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SR ARQ Packet Delay Statistics on Markov Channels in the
Presence of Variable Arrival Rate
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Abstract— In this letter we investigate the packet delay statis-
tics of a fully reliable Selective Repeat ARQ scheme by consid-
ering a Discrete Time Markov Channel with non-instantaneous
feedback and assigned round-trip delay m. Our focus is on study-
ing the impact of the arrival process on the delay experienced by
a packet. An exact model is introduced to represent the system
constituted by the transmitter buffer, the m round-trip slots,
and the channel state. By means of this model, we evaluate and
discuss the delay statistics and we analyze the impact of the
system parameters, in particular the packet arrival rate, on the
delay statistics.

Index Terms— Automatic repeat request, data communication,
Markov processes, error analysis, delay estimation.

I. INTRODUCTION

AUTOMATIC Retransmission reQuest (ARQ) is a widely
used error control technique for data communication,

besides Forward Error Correction. The three basic ARQ tech-
niques are Stop-and-Wait, Go-Back-N and Selective Repeat
(SR). In SR ARQ, the sender retransmits only the negatively
acknowledged packets and then resumes the transmission
process from the last packet sent so far. In such a scenario, the
delays experienced by different packets are related, since the
packets must be released in-order, i.e., the actual delivery of
a packet only occurs after the correct reception of all packets
with lower identifier.

Several terms [1] contribute to the global delay experienced
by a packet, called τG in the following. For our analysis,
τG is subdivided in two parts. The former, called queueing
delay and denoted with τQ, is the time spent in the source
buffer before the first transmission, and might be related to the
distribution of transmitter buffer occupancy [2]. The latter is
the delivery delay τD , which is between the first transmission
and the release of a packet from the re-sequencing buffer.
This is the sum of the time for correct reception and the
acknowledgment time for previous pending packets, called re-
sequencing delay, which depends on the correct reception of
other packets. About τD, note that between every transmission
and the corresponding packet reception there is a time gap
equal to the constant propagation delay tc. To simplify the
notation, this constant term will be omitted. This means that
in the following the delivery statistics will be considered at
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the transmitter’s side: the delivery delay at the receiver’s side
is simply τD + tc [3].

Many contributions deal with SR ARQ statistics. However,
some approximations are often introduced to make the prob-
lem more tractable. A simplifying assumption used in the
literature [2] is to consider an independent (iid) error process
on the channel. This makes the analysis easier, even though the
impact of the channel error burstiness is neglected, which is
undesirable as it strongly affects the results of ARQ delay [3].

Another simplification is to consider an instantaneous feed-
back. This situation is known in the literature [4] as ideal SR
ARQ. In this case the information about the correct reception
of a packet is immediately available after its transmission,
hence the system is simpler and the analysis can neglect the
possibility of having pending packets at the receiver’s buffer.
However, this also means that the re-sequencing delay is zero,
whereas in real systems it is a large part of the delivery
delay. Thus, the ideal SR ARQ case does not allow a realistic
evaluation of this term.

Finally, another common approach [1] is to assume that
the sender always has a packet to transmit. This so-called
Heavy Traffic assumption is a realistic model for continuous
traffic sources, but might fail to represent more general cases.
In particular, this assumption prevents the queueing delay
statistics from being evaluated, as the buffer occupancy is
arbitrarily high, whereas it is useful for the delivery delay,
as shown in the sequel.

Our contribution is to relax these simplifications, by deriv-
ing a general exact approach. Differently from other contribu-
tions appeared so far, our approach allows to obtain statistical
moments of every order, instead of plain average values.
In particular, in [3] we already developed an exact analysis
based on the Heavy Traffic assumption and focusing on the
delivery delay only. In a further contribution [5] we extended
this study to a more general N-state Markov channel. Here
instead we fill the gap by studying all the delay terms (thus,
in particular, the queueing delay), and considering a more
general arrival process. This generalization is achieved as in
[6] by considering a Bernoulli model, which can be tuned by
varying the arrival rate λ.

