≤ η ≤ m are
the number of full rounds and the number of slots in the current
round covered by k, respectively. With this decomposition, slot
k belongs to round ξ + 1 (final round), whereas ξ is the previous
(prefinal) round. Note that, in what follows, k is the absolute
time index, whereas η is the relative slot position within the
final round.

In the following, we discuss an approximate approach for the
evaluation of the probability Pd[k]. As a first step, using the
function Ψ0j(e, ξ), we evaluate the probability that the last PDU
is resolved in round ξ + 1. Note that this is the probability of
having e > 0 outstanding errors in round ξ and zero in round
ξ + 1. This evaluation assumes that the e outstanding errors
correspond to consecutive slots within a round. Conditioned on
the last PDU being resolved in round ξ + 1, we can approx-
imate the probability distribution of the specific slot in round
ξ + 1 in which this resolution takes place by just assuming
that all positions of the error burst within the round are equal-
ly likely.

More specifically, we adopt two slightly different ap-
proaches. In the first approach, called burst at the end (BE), we
first compute the probability that 1 ≤ e ≤ m erroneous packets
(Ψ0j(e, ξ)) are inherited from the prefinal round ξ, and we eval-
uate the probability of resolving these PDUs by grouping them
into a single burst at the end of round ξ + 1, i.e., in positions
m− e + 1 through m of that round. Note that following this
procedure, the exact position of the erroneous PDUs is not
tracked and what we obtain is the approximate probability for
the release of the tagged PDU in round ξ + 1, Pξ+1. How-
ever, what we need is not just the probability of releasing the
tagged PDU in the final round (Pξ+1), but the probability that
the tagged packet is released in the ηth (1 ≤ η ≤ m) slot of
that round, i.e., slot k = ξm + η in absolute terms. We derive
this probability by a posteriori distributing Pξ+1 among the
slots of round ξ + 1. To do that, we need to specify the dis-
tribution of the slot in the last round where the tagged packet
is resolved. Here, we consider that η is uniformly distributed
in the last round. The full BE method is presented in detail in
Section IV-A.

In the second approach, named in the sequel shifted burst
(SB), we evaluate the probability of resolving the burst of
consecutive erroneous slots inherited from the previous round
(ξ) in a uniformly chosen position of the final round. Unlike in
the BE approach, where the e-sized burst could not be resolved
in slot η < e, in this case, we allow any value for η (between
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1 and m). If η is smaller than the size of the burst of errors, we
admit that the burst is cyclically shifted. For example, if the last
position of a burst of length 3 is the second slot, we split the
shifted burst in two subburst sequences such that the erroneous
slots will be the first two and the last one. Note that the burst
can be in any position with equal probability.

The difference between the two strategies above is in the or-
der between the evaluation of the resolution probability and
the uniform distribution assumption among the slots in round
ξ + 1. BE first evaluates the probability of resolving the errors
concentrated in a burst at the end of the final round ξ + 1; after
that, this probability is uniformly distributed among the pos-
sible slots in that round. SB, instead, first conditions on η in
round ξ + 1, and then sums the contributions of all the m-
cyclically shifted bursts where the last erroneous packet occu-
pies position k = ξm + η to give the resolution probability in
that slot.

Let us define the function ρ(·) as the probability that
the channel in the last slot of round ξ is j and that exactly
e (1 ≤ e ≤ m) slots are yet to be resolved after round ξ
and that these e slots are all resolved in round ξ + 1 (final
round) given that the last unresolved slot is in position p, e ≤
p ≤ m, and that a successful transmission occurred at time 0.
Formally

ρ( j, e, ξ|p) = Ψ0j(e, ξ)pj0( p− e + 1)pe−1
00 . (10)

This function is the probability of resolving a burst accounting
for its length (e), the position occupied by its last element ( p),
and the channel state ( j) at the end of round ξ. In the following,
we report the detailed description of the two approaches.

