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1. INTRODUCTION

In recent years, wireless sensors and mobile technologies have experienced a tremen-
dous upsurge. Advances in hardware design and micro-fabrication have made it pos-
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sible to potentially embed sensing and communication devices in every object, from
banknotes to bicycles [Atzoria et al. 2010].

Wireless Sensor Network (WSN) technology has now reached a good level
of maturity, as testified by the many emerging industrial standardization ef-
forts [Palattella et al. 2012]. Notable WSN application examples include en-
vironmental monitoring [Szewczyk et al. 2004], geology [Werner-Allen et al. 2006]
structural monitoring [Xu et al. 2004], smart grid and household energy meter-
ing [Kappler and Riegel 2004; Benzi et al. 2011]. These applications often require the
collection and the subsequent analysis of large amounts of data, which are to be sent
through suitable routing protocols to some data collection point(s). One of the main
problems of this is related to the large number of devices: if this number will keep
increasing as predicted in [Dodson 2003], and all signs point toward this direction, the
amount of data to be managed by the network will become prohibitive. Further issues
are due to the constrained nature of sensor nodes in terms of limited energy resources
(devices are often battery operated) and to the fact that radio activities are their main
source of energy consumption. This, together with the fact that sensor nodes are re-
quired to remain unattended and operational for long periods of time, poses severe
constrains.

Several strategies have been developed to prolong the lifetime of sensor nodes. These
comprise processing techniques such as data aggregation [Fasolo et al. 2007], dis-
tributed [Pattem and Krishnamachari 2004] or temporal [Sharaf et al. 2003] compres-
sion as well as battery replenishment through energy harvesting [Vullers et al. 2010].
The rationale behind data compression is that we can trade some additional energy for
compression for some reduction in the energy spent for transmission. As we shall see
in the remainder of this paper, this allows some important savings.

In this paper, we focus on the energy saving opportunities offered by data processing
and, in particular, on the lossy temporal compression of data. With lossy techniques,
the original data is compressed by however discarding some of the original information
in it so that, at the receiver side, the decompressor can reconstruct the original data up
to a certain accuracy. Lossy compression makes it possible to trade some reconstruc-
tion accuracy for some additional gains in terms of compression ratio with respect
to lossless schemes. Note that these gains correspond to further savings in terms of
transmission needs and that, depending on the application, some small inaccuracy in
the reconstructed signal may be acceptable. Thus, lossy compression introduces some
additional flexibility as one can tune the compression ratio as a function of energy
consumption criteria.

We note that much of the existing literature has been devoted to the system-
atic study of lossless compression. [Marcelloni and Vecchio 2009] proposes a sim-
ple Lossless Entropy Compression (LEC) algorithm, comparing LEC with stan-
dard techniques such as gzip, bzip2, rar and classical Huffman and arithmetic en-
coders. A simple lossy compression scheme, called Lightweight Temporal Compression
(LTC) [Schoellhammer et al. 2004], was also considered. However, the main focus of
this comparison has been on the achievable compression ratio, whereas considerations
on energy savings are only given for LEC. [van der Byl et al. 2009] examines Huff-
man, Run Length Encoding (RLE) and Delta Encoding (DE), comparing the energy
spent for compression for these schemes. [Liang 2011] treats lossy (LTC) as well as
lossless (LEC and Lempel-Ziv-Welch) compression methods, but only focusing on their
compression performance. Further work is carried out in [Sadler and Martonosi 2006],
where the energy savings from lossless compression algorithms are evaluated for
different radio setups, in single- as well as multi-hop networks. Along the same
lines, [Barr and Asanović 2006] compares several lossless compression schemes for a
StrongArm CPU architecture, showing that data compression in some cases may cause
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an increase in the overall energy expenditure. A comprehensive survey of practical
lossless compression schemes for WSN can be found in [Srisooksai et al. 2012]. The
lesson that we learn from these papers is that lossless compression can provide some
energy savings. These are however smaller than one might expect because, for the sen-
sor hardware in use nowadays, the energy spent for the execution of the compression
algorithms (CPU) may be of the same order of magnitude of that spent for transmission
(radio).

Further work has been carried out for what concerns lossy compression
schemes. LTC [Lu et al. 2010], PLAMLiS [Liu et al. 2007] and the algorithm
of [Pham et al. 2008] are all based on Piecewise Linear Approximation (PLA).
Adaptive Auto-Regressive Moving Average (A-ARMA) [Lu et al. 2010] is based on
ARMA models and RACE [Chen et al. 2004] exploits Wavelet-based compression. Also,
[Marcelloni and Vecchio 2010] presents a lightweight compression framework based
on Differential Pulse Coding Modulation (DPCM) where dictionaries are selected of-
fline through multi-objective evolutionary optimization. Nevertheless, we remark that
no systematic energy comparison has been carried out so far for lossy schemes. In this
case, it is not clear whether lossy compression can be advantageous in terms of energy
savings and what the involved tradeoffs are in terms of compression ratio vs represen-
tation accuracy and yet how these affect the overall energy expenditure. In addition,
it is unclear whether linear and autoregressive schemes can provide any advantages
at all compared to more sophisticated techniques such as Fourier- or Wavelet-based
transforms, which have been effectively used to compress audio and video signals and
for which fast and computationally efficient algorithms exist. In this paper, we fill
these gaps by systematically comparing selected lossy temporal compression meth-
ods from the literature including polynomial, Fourier (FFT and DCT) and Wavelet
compression schemes. We remark that alternative approaches, such as data aggrega-
tion [Fasolo et al. 2007] are also possible. However, these are out of the scope of our
current investigation in this paper, which focuses on the temporal and lossy compres-
sion of time series.

The main contributions of this paper are:

— We consider selected lossy compression algorithms for time series, accounting for lin-
ear (e.g., LTC [Lu et al. 2010]), autoregressive (e.g., A-ARMA [Lu et al. 2010]) mod-
els, Fourier and Wavelet transforms. At first, we focus on interference-free single-
and multi-hop networks, where the Medium Access Control (MAC) layer is idealized,
i.e., besides transmission and reception, it does not introduce further energetic inef-
ficiencies due to collisions and idle times for floor acquisition. For this scenario, we
assess whether signal compression actually helps in the reduction of the overall en-
ergy consumption, depending on the compression algorithm, the chosen reconstruc-
tion fidelity, the signal statistics and the hardware characteristics.

— We provide formulas, obtained through numerical fittings and validated against real
datasets, to gauge the computational complexity, the overall energy consumption and
the signal representation accuracy of the best performing compression algorithms as
a function of the most relevant system parameters. These formulas can be used to
generalize the results obtained here to other WSN architectures.

— We consider interference-limited multi-hop networks where multiple nodes contend
for the channel and data traverses a data collection tree until it reaches a data col-
lection point located at its root (the WSN “sink”). Thus, we analytically characterize
this second scenario by evaluating the performance improvements that are brought
about by different lossy compression schemes in the presence of collisions and idle
times for floor acquisition at the MAC.
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Fig. 1. General lossy compression diagram.

The rest of the paper is organized as follows. In Section 2 we discuss selected
lossy compression algorithms from the literature, along with some lossy compression
schemes that we introduce in this paper. In Sections 3 and 4 we carry out our perfor-
mance evaluation of lossy compression for the interference-free and the interference-
limited WSN scenarios, respectively. We finally draw our conclusions in Section 5.

2. LOSSY COMPRESSION FOR CONSTRAINED SENSOR NODES

To facilitate the description of the compression schemes considered in this paper and to
identify their essential features, in Fig. 1 we show the diagram of a generic lossy com-
pression algorithm, see, e.g., [Wallace 1992]. The following three fundamental stages
are identified:

A Transformation: this stage entails the representation of the input signal (time se-
ries x(n)) into a convenient transformation domain. That is, the signal is decomposed
into a number N of coefficients {F1, . . . , FN} in the new domain. As an example, FFT,
DCT and Wavelet transforms represent time series into the frequency domain.

B Adaptive modeling: a number of coefficients S ≤ N is selected so that these will
be sufficient to represent the signal within a certain target accuracy. Moreover, a
further adaptive modeling phase (models {M1, . . . ,MS}) can be applied on the time
series corresponding to each of the selected coefficients and, finally, a quantizer can
be employed to represent the data through a finite number of levels.

C Entropy coding: the quantized data can be encoded using an entropy coder (EC)
to obtain additional compression. Entropy represents the amount of information
present in the data, and an EC encodes the given set of symbols with the minimum
number of bits required to represent them.

As a popular example, JPG image compression [Wallace 1992] matches this model as
follows: Stage-A: DCT, Stage-B: DPCM modeling for the DC coefficients, quantization
for all coefficients, with run length encoding for null coefficients after quantization,
Stage-C: huffman coding (arithmetic coding is also supported).

We remark that a specific compression algorithm does not necessary have to imple-
ment all the three stages above, but some of them can be omitted or only partially
taken into account. For example, for Stage-B we could use the selection and quantiza-
tion blocks, without any adaptive modeling. In WSNs, the exact combination of algo-
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rithms to use depends on the reconstruction accuracy goal as well as on the affordable
computational complexity.

In the following, we briefly review the lossy signal compression methods that will be
characterized in this paper. Due to the contained nature of the sensor devices, these
schemes only use some of the above stages. In Section 2.1, we discuss techniques based
on Fourier and Wavelet transforms (Stage-A). In Section 2.2, we describe adaptive
modeling techniques (Stage-B). Finally, in Section 2.3 we discuss a lightweight scheme
based on quantization and entropy coding (Stage-C).

2.1. Compression Methods Based on Fourier and Wavelet Transforms (Stage-A)

For these techniques, compression is achieved through sending subsets of the FFT,
DCT or Wavelet transformation coefficients. We came up with some possible methods,
presented below, that differ in how the transformation coefficients are picked. These al-
gorithms first transform the signal into a suitable domain (Stage-A) and subsequently
use the information selection block of Stage-B.