The SR ARQ delays have been topic of other contribu-
tions, in particular in [1] the authors consider a time varying
channel and a finite round-trip delay, but the derived model
is approximate in some components and only average values
are evaluated. In [2], the distribution of buffer occupancies
is derived for a general arrival process, but in the case
of iid errors only. Moreover, a window-based approach is
considered, which prevents the packet from being transmitted
immediately after its arrival, as the transmitter must wait until
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the end of the window. Also [6] considers a Bernoulli arrival
process, but again with iid error process. In [7], the end-to-
end delay in case of Adaptive SR ARQ and general arrival
process is studied, but the analysis is approximated. Finally, a
very recent contribution on the matter, which also investigates
the queueing delay, can be found in [8].

II. MODEL FOR SR ARQ QUEUEING AND

TRANSMISSION PROCESSES

The system under analysis consists of a pair transmit-
ter/receiver. The former sends data packets to the latter
through a slotted noisy channel, where the time for a packet
transmission corresponds to one slot. The receiver answers
with ACK/NACK packets according to the correct/erroneous
reception of the data packets, respectively. After a full round-
trip time, feedback packets arrive at the transmitter’s side. As
long as ACKs are received, the sender transmits packets in
increasing numerical order. When a NACK is received instead,
a retransmission is scheduled (which therefore occurs after a
full round-trip time from the previous transmission attempt).
In other words, retransmissions have priority over packets
queued at the transmitter. The packets arrived in the queue
are immediately available for the transmission. This means
that if the queue is empty and no retransmission is scheduled,
a packet is transmitted in the same slot it arrives.

The data packets are released in-order to higher layers, i.e.,
release is possible only once all packets with lower identifier
have also been acknowledged. In SR ARQ the receiver keeps
in a buffer the packets correctly received but not yet released,
so that the sender retransmits unacknowledged packets only.

The following work assumptions are introduced: i) The Link
Layer protocol is fully reliable, i.e., every packet is transmitted
(or retransmitted) until correct reception. ii) Both receiver and
transmitter buffers have unlimited size. iii) ACK/NACK pack-
ets are error-free. For what concerns these assumptions, note
that i) and ii) are standard hypotheses to make the problem
analytically tractable. Also, for what concerns the transmitter
buffer size, note that an upper-limit can be introduced in
what follows in a straightforward manner. Assumption iii)
instead can be easily removed if necessary by following
the approach presented in [9], where an extended analysis
accounts for erroneous feedback. We do not introduce such an
extension here, as it will only bring to tedious complication
in the calculus, without substantially changing the analytical
approach.

We consider a Bernoulli model for the arrival process, i.e., a
packet arrival may occur in every slot with constant probability
λ. However, the outlined framework is very general, so that
this assumptions can be replaced by more complicated arrival
processes if required, basically with the same approach but
with more cumbersome computations. In this view, our contri-
bution can be easily extended to take into account correlations
in the arrival process, e.g., by considering a Markov source as
in [1]. The choice of the Bernoulli arrival process is however
sufficient to gain deep knowledge. For example, such an arrival
process is able to describe different load conditions, by varying
λ. In particular, the Heavy Traffic assumption corresponds to
λ equal to 1, even though the steady state condition when λ
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Fig. 1. Snapshot of the state of the SR ARQ transmission system.

overcomes 1 − ε, where ε is the steady-state channel error
probability, also approaches the Heavy Traffic case, since the
buffer is never empty.

For what concerns the channel, we represent it with a
Discrete Time Markov Chain (DTMC). The transitions of this
DTMC are in correspondence with the transmission slots. For
the sake of simplicity, in the following we assume to have a
2-State Markov Channel, where state 0 is error-free, and 1 is
always erroneous. This DTMC is fully characterized by the
transition matrix P = {pij}, i, j ∈ {0, 1}. For this model, the
steady-state channel error probability is ε = p01/(p10 + p01)
and the average error burst length is B = 1/p10. In spite of its
simplicity, the assumption of having a 2-State Markov Channel
is not restrictive for what follows. In fact, a more complicated
approach (which again leads only to more cumbersome for-
mulae without significant differences in the procedure) can
be derived for a more general N-state Markov Channel, as
outlined in [9]. Thus, it is possible to extend our analysis to
more general cases in a straightforward manner. In particular,
this includes as a particular case the well-known Gilbert–Elliot
model, where the good and bad states are characterized by
error probabilities Pgood and Pbad. This can be translated into
a 4-state Markov chain where all states are either always error-
free or always erroneous, as in our approach.