A. Burst at the End

The delivery delay statistics is computed in the following
way:

Pd[k] =




1
m

∑
j∈{0,1}

η∑
e=1

ρ( j, e, ξ|m) η �= m

1
m

∑
j∈{0,1}

m∑
e=1

ρ( j, e, ξ|m)e η = m

(11)

where k = ξm + η, with ξ ≥ 0 and 1 ≤ η ≤ m.
The probability of the first passage through states (0,C) in

round ξ + 1, i.e., for k ∈ {ξm + 1, . . . , ξm + m} is computed
by considering all the unresolved slots inherited from round
ξ to be placed at the end of round ξ + 1. To compute this
probability, we use the ρ(·) function by summing all and only
the contributions for which e ≤ η. For a given η, the cases
where e > η are indeed unfeasible. Moreover, this probability
is subdivided among slots ξm + η, ∀ η ∈ {1, . . . ,m} by assum-
ing that the final unresolved slot is distributed by means of the
function PE(η|e) that is the approximate probability that the

burst ends in position η given that it consists of e slots. PE(η|e)
is defined a priori as follows:

PE(η|e) =




0 η < e
1
m

e ≤ η < m

e
m

η = m.

(12)

To sum up, in this approach, we first resolve all the unresolved
slots inherited from the previous round ξ by deterministically
grouping them at the end of the round. Thus, the last unresolved
slot is always in position m of each round. What we obtain in
this way is the probability of release of the tagged packet in
round ξ + 1. After that, we subdivide such probability among
all slots ξm + η, with 1 ≤ η ≤ m by considering the distribu-
tion PE(η|e).

B. Shifted Burst

In this approach, we also consider that the unresolved slots
inherited from round ξ are grouped in a single burst, but unlike
in BE, we evaluate the resolution of such a burst assuming that
its last element can be cyclically shifted between positions 1
and m of round ξ + 1. We first condition on η, considering
P[η = i] = 1/m, 1 ≤ i ≤ m. Then, once η has been fixed, we
compute the resolution probability for the e still unresolved
slots in round ξ by summing the probabilities of the events
leading to a resolution of the burst in slot η. Note that unlike in
BE, the e-sized burst is resolved by considering its last element
to be placed in position η. With this assumption, the delivery
delay statistics for k = ξm + η can be written as

Pd[k] =




1
m

∑
j∈{0,1}

η∑
e=1

ρ( j, e, ξ|η) η �= m

1
m

∑
j∈{0,1}

m∑
e=1

[
ρ( j, e, ξ|m)

+
∑
y<e

ρ′( j, e, ξ|y)

]
η = m

where

ρ′( j, e, ξ| p) = Ψ0j(e, ξ)pj0p
p−1
00 p00(m− e + 1)pe−p−1

00 . (13)

With (13), we compute, for each η ∈ {1, . . . ,m} in round
ξ + 1, the probability of resolving the burst given that its last
slot is in position η, where η ≥ e. Thus, when η ≥ e, we
guarantee that the first slot of the burst is in position f with
f ≥ 1. For the correction of the burst of unresolved slots, see
the function ρ( j, e, ξ|p) with p = η.2

When η = m, the contributions of m-cyclically shifted ver-
sions of the burst are also considered. In more detail, we split
the e-sized (where e are the residual errors from the previous

2The same function has been used in the BE approach, but with p = m.
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round ξ) burst in two parts where the first part is composed
by the y slots in positions {1, . . . , y}, whereas the second
part is composed by the e− y slots in positions {m− e + y +
1, . . . ,m}.3 This burst of unresolved slots is then resolved by
means of the function ρ′( j, e, ξ|y). ρ′ is used to evaluate the
probability that the channel in the last slot of round ξ is j and
that exactly e (1 ≤ e ≤ m) slots are to be resolved at the end
of round ξ and that these e erroneous packets are all resolved
in round ξ + 1 given that they are subdivided in two bursts,
where the first one occupies positions {1, . . . , y} and the second
occupies positions {m− e + y + 1, . . . ,m}.

V. RESULTS

The delivery delay statistics Pd[k] has been computed ac-
cording to the above analysis, for various values of the channel
error probability ε and of the channel burstiness b. To test
the accuracy, we used a simulator in which we implemented
the simple transmission of packets with an SR ARQ scheme
applied to the same scenario; thus, we empirically measured
the delivery delay statistics, in addition to deriving them from
the exact analysis.