2.1.1. Fast Fourier Transform (FFT). The first method that we consider relies on the
simplest way to use the Fourier transform for compression. Specifically, the input
time series x(n) is mapped to its frequency representation X(f) ∈ C through a Fast

Fourier Transform (FFT). We define XR(f) , Re{X(f)}, and XI(f) , Im{X(f)} as
the real and the imaginary part of X(f), respectively. Since x(n) is a real-valued

time series, X(f) is Hermitian, i.e., X(−f) = X(f). This symmetry allows the FFT
to be stored using the same number of samples N of the original signal. For N
even we take f ∈ {f1, . . . , fN/2} for both XR(·) and XI(·), while if N is odd we take
f ∈ {f1, . . . , f⌊N/2⌋+1} for the real part and f ∈ {f1, . . . , f⌊N/2⌋} for the imaginary part.

The compressed representation X̂(f) , X̂R(f)+ jX̂I(f) will also be in the frequency
domain and it is built (for the case of N even) as follows:

(1) initialize X̂R(f) = 0 and X̂I(f) = 0, ∀ f ∈ {f1, . . . , fN/2};

(2) select the coefficient with maximum absolute value from XR and XI , i.e., fmax ,

argmaxf max{|XR(f)|, |XI(f)|} and M , argmaxi∈{R,I}{|Xi(fmax)|};

(3) set X̂M (fmax) = XM (fmax) and then set XM (fmax) = 0;

(4) if x̂(n), the inverse FFT of X̂(f), meets the error tolerance constraint continue,
otherwise repeat from step (2);

(5) encode the values and the positions of the harmonics stored in X̂R and X̂I .

Hence, the decompressor at the receiver obtains X̂R(f) and X̂I(f) and exploits the

Hermitian symmetry to reconstruct X̂(f).
Note that the above coefficient selection method resembles a K non-linear

approximation, as usually implemented by image processing techniques see,
e.g., [Donoho et al. 1998]. In our case, K (the number of coefficients to be retained)
is dynamically selected depending on the input signal characteristics. We emphasize
that alternative schemes for the selection of the Fourier coefficients are also possible.
For instance, one may select the FFT coefficients based on the maximum absolute mag-
nitude of their complex values and then retain both the real and imaginary part of the
selected coefficients. We found marginal differences among the various approaches.

2.1.2. Low Pass Filter (FFT-LPF). We implemented a second FFT-based lossy algorithm,
which we have termed FFT-LPF. Since the input time series x(n) is a slowly varying
signal in many common cases (i.e., having strong temporal correlation) with some high
frequency noise superimposed, most of the significant coefficients of X(f) reside in the

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 D. Zordan et al.

low frequencies. For FFT-PLF, we start setting X̂(f) = 0 for all frequencies. Thus, X(f)
is evaluated from f1, incrementally moving toward higher frequencies, f2, f3, . . . . At
each iteration i, X(fi) is copied onto X̂(fi) (both real and imaginary part), the inverse

FFT is computed taking X̂(f) as input and the error tolerance constraint is checked
on the so obtained x̂(n). If the given tolerance is met the algorithm stops, otherwise it
is reiterated for the next frequency fi+1.

Note that this method resembles a K linear approximation scheme, where the selec-
tion order is fixed (LPF), but the number of coefficients to be retained, K, is dynami-
cally adjusted in order to meet a given error tolerance.

2.1.3. Windowing. The two algorithms discussed above suffer from an edge discontinu-
ity problem. In particular, when we take the FFT over a window of N samples, if x(1)
and x(N) differ substantially the information about this discontinuity is spread across
the whole spectrum in the frequency domain. Hence, in order to meet the tolerance
constraint for all the samples in the window, a high number of harmonics is selected
by the previous algorithms, resulting in a poor compression and in a high number of
operations.

To solve this issue, we implemented a version of the FFT algorithm that considers
overlapping windows of N+2W samples instead of disjoint windows of length N , where
W is the number of samples that overlap between subsequent windows. The first FFT
is taken over the entire window and the selection of the coefficients goes on depending
on the selected algorithm (either FFT or FFT-LPF), but the tolerance constraint is only
checked on the N samples in the central part of the window. With this workaround we
can get rid of the edge discontinuity problem and encode the information about the N
samples of interest with very few coefficients as it will be seen shortly in Section 3. As
a drawback, the direct and inverse transforms have to be taken on longer windows,
which results in a higher number of operations.

2.1.4. Discrete Cosine Transform (DCT). We also considered the Discrete Cosine Trans-
form (type II), mainly for three reasons: 1) its coefficients are real, so we did not have
to cope with real and imaginary parts, thus saving memory and number of operations;
2) it has a strong “energy compaction” property [Rao and Yip 1990], i.e., most of the
signal information tends to be concentrated in a few low-frequency components; 3)
the DCT of a signal with N samples is equivalent to a DFT on a real signal of even
symmetry with double length, so the DCT does not suffer from the edge discontinuity
problem.

2.1.5. Wavelet Transform (WT). As an alternative to Fourier schemes, several meth-
ods based upon multi-resolution analysis have been proposed in the literature.
RACE [Chen et al. 2004] is a notable example: it features a compression algorithm
based on the Fast Wavelet Transform (FWT) of the signal (Stage-A) followed by the se-
lection of a number of coefficients (Stage-B) that are used to represent the input signal
within given error bounds. As for DCT schemes, the compression mainly takes place
in the selection step.

In [Chen et al. 2004], a Haar basis function is used for the wavelet decomposition
step. The most remarkable contribution of RACE is the way in which the wavelet coef-
ficients are selected. Most traditional compression algorithms, after the FWT, just pick
the largest coefficients, i.e., the selection step is based on a threshold value, whereby
all the coefficients below this threshold are discarded, whereas those above it are re-
tained. Differently, in RACE, the Haar wavelet coefficients are arranged into a tree
structure. Then, thanks to some special properties of the Haar functions, at each node
of the tree, the error in the reconstruction of the signal is estimated assuming that this
node (i.e., the corresponding coefficient) and all its children in the tree are omitted.
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This selection method has two important properties. First, the signal representation
error can be evaluated on-the-fly during the decomposition and the maximum error
tolerance can be maintained under control, without having to compute any inverse
wavelet transform.1 Second, compression can be achieved in an incremental way, by
descending the tree and adding nodes until the desired precision is reached (of course,
the higher the number of coefficients, the lower the compression performance). These
facts are very important for energy constrained WSNs and, as we will see in Section 3,
lead to a smaller energy for compression with respect to DCT and FFT schemes.

2.2. Compression Methods Based on Adaptive Modeling (Stage-B)

In Adaptive Modeling schemes, some signal model is iteratively updated over time,
exploiting the correlation structure of the signal through linear, polynomial or autore-
gressive methods. Specifically, the input time series is collected and processed accord-
ing to transmission windows of N samples each. At the end of each time window the
selected compression method is applied, obtaining a set of model parameters that are
transmitted in place of the original data. In the adaptive modeling schemes described
below, information selection is not used, as they do not employ any transformation
stage.

2.2.1. Piecewise Linear Approximations (PLA). The idea of PLA is to use a sequence of line
segments to represent an input time series x(n) over pre-determined time windows
(of N samples) with a bounded approximation error. For most time series consisting
of environmental measures, linear approximations work well enough over short time
frames. Further, since a line segment can be determined by only two end points, PLA
leads to quite efficient implementations in terms of memory and transmission require-
ments.

The approximated signal is hereafter referred to as x̂(n), the error with respect to
the actual value is given by the Euclidean distance |x̂(n)−x(n)|. Most PLA algorithms
use standard least squares fitting to calculate the approximating line segments. Often,
a further simplification is introduced to reduce the computational complexity, which
consists of forcing the end points of each line segment to be points of the original
time series x(n). This makes least squares fitting unnecessary as the line segments
are fully identified by the extreme points of x(n) in the considered time window. The
following schemes exploit this approach.

Lightweight Temporal Compression (LTC) [Schoellhammer et al. 2004]: the
LTC algorithm is a low complexity PLA technique. Specifically, let x(n) be the points
of a time series with n = 1, 2, . . . , N . The LTC algorithm starts with n = 1 and fixes the
first point of the approximating line segment to x(1). The second point x(2) is trans-
formed into a vertical line segment that determines the set of all “acceptable” lines Ω1,2

with starting point x(1). This vertical segment is centered at x(2) and covers all values
meeting a maximum tolerance ε ≥ 0, i.e., lying within the interval [x(2) − ε, x(2) + ε],
see Fig. 2(a). The set of acceptable lines for n = 3, Ω1,2,3, is obtained by the intersection
of Ω1,2 and the set of lines with starting point x(1) that are acceptable for x(3), see
Fig. 2(b). If x(3) falls within Ω1,2,3 the algorithm continues with the next point x(4)
and the new set of acceptable lines Ω1,2,3,4 is obtained as the intersection of Ω1,2,3 and
the set of lines with starting point x(1) that are acceptable for x(4). The procedure is
iterated adding one point at a time until, at a given step s, x(s) is not contained in
Ω1,2,...,s. Thus, the algorithm sets x(1) and x(s− 1) as the starting and ending points of

1Note that in the FFT and DCT methods of above, the error tolerance check always entails the computation
of an inverse transformation at the source.
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the approximating line segment for n = 1, 2, . . . , s− 1 and starts over with x(s− 1) con-
sidering it as the first point of the next approximating line segment. In our example,
s = 4, see Fig. 2(b).

(a) (b)

Fig. 2. Lightweight Temporal Compression example.

When the inclusion of a new sample does not comply with the allowed maximum
tolerance, the algorithm starts over looking for a new line segment. Thus, it self-
adapts to the characteristics of x(n) without having to fix beforehand the lapse of time
between subsequent updates.

PLAMLiS [Liu et al. 2007]: as LTC, PLAMLiS represents the input data series x(n)
through a sequence of line segments. Here, the linear fitting problem is converted into
a set-covering problem, trying to find the minimum number of segments that cover
the entire set of values over a given time window. This problem is then solved through
a greedy algorithm as explained in [Liu et al. 2007]. This algorithm is outperformed
in terms of complexity by its enhanced version, that we discuss next.

Enhanced PLAMLiS [Pham et al. 2008]: is a top-down recursive segmentation al-
gorithm with smaller computational cost with respect to PLAMLiS. Consider the input
time series x(n) and a time window n = 1, 2, . . . , N . The algorithm starts by taking a
first segment (x(1), x(N)), if the maximum allowed tolerance ε is met for all points
along this segment the algorithm ends. Otherwise, the segment is split in two seg-
ments at the point x(i), 1 < i < N , where the error is maximum, obtaining the two
segments (x(1), x(i)) and (x(i), x(N)). The same procedure is recursively applied on
the resulting segments until the maximum error tolerance is met for all points.

2.2.2. Polynomial Regression (PR). The above methods can be modified by relaxing the
constraint that the endpoints of the segments x(i) and x(j) (j > i) must be actual
points of x(n). In this case, polynomials of given order p ≥ 1 are used as the approx-
imating functions, whose coefficients are found through standard regression methods
based on least squares fitting [Phillips 2003]. Specifically, we start with a window of p
samples, since a p-order polynomial exactly interpolates p points, for which we obtain
the best fitting polynomial coefficients. Thus, we keep increasing the window length of
one sample at a time, computing the new coefficients, and stop when the target error
tolerance is no longer met.

We remark that, tracing a line between two fixed points as done by LTC and PLAM-
LiS has a very low computational complexity, while least squares fitting can have a sig-
nificant cost. Polynomial regression obtains better results in terms of approximation
at the cost of higher computational complexity (which increases with the polynomial
order).
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2.2.3. Auto-Regressive (AR) Methods. Auto Regressive (AR) models in their multiple
flavors (AR, ARMA, ARIMA, etc.) have been widely used for time series modeling and
forecasting in fields like macro-economics or market analysis. The basic idea is to
obtain a model based on the history of the sampled data, i.e., on its correlation struc-
ture. When used for signal compression, AR obtains a model from the input data and
sends this model to the receiver in place of the actual time series. The reconstructed
model is thus used at the data collection point (the sink) for data prediction until it
is updated by the encoder device. Specifically, each node locally verifies the accuracy
of the predicted data values with respect to the collected samples. If the accuracy is
within a prescribed error tolerance, the node assumes that the current model will be
sufficient for the sink to rebuild the data within the given error tolerance. Otherwise,
the parameters from the current model are encoded and a new model is built as a
replacement for the old one. As said above, the model parameters are sent to the sink
at the end of each transmission window in place of the original data.

Adaptive Auto-Regressive Moving Average (A-ARMA) [Lu et al. 2010]: the
basic idea of A-ARMA [Lu et al. 2010] is that of having each sensor node compute an
ARMA model based on N ′ < N consecutive samples. In order to reduce the complexity
in the model estimation process, adaptive ARMA employs low-order models, whereby
the validity of the model being used is checked through a moving window technique.
Specifically, a sensor node builds an ARMA model M (0) = ARMA(p, q,N ′, 0) consider-
ing N ′ samples starting from the first sample (sample 0) of the current transmission
window (p and q are the orders related to the auto-regressive and moving average com-
ponents of the ARMA filter). Hence, this model is updated considering N ′ subsequent
samples at a time until the prescribed error tolerance is met, at which point a new
ARMA model is built and the update/check procedure is iterated for this one. At the
end of the transmission window of N samples, the parameters of all the ARMA models
that have been obtained to describe the input time series (within the prescribed error
tolerance) are sent to the sink in place of the original data, as discussed above.

Modified Adaptive Auto-Regressive (MA-AR): according to A-ARMA the model is
updated over fixed-size windows of N ′ samples. A drawback of this is that, especially
for highly noisy environments, the estimation over fixed-size windows can lead to poor
results when used for forecasting. MA-AR allows the estimation to be performed on
time windows whose size is adapted according to the signal statistics. A more detailed
discussion of ARMA methods can be found in [Zordan et al. 2012].

2.3. Compression Methods Based on Entropy Coding (Stage-C)

As a representative technique for Stage-C we consider the algorithm
in [Marcelloni and Vecchio 2010], proposed by Marcelloni and Vecchio (MV). This
algorithm works in three steps: (a) Differential Pulse-Modulation Coding (DPCM),
(b) quantization and (c) huffman entropy encoding. After de-noising, step (a) employs
a simple differential encoding model (DPCM), which operates on the differences
between consecutive input samples. The rationale behind this differential scheme is
that WSN signals are usually smooth and slow time-varying. Hence, the difference
between samples is expected to be small, leading to a small amount of information to
be encoded.

In the quantization block (b), the difference between subsequent samples is quan-
tized. This is the most important step of the algorithm and probably where most of the
compression performance is achieved. In fact, given the small expected value of the
DPCM differences, a quantizer with only a small number of levels can be used without
impacting too much on the signal representation accuracy.
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In our performance evaluation, in order to carry out a fair comparison among the
considered compression schemes, we bound the maximum error tolerance for each
sample, setting it as a constant input parameter equal for all the algorithms. As we did
for the other compression schemes, the MV algorithm has been as well adapted to con-
sider this. Specifically, a first pass is performed to find the maximum difference at the
output of the DPCM. Based on this, the number of levels of the quantizer is selected so
that the quantization error remains smaller than a target error tolerance; this returns
the quantizer for the given input signal. After this, a second pass is executed, using
the selected quantizer, to obtain the final encoded symbols. Note that this is slightly
different from [Marcelloni and Vecchio 2010], where optimal quantizers are calculated
offline through a dedicated optimization stage following different optimization criteria.
While the latter approach is also valuable, it does not allow for a precise control of the
maximum error tolerance and a fair comparison with the other compression schemes
that we consider in this paper.

Finally, the entropy encoding step (c) exploits the fact that the quantization levels
have different probabilities. Once again, environmental signals are quite smooth and
therefore small differences are more likely. Hence, a Huffman encoder is designed to
assign the shorter binary codewords to the most probable levels. The set of binary
codewords is selected so that no member is a prefix of another member and, in turn,
the corresponding code is uniquely decodable. This dictionary can be sent together with
the compressed data frame, or can be statistically precomputed and shared between
the communicating entities.

3. PERFORMANCE COMPARISON FOR INTERFERENCE-FREE NETWORKS

This section focuses on single- and multi-hop WSNs where the interference due to
channel access is negligible or absent. In this case, the energy expenditure at the MAC
is only confined to transmission and reception energy, by also keeping into account the
protocol overhead at the MAC in terms of packet headers. However, further energetic
inefficiencies due to channel contentions and waiting times due to floor acquisition are
neglected (their impact will be considered later on in Section 4). The objectives of this
section are:

— to provide a thorough performance comparison of the compression methods of Sec-
tion 2. The selected performance metrics are: 1) compression ratio, 2) computational
and transmission energy and 3) reconstruction error at the receiver, which will be
defined below.

— To quantify the impact on the compression performance of the statistical properties
of the input signals.

— To investigate whether or not data compression leads to energy savings in single-
and multi-hop interference-free WSN scenarios, and obtain quantitative measure-
ments of possible benefits as a function of compression ratio and energy consump-
tion of the wireless end-nodes hardware (micro-controller and radio).

— To obtain, through numerical fitting, close-form equations which model the consid-
ered performance metrics as a function of key parameters.

Toward the above objectives, we present simulation results obtained using synthetic
signals with varying correlation length. These signals make it possible to give a fine
grained description of the performance of the selected techniques, so as to look compre-
hensively at the entire range of variation of the temporal correlation statistics. Real
datasets are then used to validate the proposed empirical fitting formulas.
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3.1. Preliminary Definitions

Before delving into the description of the results, in the following we give some defini-
tions.

Definition 3.1. Correlation length
Given a stationary discrete time series x(n) with n = 1, 2, . . . , N , we define correlation
length of x(n) as the smallest value n⋆ such that the autocorrelation function of x(n)
is smaller than a predetermined threshold ρth. The autocorrelation is:

ρx(n) =
E [(x(m)− µx)(x(m+ n)− µx)]

σ2
x

,

where µx and σ2
x are the mean and the variance of x(n), respectively. Formally, n⋆ is

defined as:

n⋆ = argmin
n>0

{ρx(n) < ρth} .

Below, we define the performance metrics that will be considered in the remainder
of this paper.

Definition 3.2. Compression ratio
Given a finite time series x(n) and its compressed version x̂(n), we define compres-
sion ratio η the quantity:

η =
Nb(x̂)

Nb(x)
,

where Nb(x̂) and Nb(x) are the number of bits used to represent the compressed time
series x̂(n) and the original one x(n), respectively.

Definition 3.3. Reconstruction error and error tolerance
Given a discrete time series x(n) and its compressed version x̂(n), we define the recon-
struction error at time n ≥ 1 as e(n) = |x(n)− x̂(n)|, where | · | is the Euclidean distance.
The error tolerance ε is the maximum permitted error at the receiver, i.e., it must be
e(n) ≤ ε for all n.

Definition 3.4. Energy consumption for compression
Is the energy drained from the battery to accomplish the compression task. For every
compression method we have recorded the number of operations to process the original
time series x(n) accounting for the number of additions, multiplications, divisions and
comparisons. Thus, depending on selected hardware architecture, we have mapped
these figures into the corresponding number of clock cycles and we have subsequently
mapped the latter into the corresponding energy expenditure.