In Fig. 2, we evaluate Pd[k] and compare the case of i.i.d.
channel with different values of the correlation b. In any case,
the shape of the delivery delay statistics presents a stepwise
behavior with a logarithmic-constant gap after every positions
κm, κ integer. Moreover, in both the i.i.d. and the correlated
error cases, the resolution probability presents an increasing
behavior with the maximum placed at the end of each round.
In the i.i.d. case, this effect is due to the larger number of
combinatorial events leading to the resolution of an m-sized
window in the last slot. This behavior vanishes after a few
rounds, where Pd[k] becomes almost constant within a given
m-sized window. In addition to this, over bursty channels,
another effect is present. In fact, when the channel correlation
is large, an erroneous tagged PDU transmission at time m likely
comes with the erroneous transmission of the m− 1 packets in
positions 1 through m− 1. In this case, all packets are likely
released in the subsequent error-free period and this leads to a
larger probability of resolving the window at the end of a round.

An interesting value is Pd[0]. When the delivery delay is 0,
the tagged packet is released at the end of the slot in which
it is received, i.e., both the tagged packet transmission and
the m− 1 previous transmissions are correct. In this case, the
transmission plus propagation delay is equal to about half the
round-trip delay, and the resequencing delay is zero. It can be
observed that Pd[0] in the bursty case is higher, due to the
higher probability of having a whole window of correct slots
when errors occur in bursts. This phenomenon has a larger
impact if the error probability is high, see Fig. 2(b). As a
matter of fact, the probability of delivering the tagged PDU
within a delay equal to m can be heavily underestimated by

3Note that, for these bursts, the mth slot of round ξ is always erroneous. That
is the reason why they are assigned to the case where the resolution occurs in
position η = m.

Fig. 2. Pd[k], comparison between the i.i.d. channel and a correlated channel
with b = {3, 7, 15} by considering m = 10. (a) ε = 0.1. (b) ε = 0.6.

considering the independent error model when the channel is
in fact bursty. The value of Pd[0] has a great impact on the
throughput. Thus, we can say that Fig. 2 confirms the results
presented in [12], where the throughput performance of ARQ
on a correlated channel is shown to be better than in the
case of static channel. On the other hand, the slope of each
curve decreases with increasing b, that is, the larger the bursts,
the higher the probability of having large delays. In fact, on
average, the channel recovers from an error, i.e., is restored into
the good state, after a number of slots equal to b. Thus, for high
k, we see an increase of the probability of large delivery delays
due to the channel burstiness.

In Fig. 3(a), Pd[k] is plotted in the i.i.d. case for various
values of ε. When ε is small, the maximum value of Pd[k] is
in k = 0. As ε increases, the maximum of Pd[k] shifts to the
right. The same behavior can be observed when the channel is
correlated, see Fig. 3(b). Note the difference in shape for each
round between the two cases.

The different behavior when the channel is correlated can
also be observed by looking at Fig. 4(a), where the mean
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Fig. 3. Pd[k] as a function of ε by considering m = 10. (a) i.i.d. channel.
(b) Correlated channel with b = 5.

delivery delay is reported as a function of ε by varying b. In this
graph, simulation points are also plotted to test the correctness
of the analysis. In Fig. 4(b), the mean delivery delay is reported
against the error burstiness b by varying ε. The first value of b
on the leftmost part of the graph corresponds to the i.i.d. case,
where b = 1/(1 − ε). For each ε, the mean delivery delay is
monotonically decreasing as a function of b. In other words,
the i.i.d. case is the one characterized by the highest mean
delivery delay under all channel conditions.

Fig. 5 reports the delivery delay standard deviation, simula-
tion points are reported for comparison. Unlike for the mean
delivery time, this metric in the i.i.d. case cannot be interpreted
as a bound. In fact, its role with respect to the correlated case
depends on both b and ε. Moreover, its behavior is clearly
different from that of the other curves. However, this again
shows that considering the channel as i.i.d. can be a misleading
assumption when the channel is correlated.

In Fig. 6, we report the complementary distribution ccdf[k]
by varying b and plotting the same graph in linear, Fig. 6(a),

Fig. 4. Mean delivery delay. (a) Mean delivery delay as a function of ε.
(b) Mean delivery delay as a function of b.