Definition 3.5. Transmission Energy
Is the energy consumed for transmission, obtained accounting for the radio chip char-
acteristics, channel attenuation effects and the protocol overhead due to physical
(PHY) and medium access (MAC) layers.

Definition 3.6. Total Energy Consumption
Is the sum of the energy consumption for compression and transmission and is ex-
pressed in [Joule].

In the computation of the energy consumption for compression, we only accounted
for the operations performed by the CPU, without considering the possible additional
costs related to other peripherals of the micro-controller.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 D. Zordan et al.

For the communication cost we have only taken into consideration the transmission
energy, neglecting the cost of switching the radio transceiver on and off and the energy
spent at the destination to receive the data. The former are fixed costs that would also
be incurred without compression, while the latter can be ignored if the receiver is not
a power constrained device. Moreover, we do not consider link-level retransmissions
due to channel errors or multi-user interference.

3.2. Generation of Synthetic Stationary Signals

The synthetic stationary signals have been obtained through a known
method to enforce the first and second moments to a white random process,
see [Davies and Harte 1987][Zordan et al. 2011]. Our objective is to obtain a random
time series x(n) with given mean µx, variance σ2

x and autocorrelation function ρx(n).
The procedure works as follow:

(1) A random Gaussian series G(k) with k = 1, 2, . . . , N is generated in the frequency
domain, where N is the length of the time series x(n) that we want to obtain. Every
element of G(k) is an independent Gaussian random variable with mean µG = 0
and variance σ2

G = 1.
(2) The Discrete Fourier Transform (DFT) of the autocorrelation function ρx(n) is com-

puted, Sx(k) = F [ρx(n)], where F [·] is the DFT operator.

(3) We compute the entry-wise product X(k) = G(k) ◦ Sx(k)
1

2 .
(4) We finally obtain the correlated and Gaussian time series x(n) as F−1[X(k)].

This is equivalent to filter a white random process with a linear, time invariant fil-
ter, whose transfer function is F−1[Sx(k)

1

2 ]. The stability of this procedure is en-
sured by a suitable choice for the correlation function, which must be square inte-
grable. For the simulations in this paper we have used a Gaussian correlation func-
tion [Abrahamsen 1997], i.e., ρx(n) = exp{−an2}, where a is chosen in order to get the
desired correlation length n⋆ as follows:

a = −
log(ρth)

(n⋆)2
.

Without loss of generality, we generate synthetic signals with µx = 0 and σ2
x = 1. In

fact, applying an offset to the generated signals and a scale factor does not change
the resulting correlation. For an in depth characterization of the Gaussian correlation
function see [Abrahamsen 1997].

Also, to emulate the behavior of real WSN signals, we superimpose noise to the
synthetic signals, so as to mimic random perturbations due to limited precision of the
sensing hardware and random fluctuations of the observed physical phenomenon. The
noise is modeled as a zero mean white Gaussian process with standard deviation σnoise.

3.3. Hardware Architecture

We selected the TI MSP430 [Bierl 2000] micro-controller using the corresponding 16
bit floating point package for the calculations and for the data representation. In the
active state, the MSP430 is powered by a current of 330 µA at 2.2 V and it has a clock
rate of 1 MHz. The resulting energy consumption per CPU cycle is E0 = 0.726 nJ. The
number of clock cycles needed for the floating point operations are given in Table 5.8
of [Bierl 2000].

For radio, we selected the TI CC2420 RF transceiver [Chipcon 2007], an
IEEE 802.15.4 [IEEE P802.15 Working Group 2003] compliant radio. For commercial
radio transceivers, the current consumption associated with the transmission activity
is typically selected from a finite set of values, that for the CC2420 are 8, varying from
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a minimum of 8.5 mA to a maximum of 17.4 mA, with a supply voltage of 3.3 V for an ef-
fective data rate of 250 kbps, see [Chipcon 2007]. Thus, the energy cost associated with
the transmission of a bit, E′

Tx[ℓ], given the current power level ℓ ∈ {1, . . . , 8} ranges
from 112 nJ to 230 nJ, which correspond to the energy spent by the micro-processor
during 154 and 316 clock cycles, respectively. The current level, and consequently the
output power of the radio transceiver, has to be chosen according to the considered
scenario, which includes the transmission distance, the channel noise level, the type
of environment (e.g., free space, indoor, presence of obstacles), etc.

We remark that the results that we obtain for this specific architecture can be
promptly generalized to different CPUs and radios. As we show later in the paper,
this is possible by separating algorithm-dependent and hardware-dependent terms in
the calculation of the overall energy consumption. In particular, the compression per-
formance of all algorithm is evaluated using 16 bits arithmetics, the natural choice for
the MSP430, a 16-bit word processor.

3.4. Theoretical Bound for Signal Compression

Given the discrete and Gaussian time series of Section 3.2, from the theory
in [Berger 1971] we can derive the theoretical lower bound on the transmission rate
Rmin (bits/sample):

Rmin(n
⋆, N, ε) =

1

N

N
∑

i=1

max

{

0,
1

2
log2

(

ζ2i
ε

)}

,

where ε is the maximum permitted distortion at the receiver, N is the number of
input samples and ζi are the eigenvalues of the covariance matrix Σ(n⋆) of x(n) for
n = 1, . . . , N . Hence, for given (n⋆, N, ε) we can bound the compression ratio achievable
by any practical scheme as:

η ≥
Rmin(n

⋆, N, ε)

R0
, (1)

where R0 = 16 is the rate expressed in bits/sample in the uncompressed case for our
hardware.

3.5. Simulation Setup

For the results that we discuss in what follows, we used synthetic signals with cor-
relation length n⋆ varying in {1, 10, 20, 50, . . . , 500} samples, where after 20, n⋆ varies
in steps of 30 (we have picked ρth = 0.05 for all the results shown in this paper). We
consider time series of N = 500 samples (time slots) at a time, progressively taken
from a longer realization of the signal, so as to avoid artifacts related to the generation
technique. We recall that the signals are correlated Gaussian with zero-mean and unit
variance. Moreover, a Gaussian noise with standard deviation σnoise = 0.04 has been
added to the signal, as per the signal generation method of Section 3.2. For the recon-
struction accuracy, the absolute error tolerance has been set to ε = ξσnoise, with ξ ≥ 0.
In the following graphs, each point is obtained by averaging the outcomes of 104 sim-
ulation runs. For a fair comparison, the same realization of the input time series x(n)
has been used for all the compression methods considered, for each simulation run and
value of n⋆. Moreover, all the compression algorithms have been configured with the
same error tolerance, so that the energy compression and consumption figures that we
obtain are for the same reconstruction fidelity at the receiver.
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3.6. Compression Ratio vs Processing Energy

In the following, we analyze the performance in terms of compression effectiveness
and computational complexity (energy) for the lossy compression methods of Section 2.

Adaptive Modeling Methods: in this first set of results we compare the performance
of the following compression methods: 1) Modified Adaptive Autoregressive (M-AAR);
2) Polynomial Regression (PR); 3) Piecewise Linear Approximation (PLAMLiS); 4) En-
hanced Piecewise Linear Approximation (E-PLAMLiS); 5) Lightweight Temporal Com-
pression (LTC) and 6) Marcelloni and Vecchio’s algorithm (MV) . For the M-AAR au-
toregressive filter and the polynomial regression (PR) we show results for the two
orders, p = {2, 4}. The lower bound on the compression ratio η is also plotted for com-
parison, see (1).

Fig. 3(a) shows the Compression Ratio achieved by the six compression methods as
a function of the correlation length n⋆. These results reveal that for small values of n⋆

the compression performance is poor for all compression schemes, whereas it improves
for increasing correlation length, by reaching a floor value for sufficiently large n⋆.
This confirms that n⋆ is a key parameter for the performance of all schemes. Also,
the compression performance differs among the different methods, with PR giving the
best results. This reflects the fact that, differently from all the other methods, PR
approximates x(n) without requiring its fitting curves to pass through the points of
the given input signal. This entails some inherent filtering, that is embedded in this
scheme and makes it more robust against small and random perturbations.

Fig. 3(b) shows the energy consumption for compression. For increasing values of n⋆

the compression ratio becomes smaller for all schemes, but their energy expenditure
substantially differs. Notably, the excellent compression capabilities of PR are coun-
terbalanced by its demanding requirements in terms of energy. M-AAR and PLAMLiS
also require a quite large amount of processing energy, although this is almost one or-
der of magnitude smaller than that of PR. LTC, E-PLAMLiS and MV have the smallest
energy consumption among all schemes.

We now discuss the dependence of the computational complexity (which is strictly
related to the energy spent for compression) on n⋆. LTC encodes the input signal x(n)
incrementally, starting from the first sample and adding one sample at a time. Thus,
the number of operations that it performs only weakly depends on the correlation
length and, in turn, the energy that it spends for compression is almost constant
with varying n⋆. E-PLAMLiS takes advantage of the increasing correlation length:
as the temporal correlation increases, this method has to perform fewer “divide and
reiterate” steps, so the number of operations required gets smaller and, consequently,
also the energy spent for compression is reduced. MV performs almost the same
number of operations for different correlation lengths, except for very small values of
n⋆. This occurs because, in order to meet the error constraint for uncorrelated signals
(n⋆ ≈ 1), the quantization step has to use a high number of levels (DPCM signals have
wider ranges), and with an increasing number of levels the entropy encoder assigns
an exponentially increasing number of bits to some symbols. As a consequence, also
the number of operations related to the assignment of these codewords increases. We
recall that, in order to fairly compare MV with the other methods that we analyze in
this paper, we adapted it as explained in Section 2.3. Specifically, in the evaluation of
the energy consumption associated with the compression operation at the transmitter,
we also consider the operations performed for the online selection of the quantizer,
so as to meet a target error tolerance. In our case, the results differ from those
in [Marcelloni and Vecchio 2010] where optimal quantizers are computed offline,
and only the final encoding stage is performed on the nodes, which entails a lower
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Fig. 3. (a) η vs Correlation Length n⋆ and (b) η vs Energy consumption for compression for the Adaptive
Modeling methods for fixed ε = 4σnoise.

energy consumption. For the remaining methods the complexity grows with n⋆. For
PLAMLiS, this is due to the first step of the algorithm, where for each point the
longest segment that meets the given error tolerance has to be found, see Section 2.
When x(n) is highly correlated, these segments become longer and PLAMLiS has to
check a large number of times the tolerance constraint for each of the N samples of
x(n). For M-AAR and PR every time a new sample is added to a model (autoregressive
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for the former and polynomial for the latter), this model must be updated and the
error tolerance constraint has to be checked. These tasks have a complexity that grows
with the square of the length of the current model. Increasing the correlation length
of the input time series also increases the length of the models, leading to smaller
compression ratios and, in turn, a higher energy consumption.

Fourier- and Wavelet-based Methods: we now analyze the performance of the
Fourier- and Wavelet-based compression schemes of Section 2. We consider the
same simulation setup as above. Fig. 4(a) shows that the compression performance
of Fourier-based methods still improves with increasing n⋆. The methods that perform
best are FFT Windowed, FFT-LPF Windowed and DCT-LPF, which achieve very small
compression ratios, e.g., η is around 10−2 for n⋆ ≥ 300. Conversely, FFT and FFT-LPF,
due to their edge discontinuity problem (see Section 2), need to encode more coefficients
to meet the prescribed error tolerance constraint and thus their compression ratio is
higher, i.e., around 1. RACE is outperformed by other DCT-based solutions in terms of
compression performance, at all correlation lengths. As will be discussed shortly, this
scheme may be interesting for its lightweight character in terms of energy consump-
tion requirements. The energy cost for compression is reported in Fig. 4(b), where
n⋆ is varied as an independent parameter. The compression cost for all the FFT/DCT
schemes is given by a first contribution, which represents the energy needed to evalu-
ate the FFT/DCT of the input signal x(n). Thus, there is a second contribution which
depends on the number of transformation coefficients that are picked. Specifically, a
decreasing n⋆ means that the signal is less correlated and, in this case, more coeffi-
cients are to be considered to meet a given error tolerance. Further, for each of them,
an inverse transform has to be evaluated to check whether an additional coefficient is
required. This leads to an increasing computational cost for decreasing n⋆.

RACE instead, as described in Section 2.1.5, only performs an initial Wavelet de-
composition and subsequently checks the reconstruction error thanks to the coefficient
selection phase along the constructed tree, without having to compute an inverse
transform at each step. Hence, its energy consumption remains nearly constant while
varying the correlation length n⋆ and is lower than that of FFT and DCT schemes.
Finally, we note that FFT-based methods achieve the best performance in terms of
compression ratio among all schemes of Figs. 3(b) and 4(b) (DCT-LPF is the best
performing algorithm), whereas PLA schemes give the best performance in terms of
energy consumption for compression (LTC is the best among them).

Applicability to real-world signals: in Table I, we show the typical sampling rate
and the correlation length for selected real-world signals. Luminosity and temperature
data are taken from the database used in [Quer et al. 2012], readings from load sensors
are taken from a structural monitoring WSN installed by WorldSensing in the Palau
Sant Jordi of Barcelona (ES), whereas seismic data is obtained from the measurements
in [Vilajosana et al. 2007]. The high quality (HQ) musical sample and the speech data
are respectively from an excerpt of classical music by Mozart and from a sample of
speech from an adult female, these datasets are available at [Donohue 2013]. The low
quality (LQ) musical sample is from the Händel Messiah’s Hallelujah Chorus.

In this paper, we focus on compression schemes for WSNs that are signal-agnostic
and, as such, try to approximate the signals on the fly through some modeling tech-
nique. These, are however effective for slowly varying signals, say, with correlation
length larger than 50 samples. Typically, these kinds of signals are monitored by WSNs
gathering climatic/environmental data or structural health. Audio signals, such as
music and voice, seismic signals, or signals related to online traffic monitoring show
abrupt variations, are highly non-stationarity and are characterized by very short cor-
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Fig. 4. (a) η vs Correlation Length n⋆ and (b) η vs Energy consumption for compression for the Fourier-
based methods for fixed ε = 4σnoise.

relation lengths (usually smaller than 10 samples). While the techniques presented
here can be used for the compression of these signals, dedicated algorithms, which are
outside the scope of this paper, are expected to lead to better results.
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Table I. Typical correlation length n⋆ for selected real-world signals.

Signal type Sampling rate [Hz] Typical n⋆ [samples]

Indoor temperature 1/60 563
Humidity 1/600 355
Load sensors 1/5 402
Outdoor temperature 10 135
Luminosity 1/300 100
Music (HQ) 44.1 k 33
Music (LQ) 8192 4
Speech 8192 8
Seismic 150 3
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Fig. 5. Compression Ratio η vs Total Energy Consumption: comparison among lossy compression schemes.

3.7. Application Scenario

In this section, we evaluate the selected compression methods considering the energy
consumed for transmission of typical radios in Wireless Sensor Networks (WSN) for
a single- and a multi-hop network, where there is no multiple-user interference at
the channel access. These results will be extended in Section 4 to Multi-hop networks
with interference.

Single-hop Performance: Fig. 5 shows the performance in terms of Compression
Ratio η vs Total Energy Consumption for a set of compression methods when applied
to an interference-free single-hop WSN scenario. PLAMLiS was not considered as its
performance is always dominated by E-PLAMLiS and we only show the performance of
the best Fourier-based schemes. In both graphs the large white dot represent the case
where no compression is applied to the signal, which is entirely sent to the gathering
node. Note that energy savings can only be obtained for those cases where the total
energy lies to the left of the no compression case. For the following results, we have
set the transmission power of the radio transceiver to the maximum level, in order to
show the best achievable performance when data compression is applied.
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Fig. 6. Maximum Energy Gain vs Correlation Length n⋆ for a single-hop scenario.

Table II. Summary of performance for the considered compression methods.

Compression Compression Energy Energy Complexity
Method capabilities Requirements Efficiency versus n⋆

PLAMLiS average high × increasing
E-PLAMLiS average low X decreasing
LTC average low X decreasing
PR very high very high × increasing
M-AAR low high × increasing
MV low moderate × decreasing
FFT low very high × decreasing
FFT-LPF low very high × decreasing
FFT Win high high × decreasing
FFT-LPF Win very high high × decreasing
DCT high high × decreasing
DCT-LPF very high high × decreasing
RACE average/high moderate × constant

Notably, in spite of the adoption of the maximum power level, the computational
energy is comparable to that spent for transmission, thus, only LTC and Enhanced
PLAMLiS can achieve some energy savings (see Fig. 5). All the other compression
methods entail a high number of operations and, in turn, perform worse than the no
compression case in terms of overall energy expenditure. This remarkable result is a
consequence of that, as mentioned in Section 3.3, using current technologies, only a
few hundred CPU instructions can be executed to compress a single bit of information
and be energy efficient.

The total energy gain, defined as the ratio between the energy spent for transmission
in the case with no compression and the total energy spent for compression and trans-
mission using the selected compression techniques, is shown in Fig. 6. The method
that offers the highest energy gain is LTC, although other methods such as DCT-LPF
can achieve better compression performance (see Fig. 5). Note that in this scenario the
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Fig. 7. (a) Energy gain vs number of hops for ε = 4σnoise. Solid lines are used to indicate maximum trans-
mission power, dashed lines to indicate minimum transmission power. Results for DCT-LPF are shown with
black filled markers, whereas white filled markers are used for LTC. The type of marker indicates the cor-
relation length of the input signal, specifically: (�,�) for n⋆ = 300, (◦, •) for n⋆ = 500. (b) Energy gain vs
hop distance for LTC and DCT-LPF with ε = 4σnoise and n⋆ = 300.

total energy is highly influenced by the computational cost. Thus, the most lightweight
methods, such as LTC and enhanced PLAMLiS, perform best.

In Table II, we qualitatively summarize the performance of the considered signal
compression algorithms, classifying them in terms of compression capabilities, energy
requirements (directly related to their computational complexity) and dependence on
the temporal correlation length n⋆.

Multi-hop Performance: in Fig. 7 we focus on multi-hop networks, and evaluate
whether further gains are possible when the compressed information has to travel
multiple hops to reach the data gathering point. In this case, both transmission and
reception energy are accounted for at each intermediate relay node. In the following,
only LTC and DCT-LPF are shown, as these are the two methods that respectively
perform best in terms of complexity and compression efficiency.

In Fig. 7(a), we set the error tolerance ε = 4σnoise, the correlation length of the
input signal n⋆ ∈ {300, 500} and we evaluate the possible gains for the maximum and
the minimum transmission power levels, so as to respectively obtain the upper and
lower bounds on the achievable performance. As shown in this figure, the energy gain
increases with the number of hops. This is because, although the energy spent for
the compression at the source node is comparable to that spent for the transmission,
the compression cost (compression energy) is only incurred at the source node; while
each additional relay node only has to send compressed data. We also note that DCT-
LPF is not energy efficient in single-hop scenarios, but it can actually provide some
energy gains when the number of hops is large enough (e.g., larger than 2), and the
transmission power is set to the maximum level. For the minimum transmission power,
DCT-LPF starts being energy efficient only after 5− 6 hops, see Fig. 7(a).

In Fig. 7(b) we show the maximum achievable energy gain versus the distance
between hops. Given the distance, the transmission power is selected according to
the Friis path loss formula (with path loss exponent α = 3.5, which is typical for
WSNs [Mao et al. 2006]), considering the transmission power levels and the receiver
sensitivity Pth = −95 dBm of the CC2420 transceiver [Chipcon 2007]. For each value
of the distance, we evaluated the energy gain using the minimum transmission power
level that leads to a received power above Pth. As shown in Fig. 7(b), the energy gain
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increases with the distance, as the transmission power becomes progressively higher of
that needed for compression. This effect becomes more pronounced when the number
of hops is increased, as the relay nodes only have to forward the data (no processing),
thus benefiting from the smaller number of bits to be received and transmitted.