Fig. 5. Delivery delay standard deviation as a function of ε.

and logarithmic scales, Fig. 6(b). Again, from Fig. 6(a), it is
clear that the i.i.d. case is not a suitable model when errors are
correlated. In particular, we emphasize the higher probability of
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Fig. 6. Cumulative complementary delivery delay distribution, ccdf [k] (ε =
0.1, m = 10). (a) Linear scale. (b) Logarithmic scale.

a rapid delivery (i.e., for low k) in the correlated case, and also
when the correlation is low, e.g., b = 3. Even after a full round
(k = m), there is a gap in the curves: For instance, ccdf[m] for
m = 10 in the i.i.d. case is almost twice that in the correlated
case with b = 15. Other differences for higher values of k can
be observed in Fig. 6(b).

Next, we focus on the comparison between the exact analysis
and the approximate approaches presented in Section IV. This
comparison is reported in Fig. 7(a) and (b) for an i.i.d. channel
and a correlated channel (b = 7), respectively. In these figures,
the round-trip time has been considered to be large (m = 30). In
general, the approximate approaches are in excellent agreement
with the exact statistics. The only region where the approxi-
mations fail is for uncorrelated channel and at low delays.4 In
an i.i.d. channel, in fact, errors do not occur in bursts, and so
the approximation made in Section IV that unresolved slots are
disposed in a bursty way in this case does not hold. However,

4Note, however, that in this particular case (i.i.d. errors), it is possible to
develop a simpler exact analysis, so that an approximate approach becomes
unnecessary.

Fig. 7. Comparison between approximation and exact statistics, m = 30, ε =
0.1. (a) i.i.d. channel. (b) Correlated channel with b = 7.

the effect of this approximation vanishes very quickly as the
delay increases and the approximation becomes very close to
the exact curve. In the i.i.d. case, both BE and SB approaches
give the same results. When the channel is correlated, instead,
the statistics obtained from BE and SB are in good agreement
with the exact curve for any value of the delay, see Fig. 7(b).
The BE approach overestimates the delivery delay statistics
at the beginning of each round. The SB approach, instead,
appears to underestimate the exact statistics for any value of
the delay. Moreover, the estimate obtained from BE degrades
as the delay k increases until, for a very large k, all points in
the round are aligned over a straight line. SB, instead, gives
a good approximation also for large values of k. The points
derived using SB are the closest to the exact curve, except for
k = im, i ≥ 1, where the best estimate is given by BE. For
what concerns the cumulative delay distribution (Fig. 8), BE
gives the best estimate for any value of b. Moreover, in the
independent case, the burst assumption only results in a small
discrepancy regarding the first round. For any other value of k,
exact statistics and approximation match almost perfectly. In
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Fig. 8. Complementary cumulative delivery delay distribution, ccdf[k]: com-
parison between approximate and exact cases.

the correlated case (b = 7), the BE approach gives the best
complementary cumulative delay distribution estimate. From
the obtained results, we can conclude that the estimate of the
delivery delay statistics is reasonably accurate for any b, so
approximate methods could effectively be used in real systems
enabling a fast and less memory expensive computation of the
cumulative delay distribution also for large values of m.

VI. CONCLUSION

In this paper, we studied the delivery delay performance of an
SR ARQ scheme over a two-state DTMC, considering a finite
round-trip delay. We obtained the exact statistics of the delivery
delay process regarding a single ARQ packet. The main charac-
teristics of the delay statistics have been compared for several
values of the channel error probability and error correlation.
Simulation results confirm the goodness of the analysis. The
main drawback of the exact analysis is that its complexity
grows exponentially with the round-trip delay. To cope with
this problem, an approximate approach has been presented. The
statistics obtained using this approximate analysis is in good
agreement with exact curves while keeping the complexity
linear in the round-trip time value. In the final part of the paper,
the distributions and their main characteristics are compared for
several values of the channel error probability and error corre-
lation. In particular, the results show that to neglect the channel
correlation can be, though simpler, misleading. In general, this
assumption leads to underestimating the system performance.
Moreover, both our models, exact and approximate, allow to
take into account this effect in a very accurate way by giving
the possibility of integrating the ARQ effect in further analysis
so as to characterize the higher layer protocol performance.
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