3.8. Numerical Fittings

In this section, we provide close-formulas to accurately relate the achievable compres-
sion ratio η to the relative error tolerance ξ and the computational complexity, Nc,
which is expressed in terms of number of clock cycles per bit to compress the input sig-
nal x(n). These fittings have been computed for the best compression methods, namely,
LTC and DCT-LPF.

Note that, until now, we have been thinking of η as a performance measure which
depends on the chosen error tolerance ε = ξσnoise. This amounts to considering ξ as an
input parameter for the compression algorithm. In the following, we approximate the
mathematical relationship between η and ξ, by conversely thinking of ξ as a function
of η, which is now our input parameter. Nc can as well be expressed as a function of η.

We found these relationships through numerical fitting, running extensive simula-
tions with synthetic signals. The relative error tolerance ξ can be related to the com-
pression ratio η through the following formulas:

ξ(n⋆, η) =















p1η
2 + p2η + p3
η + q1

LTC

p1η
4 + p2η

3 + p3η
2 + p4η + p5

η + q1
DCT-LPF ,

(2)

where the fitting parameters p1, p2, p3, p4, p5, and q1 depend on the correlation length n⋆

and are given in Table III for LTC and DCT-LPF. These fitting formulas have been val-
idated against real world signals measured from the environmental monitoring WSN
testbed deployed on the ground floor of the Department of Information Engineering
(DEI), University of Padova, Italy [Crepaldi et al. 2007]. This dataset consists of mea-
sures of temperature and humidity, sensed with a sampling interval of 1 minute (tem-
perature) and 10 minutes (humidity) for 6 days. Correlation lengths are n⋆

T = 563 and
n⋆
H = 355 for temperature and humidity signals, respectively. The empirical relation-

ships of Eq. (2) are shown in Fig. 8(a) and 8(b) through solid and dashed lines, whereas
the markers indicate the performance obtained applying LTC and DCT-LPF to the con-
sidered real datasets. As can be noted from these plots, although the numerical fitting
was obtained for synthetic signals, Eq. (2) closely represents the actual tradeoffs. Also,
with decreasing n⋆ the curves relating ξ to η remain nearly unchanged in terms of
functional shape but are shifted toward the right. Finally, we note that the depen-
dence on n⋆ is particularly pronounced at small values of n⋆, whereas the curves tend
to converge for increasing correlation length (larger than 110 in the figure).2

For the computational complexity, we found that Nc scales linearly with η for both
LTC and DCT-LPF. Hence, Nc can be expressed through a polynomial as follows:

Nc(n
⋆, η) = αη + γn⋆ + β . (3)

Nc exhibits a linear dependence on both n⋆ and η; the fitting coefficients are shown in
Table IV. We remark that the computational complexity as given by (3) is that achiev-
able by a temporal compressor configured with a compression ratio η, that keeps the
reconstruction error bounded according to the error tolerance ε = ξ(n⋆, η)σnoise (see

2Note also that the there is a lower bound on the achievable reconstruction accuracy as the signal correlation
n⋆ increases. This is due to the noise that is superimposed to the useful signal.
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Fig. 8. Fitting functions ξ(n⋆, η) vs experimental results: (a) LTC, (b) DCT-LPF. The correlation n⋆of the
considered datasets for temperature and humidity is 563 and 355 samples, respectively.

(2)). Note that, differently from Fig. 4, this reasoning entails the compression of our
data without fixing beforehand the error tolerance ε, which instead directly follows
from η and n⋆.

Further, in (3) the dependence on n⋆ is much weaker than that on η and for practical
purposes can be neglected without loss of accuracy. For this reason, in the remainder
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Table III. Fitting coefficients for ξ(n⋆, η).

Compression
n⋆ Fitting coefficients

Method p1 p2 p3 p4 p5 q1

LTC

10 −0.35034 0.27640 0.92834 – – −0.15003
20 −0.51980 0.86851 0.31368 – – −0.09245
50 −0.80775 1.38842 0.17465 – – −0.03705
80 −0.85691 1.45560 0.18208 – – −0.02366
110 −0.86972 1.46892 0.19112 – – −0.01736
290 −0.97242 1.61970 0.17280 – – −0.00747
500 −1.03702 1.70305 0.17466 – – 0.00267

DCT-LPF

10 2.05351 −12.70381 14.49624 −4.52198 0.82292 −0.16165
20 −0.92752 −3.07506 3.07560 1.06902 0.02898 −0.09025
50 −1.90344 −0.17491 −0.13500 2.43821 −0.03826 −0.03929
80 −2.59629 1.41404 −1.40970 2.81971 −0.04122 −0.02667
110 −2.57150 1.43655 −1.51646 2.87138 −0.02747 −0.01913
290 −3.43806 3.17964 −2.67444 3.13226 −0.01531 −0.00848
500 −3.99007 4.17811 −3.22636 3.22590 −0.01102 −0.00560

Table IV. Fitting coefficients for Nc(n⋆, η).

Compression Fitting coefficients
Method α β γ

LTC 16.1 105.4 3.1 · 10−16

DCT-LPF 48.1 · 103 82.3 −2 · 10−13

of this section we consider the simplified relationship:

Nc(η) = αη + β . (4)

The accuracy of Eq. (4) is verified in Fig. 9, where we plot our empirical approximations
against the results obtained for the real world signals described above. The overall
energy consumption is obtained as Nb(x)Nc(η)E0.

Tradeoffs: in the following, we use the above empirical formulas to generalize our
results to any processing and transmission technology, by separating out technology
dependent and algorithm-dependent terms. Specifically, a compression method is en-
ergy efficient when the overall cost for compression (Ec(x)) and transmission of the
compressed data (ETx(x̂)) is strictly smaller than the cost associated with transmit-
ting x(n) uncompressed (ETx(x)). Mathematically, Ec(x) + ETx(x̂) < ETx(x). Dividing
both sides of this inequality by ETx(x) and rearranging the terms leads to:

ETx(x)

Ec(x)
=

E′
Tx[ℓ]Nb(x)

E0NcNb(x)
>

1

1− η
,

where the energy for transmission ETx(x) is expressed as the product of the energy
expenditure for the transmission of a bit E′

Tx[ℓ] (for the selected output power level
ℓ ∈ {1, . . . , 8}) and the number of bits of x(n), Nb(x). The energy for compression is de-
composed in the product of three terms: 1) the energy spent by the micro-controller in
a clock cycle E0, 2) the number of clock cycles performed by the compression algorithm
per (uncompressed) bit of x(n), Nc and 3) the number of bits composing the input signal
x(n), Nb(x). With these energy costs and the above fitting Eq. (4) for Nc we can rewrite
the above inequality so that the quantities that depend on the selected hardware archi-
tecture appear on the left hand side, leaving those that depend on algorithmic aspects
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Fig. 9. Fitting functions Nc(η) vs experimental results.

on the right hand side. The result is:

E′
Tx[ℓ]

E0
>

Nc(η)

1− η
=

αη + β

1− η
, (5)

where α and β are the algorithmic dependent fitting parameters indicated in Table IV.
Eq. (5) can be used to assess whether a compression scheme is suitable for a specific
device architecture. As an example, for the considered WSN architecture we have that
E′

Tx[8] = 230 nJ for the selected CC2420 radio for its highest transmission power ,
whereas for the TI MSP430 we have E0 = 0.726 nJ and their ratio is E′

Tx[8]/E0 ≃ 316.
The numerical evaluation of the RHS of (5) for DCT-LPF reveals that this compres-
sion scheme is inefficient for any value of η, i.e., the overall energy expenditure due to
transmission plus compression is higher than the energy spent in the case where com-
pression is not applied. Instead, LTC provides energy savings for η ≤ 0.6, that using
the function ξ(n⋆, η) for LTC can be translated into the corresponding (expected) error
performance. Note that the knowledge of n⋆ is needed for this last evaluation. These
results can be generalized to any other device technology, by comparing the RHS of (5)
against the corresponding ratio E′

Tx[ℓ]/E0 and checking whether the inequality in (5)
holds.

4. PERFORMANCE COMPARISON FOR INTERFERENCE-LIMITED MULTI-HOP NETWORKS

In this section we generalize our findings to multi-hop WSN where data is routed along
a tree and eventually collected by a sink node. In doing so, we model the channel ac-
cess dynamics in terms of transmission schedules, idle times and collisions, accounting
for the corresponding energy and delay terms. For the sake of analytical tractability,
we account for static routing paths. The main question that we try to answer here is
whether additional benefits arise when further protocol inefficiencies are accounted
for. Especially, we are concerned with the benefits that may be achieved for DCT
schemes, which provide the best compression performance but that, as we have seen
above, may be inefficient for single-hop networks when the channel access is idealized.
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Fig. 10. Multi-hop WSN scenario.

4.1. Analysis for Interference Limited Networks

Scenario: we consider the multi-hop WSN of Fig. 10 where the field readings are
gathered by the sensors placed in a number of WSN islands (at level LK−1) and then
routed to the data collector node (the WSN sink, at level L0), through a data collec-
tion tree. This tree is organized according to a hierarchical structure with K levels,
L0, L1, . . . , LK−1, whereby Nk is the number of children nodes for a root located at level

k − 1 with k = 1, . . . ,K − 1 and NK = 0. Thus, N(k) =
∏k

i=1 Ni, k ≥ 1 is the total

number of nodes at level k, N(0) = 1, and
∑K−1

k=0 N(k) is the total number of sensor
nodes, including the sink.

To reduce the interference among the data forwarding processes taking place in the
different levels of the tree we adopt a pipelining scheduling technique as done in,
e.g., [Rossi et al. 2010]. Starting with the lowest level LK−1, the data collection pro-
tocol works in rounds of T seconds that are further subdivided into 3 sub-rounds, S1,
S2 and S3 of T/3 seconds each. During S1, the N(K − 1) nodes at level LK−1 compete
for the channel to send their data to their respective roots located in LK−2, which act
as receivers. During the next sub-round S2, the nodes in LK−2 contend for the channel
to forward their data to the nodes in the next level LK−3, the nodes in LK−1 sleep and
those in LK−3 act as receivers. In the final sub-round S3, the nodes in LK−3 forward
their data toward their upper level K − 4 and those in levels K − 1 and K − 2 sleep.
In the next sub-round (again of type S1), the nodes at level LK−4 forward their data
and those in LK−1 can concurrently transmit, being outside their interference range.
This procedure is iteratively applied to each level so that the nodes that are three lev-
els apart share the same schedule and concurrently transmit in the same sub-round.
The nodes in each level k = 1, 2, . . . ,K − 2 will receive in one sub-round, transmit in
the next one, and stay silent in the last. The nodes in the last level LK−1 transmit
in a sub-round and sleep during the following two. We further assume that the nodes
belonging to the same level but to a different sub-tree do not interfere with each other.

The nodes in the sensor islands (LK−1) are the only ones that generate endogenous
traffic, each according to a Poisson process with rate λK−1 pkt/s, which depends on
their sampling rate for the underlying physical process. The rates for the nodes at the
upper levels depend on the aggregated traffic, which is recursively computed account-
ing to MAC contentions and routing. The channel contentions during the transmission
sub-rounds are governed through a protocol that is similar to S-MAC [Ye et al. 2002],
extending the modeling approach of [Yang and Heinzelman 2012]. The authors of the
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latter paper present a model for single-hop networks, where all nodes are allowed to
talk to any other node. Below, we extend their analysis for the scenario of Fig. 10,
where all the nodes in a certain level can only communicate with their respective
root (located in the next level toward the sink). Hence, a mathematical analysis
is developed to characterize the performance within each level, aggregating the
contributions from LK−1 up to L0 so as to obtain the overall network performance, i.e.,
from the WSN islands to the sink. Our extension is reported in what follows.

Analysis: we assume that each node has a finite FIFO queue that can store up to
Q packets. During a transmission sub-round, only the nodes with non empty queue
wake up and participate in the channel contention. In order to maintain synchroniza-
tion across nodes, in S-MAC a fixed interval at the beginning of each active period
is reserved for the exchange of SYNC packets. After this phase S-MAC exploits an
RTS/CTS/DATA/ACK handshake to guarantee the successful transmission of the data.
Specifically, each node access the channel after a backoff time picked uniformly at ran-
dom from a fixed length contention window of Wδ seconds, where W is the contention
window size and δ is the time duration of an access slot. The first node that accesses
the channel (the winner of the contention) sends an RTS packet and remains active
until the completion of the RTS/CTS/DATA/ACK handshake, in which case its packet
is successfully transmitted. All the remaining nodes go to sleep as soon as they over-
hear an RTS packet and wake up at the next transmission sub-round. If multiple nodes
attempt to access the channel in the same access slot, their RTS packets will collide
and the data packets of these nodes are dropped, causing a loss event. We also assume
that the nodes remains active for the entire duration of their reception sub-rounds.

The analysis that follows is applied to each level of the discussed multi-hop WSN,
starting from the sensor islands and recursively moving towards the sink. The MAC
queue of each node in level k = 0, 1, . . . ,K − 1 is modeled through a Markov chain,
with transition probabilities depending on the corresponding arrival rate λk and on
the probability p , ps + pf of removing one packet from the queue (either due to
a successful transmission, w.p. ps, or due to a collided one, w.p. pf ).3 For the levels
above LK−1 we calculate λk aggregating the traffic of the Nk+1 underlying nodes and
accounting for the respective packet losses, as follows:

λk = PDRk+1 ·Nk+1 · λk+1 ∀ k = 0, 1, . . . ,K − 2 , (6)

where PDRk+1 is the average packet delivery ratio for the level immediately below. The
packet generation rate for the nodes in the WSN islands (level LK−1) is application
dependent as is denoted by γ pkt/s. Accounting for the reduction in the number of
packets sent due to the utilization of temporal compression algorithms, these nodes
generate endogenous data traffic according to rate λK−1, where:

λK−1 =

{

γ no− compression

γη compression .
(7)

Following [Yang and Heinzelman 2012], given the Markov model for the MAC queues,
for each node the stationary probability of empty queue πo can be evaluated as a
function of p, i.e., πo = f(p).4 Also, given the number of nodes in the same group
(i.e., sharing the same root node), the probability of winning a contention p can be

3We remark that p, ps and pf are to be calculated for each level k, according to the aggregated input traffic
coming from the previous level k−1. Here, we omit their explicit dependence on k for the sake of readability.
4In what follows, in addition to ps and pf , the index k is also omitted from p and πo for the sake of a more
concise and readable notation.
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expressed as a further function of πo. i.e., p = ps + pf = g(πo). In fact, note that ps
and pf depend on the number of nodes at level k that have at least one packet in their
buffer and thus transmit toward the same root located at level k − 1. This number
is a r.v. having a binomial mdf with parameters Nk and π0, i.e., B(Nk, πo). For each
level k = 1, . . . ,K − 1, the pair (p, πo) is evaluated numerically by finding the only
point where the two curves f(p) and g(πo) intersect. This returns the (steady-state)
operational point for the MAC system, which is successively used to evaluate the
performance of interest, in particular: 1) the Packet Delivery Ratio, 2) the Delay and
3) the Mean Energy Consumption.

1) Packet Delivery Ratio (PDR): the PDR for a given level k, (PDRk), is defined
as the ratio of successfully delivered packets over the total number of generated data
packets and derived as follows:

PDRk =
(1− π0)ps

λkT
.

For our multi-hop network, the Total Packet Delivery Ratio from level LK−1 up to the

sink is obtained as
∏K−1

k=1 PDRk.

2) Delay: the delay for a given level k, Dk, is defined as the number of time slots
needed to deliver a data packet to the next hop. The average delay for each level can
be obtained through the analysis in [Yang and Heinzelman 2012]; the total average
delay is obtained through the aggregation of the delays experienced in each level from
the WSN islands all the way to the sink.

3) Mean Energy Consumption: for the energy consumption analysis, we recall the
features of our version of S-MAC.

(1) The time slot is divided in three sub-rounds, all the nodes in the same level share
the same schedule and are synchronized.

(2) In the transmission sub-round only the nodes with non empty queue wake up and
contend for the channel.

(3) The nodes that wake up perform a SYNC phase, which is followed by a channel
contention. Only the winner of this contention transmits a data packet, whereas
all other nodes go to sleep as soon as they overhear an RTS packet or detect a
collision.

(4) The winner of the contention goes to sleep as soon as the data packet is acknowl-
edged (in the case of a successful transmission), or after an RTS collision (when
two or more node access the channel in the same access slot).

(5) The nodes remain in listening(sleep) mode for the whole duration of their recep-
tion(sleep) sub-round.

With these assumptions, we define the Mean Energy per time slot E as the sum of the
mean energy spent in the three sub-rounds:

E = ES1
+ ES2

+ ES3
. (8)

Without loss of generality we hereby consider S1 as the transmission sub-round, S2 as
the reception sub-round and S3 as the sleep sub-round.

The average energy consumption in the transmission sub-round can be further fac-
torized as:

ES1
= Esync + Edata + Esleep , (9)
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where Esync, Edata and Esleep respectively account for the average energy consumption
in the SYNC, the data transmission and the sleep phase occurring within a sub-round
of type S1. Assuming that a the duration of a SYNC phase is Tsync, that the transmis-
sion of a SYNC packet takes tSYNC and that a node transmits a SYNC packet every
Nsync time slots, Esync is obtained as:

Esync =
tSYNCPTx + (Tsync − tSYNC)PRx + TsyncPRx(Nsync − 1)

Nsync
, (10)

where PTx and PRx are the radio power consumption for transmission and reception,
respectively.

In order to evaluate Edata and Esleep, we consider a tagged node having a packet to
send and look at the duration of its backoff window in the following three cases: C1)
the node successfully transmits a data packet, C2) the RTS sent by this node collides,
and C3) the node goes back to sleep as it detects channel activity before its backoff
timer expires. The durations of these events is referred to as Ws, Wc and Wt for cases
C1, C2 and C3, respectively (expressed in number of access slots). For a given number
of nodes that take part in the contention, No, we obtain:

Ws(No) =
W−1
∑

i=0

i · No

W ·
(

W−i−1
W

)No−1

∑W−1
j=0

No

W ·
(

W−j−1
W

)No−1
, (11)

Wc(No) =

W−1
∑

i=0

i ·
[

(

W−i
W

)No

−
(

W−i−1
W

)No

− No

W ·
(

W−i−1
W

)No−1
]

∑W−1
j=0

(

W−j
W

)No

−
(

W−j−1
W

)No

− No

W ·
(

W−j−1
W

)No−1
, (12)

Wt(No) =

W−1
∑

i=0

i ·
[

(

W−i
W

)No

−
(

W−i−1
W

)No

]

∑W−1
j=0

(

W−j
W

)No

−
(

W−j−1
W

)No

. (13)

Inside the sum of (11) we have the conditional probability that the tagged node wins
the contention, accessing the channel in slot i, whereas all other nodes that partici-
pate in the contention pick an access slot greater than i, given that the contention is
successful. The remaining equations (12) and (13) are obtained similarly, accounting
for C2 and C3. The expected values for these durations are obtained averaging Ws, Ws

and Ws over the possible values of No, as:

E
[

W{s,t,c}

]

=

N
∑

n=1

(

N

n

)

· πN−n
o · (1− πo)

n ·W{s,t,c}(n) . (14)

The mean durations in seconds is evaluated as T{s,c,t} = E
[

W{s,t,c}

]

· δ.
Finally Edata and Esleep can be computed accounting for cases C1 (w.p. (1 − πo) · ps),

C2 (w.p. (1− πo) · pf ), C3 (w.p. (1− πo) · (1− ps − pf )) and a further case C4) where the
tagged node does not participate in the contention as its queue is empty (w.p. πo):

Edata = (1− πo) · ps · [(tRTS + tDATA) · PTx

+ (tCTS + tACK + Ts) · PRx + Ec]

+ (1− πo) · pf · [tRTS · PTx + (tCTS + Tc) · PRx + Ec]

+ (1− πo) · (1− ps − pf ) · [(tRTS + Tt) · PRx]

+ πo · 0 , (15)
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Esleep = (1− πo) · ps · (T/3− Tsync − tRTS − tCTS

− tDATA − tACK − Ts) · PSl

+ (1− πo) · pf · (T/3− Tsync − tRTS − tCTS − Tc) · PSl

+ (1− πo) · (1− ps − pf ) · (T/3− Tsync − tRTS

− Tt) · PSl + πo · (T/3) · PSl . (16)

Here, tRTS, tDATA, tCTS, tACK represent the time for transmitting an RTS, DATA, CTS
and an ACK, respectively. PSl is the power consumption of the radio transceiver in the
sleep mode. Ec in (15) is the energy consumption for the compression of a data packet,
evaluated according to the packet length, the required number of CPU cycles (see (4))
and the energy consumption per CPU cycle E0 (Ec = 0 if data is sent uncompressed).
The probabilities ps, pf and πo are computed as in [Yang and Heinzelman 2012].

4.2. Results

In this section we provide some results for the scenario of Fig. 10, where we consider
a network with K = 4 levels, and with N1 = 3, N2 = 2 and N3 = 30, leading to a to-
tal number of 190 nodes. The packet generation rate at the lowest level λ3 is obtained
considering an average inter-sampling time for the underlying physical phenomenon
Is ∈ [10−3, 102] seconds. Moreover, considering a packet payload size of 127 bytes and
16 bits per sample, the resulting packet generation rate for the endogenous traffic is
γ = 1/(63.5Is) packets/s. For the compression methods, we focus on LTC and DCT-LPF
as from Section 3.8 we know that these respectively perform best in terms of compu-
tational complexity and compression efficiency. Thus, we compare their performance
at different compression ratios, η ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, and without compres-
sion. The queue length of each node is set to Q = 10 pkts, its contention window to
W = 50 access slots and the duration of an access slot is set to δ = 0.2 ms. For the com-
putation of the energy terms (compression and radio activity) we consider the power
consumptions of the CC2420 radio transceiver and of the MSP430 micro-controller. In
the results that follows, different performance metrics are shown as a function of the
compression ratio η. As per our working methodology in this paper, each value of η
(and, in turn, each curve in the following graphs) is characterized by a corresponding
error tolerance ξ(n⋆, η), attainable from the correlation length n⋆ and (2). A decreasing
η corresponds to an increasing error as shown in Fig. 8.

In Figs. 11(a) 11(b) we plot the the total delivery delay as a function of the packet
generation rate for each node in the WSN islands, γ. We consider the total delay in-
curred in compressing the data and transmitting them through multiple hops, as per
the scenario of Fig. 10. For LTC, the delay is slightly longer than no compression at
low data traffic (roughly γ ≤ 0.02 packets/second), where the latter outperforms LTC
by about 1.5 seconds (due to the additional execution time for compression). As γ gets
larger, the delay performance when sending the data uncompressed is substantially
impacted and this is due to the increased level of congestion in the network (i.e., num-
ber of collisions) and, in turn, to the longer waiting time that the packets experience
in the network queues. The same fact occurs for LTC, where however the level of con-
gestion is milder due to the lower amount of data that is injected into the network
when compression is applied. Notably, LTC remains quite lightweight for all values of
η and, thus, for all the corresponding values of ξ. This is because LTC requires a small
number of operations (in fact, with LTC a single pass on the input signal is required to
provide a compressed sequence meeting the required reconstruction fidelity ξ). DCT-
LPF shows a totally different behavior due to our implementation of this scheme, see
Section 2.1.2, whereby we iteratively check the reconstruction quality at the source. In
general, one may use a different approach, by performing a single DCT transform for
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Fig. 11. Total Delay [s] vs packet generation rate γ at the lowest level for: (a) LTC; (b) DCT-LPF. (c) Packet
Delivery Ratio vs packet generation rate γ at the lowest level.

each data frame and retaining a certain number of coefficients, so as to obtain to the
wanted compression performance, irrespective of the resulting signal representation
accuracy. In this case, the delay for DCT would only be slightly longer than that of
LTC in Fig. 11(a). However, no control on the reconstruction quality can be assured in
this case.

The Packet Delivery Ratio is shown in Fig. 11(c). When the arrival rate is small, all
the packets are successfully delivered; conversely, as the arrival rate becomes larger,
the queue lengths increase and the nodes start dropping packets. With temporal com-
pression, the number of packets in the network is reduced and this leads to a higher
PDR.

In Fig. 12, we investigate the energy balance arising from the tradeoff,compression
versus transmission, by showing the overall average energy consumption over the en-
tire network . Notably, for LTC, from Fig. 12(a) we see that the additional cost incurred
in compressing the data is well counterbalanced by the higher efficiency of the channel
access procedure due to the reduction in the data traffic, i.e., fewer packet collisions
and more sleeping opportunities for the sensor nodes. However, this results does not
hold when the compression method is DCT-LPF as in this case the cost associated with
the compression of the data is much higher and some energy gain can only be achieved
if the compression ratio is significant. Given these results, we advocate the use of lin-
ear compression methods such as LTC, as these are likely to lead to energy savings.
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Fig. 12. Mean energy per time slot [J] vs packet generation rate γ at the lowest level: (a) LTC; (b) DCT-LPF.

The use of other methods should be carefully evaluated, as they are energy-inefficient
in most practical cases and can lead to unacceptable delays .

Finally, in Fig. 13 we focus on the reconstruction performance for the network sce-
nario of Fig. 10 in the presence of packet losses due to collisions and without accounting
for any packet retransmission mechanism. To this end, we define a new reconstruction
error metric, termed frame Root Mean Square Error (RMSE), which is evaluated at
the receiver as the RMSE for every N data samples. Since in both the compressed
and uncompressed case the encoded data (corresponding to a window of N input sam-
ples) can be fragmented into multiple packets, we devised a simple loss tolerant de-
coding scheme for each method. In particular, 1) in the uncompressed case, whenever
a packet is lost, the decoder uses the last valid received sample as its replacement.
2) For LTC, we assume that fragmentation only occurs between subsequent segment
extremes (ni, x(ni)) (see Fig. 2) but that, for each of them, no splitting of ni and x(ni)
occurs across different packets. In this way, the receiver can always reconstruct the
segments starting from a valid set of points (although in the case of a packet loss a
longer segment will be used to represent the lost data points). 3) For DCT, the lost
coefficients are considered equal to zero when the inverse transform is applied at the
receiver.

As shown in Fig. 13, when the packet generation rate γ is small (γ < 10−2 in the
figure), the frame RMSE is constant and only depends on η and on the selected com-
pression scheme. In this case, LTC shows a higher average RMSE than DCT-LPF for
the same compression ratio η, as seen in Section 3.8. As γ increases beyond a certain
threshold γth, the transmission channel gets saturated and, in turn, packets start be-
ing lost due to collisions. Note that this occurs earlier for the uncompressed case and
for those cases where the compression does not effectively reduce the amount of traffic
in the network (e.g., η = 0.9). This leads to an abrupt increase of the frame RMSE as γ
increases beyond the channel saturation point γth.

On the other hand, when the compression schemes are configured so as to effectively
reduce the amount of data that is transmitted over the network (η > 0.5 in Fig. 13), we
have that γth moves to the right and this produces a beneficial effect in terms of frame
RMSE, which remains constant and acceptable for a wider range of transmission rates.
As an example, when the compression ratio is η = 0.1, the signal reconstruction error
at the receiver can be kept small up to a packet generation rate that is roughly one
order of magnitude larger than γth in the uncompressed case.
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5. CONCLUSIONS

In this paper we have systematically compared lossy compression algorithms for con-
strained sensor networking, by investigating whether energy savings are possible de-
pending on signal statistics, compression performance and hardware characteristics.
Our results reveal that, for wireless transmission scenarios, the energy required by
compression algorithms has the same order of magnitude of that spent for transmis-
sion at the physical layer. In this case, the only class of algorithms that provides some
energy savings is that based on piecewise linear approximations, as these algorithms
have the smallest computational cost. We have additionally obtained fitting formulas
for the best compression methods to relate their computational complexity, approxima-
tion accuracy and compression ratio performance. These have been validated against
real datasets and can be used to assess the effectiveness of the selected compression
schemes for further hardware architectures. In the last part of the paper we inves-
tigate how these compression schemes perform in terms of energy efficiency, reduced
network delay and increased reliability for multi-hop networks in the presence of re-
alistic channel access procedures. Interestingly, we find that linear compression (e.g.,
LTC) is beneficial in all cases but more energy-hungry DCT methods often perform
worse than no compression in terms of energy expenditure. The use of the latter is
thus discouraged and should be carefully evaluated depending on the specific scenario
at hand. Also, when packet losses affect the data delivery, as due to, e.g., packet col-
lisions, correctly configured compression schemes also outperform the uncompressed
transmission case in terms of reconstruction fidelity at the receiver. Essentially, this is
due to the corresponding reduction in the transmitted data traffic and, in turn, in the
packet collision probability.
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