III. MARKOV MODEL OF QUEUEING BUFFER AND

FEEDBACK CHANNEL

The delivery process evolves as in Fig. 1. At each instant,
a packet is transmitted on the channel, and it can be either a
retransmission or a new packet taken from the queueing buffer.
Retransmissions occur after a full round-trip time, assumed
equal to m slots. This is not restrictive, since if the round-
trip time does not equal an integer number of slots, we can
repeat the reasoning by considering m as the smallest number
of slots which exceeds the round-trip time.

Thus, an m-sized retransmission window can be used to
track the status of the last m transmitted packets. This can be
done by considering an m-sized vector b, with elements bi ∈
{0, 1}, 1 ≤ i ≤ m. The mth bit indicates the slot currently
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under transmission at time t, where the bits bj, 1 ≤ j ≤ m−1
refer to the transmission at time t−m+j. For all bits, a value
equal to 0 indicates that at that time no retransmission was
scheduled, whereas 1 means that a transmission failed. We
also need to track the number q of packets in the queue at
the transmitter buffer and the channel state s, which might be
either 0 or 1, i.e., good or bad. Due to the Markovian nature
of the channel, it is sufficient to keep track only of the value
of s at time t.

Hence, the full state of the delivery process can be described
through the triple (q(t),b(t), s(t)). However, a simplification
is possible. In fact, the binary variables bm and s are not in-
dependent, as a retransmission in the current slot is scheduled
only if the channel is bad, thus it is impossible that s = 0
and bm = 1. The converse does not hold, since bm can be 0
even if s = 1, and this happens if no packet is transmitted.
For this reason, we replace bm and s with a ternary variable c,
since only three situations are possible, which are: the channel
state is good, which implies that there is anyway no need
for retransmission (we denote this with c = 0), the channel
state is bad and a packet is transmitted, which indicates a
retransmission scheduling (c = 1), the channel is bad but
no packet is transmitted, thus no retransmission is scheduled
anyway (in this case, c is let equal to −1). It is necessary
to distinguish c = −1 from c = 0, since both represent no
retransmission but for different channel conditions.

Now, X(t) = (q, b1, b2, . . . , bm−1, c) is a Markov chain1

. In fact, observe that the knowledge of X(t) is sufficient
to determine the value of X(t + 1) by considering every
possibility of channel transition and packet arrival (on the
aggregate, 2 × 2 cases). In the following, we discuss the
evolution of this Markov chain by explicitly deriving its
transition matrix.

First of all, note that due to the cyclic behavior of the ARQ
window, it is easy to realize that the values of b1, . . . , bm−1

at time t+1 evolve deterministically, depending on b and
c, as follows: bj(t+1) = bj+1(t) for 1 ≤ j ≤ m−2, and
bm−1 = u[c − 1], where u[·] is the unit-step (i.e., u[n] = 1
if n ≥ 0, and 0 otherwise). Instead, q(t + 1) and c(t + 1)
depend on the values of q(t), c(t) and also b1(t), and can
have different values according to the packet arrival and
channel variation process. In particular, c(t+1) always evolves
following the channel transition but for the case in which no
packet is transmitted, where for bad channel it is −1 instead
of +1. This condition occurs if q(t)+b1(t)=0 and no packet
is generated. Otherwise, if either there is a retransmission, or
a packet already in the queue is transmitted or finally a newly
arrived packet is transmitted, the bad channel condition always
implies c = 1.

Henceforth, the transition matrix T(P, λ) of the Markov
chain X(t), which is a function of the matrix P and the
arrival rate λ, has 3 ·2m−1 rows for each possible value of q(t)
and every row has only 4 non-zero elements. In particular,
consider a generic transition starting from state X(t) =
(q, b1, b2, b3, . . . , bm−1, c), where all internal components are
evaluated at time t. If s(t+1) = d, which can take value

1All components are here evaluated at time t. To avoid long expressions,
the time indication will be omitted when obvious.

in {0, 1}, the destination states can be X(t+ 1) = (q +
b1, b2, b3, . . . , bm−1, u[c−1], d), with probabilities λp|c|d, and
X(t+1) = (q+b1−u[q+b1−1], b2, b3, . . . , bm−1, u[c−1], d ·
(2u[q+b1−1]− 1)), with probabilities (1−λ)p|c|d.

The following set of balance equations can be written 2 :

π(q, b1, b2, . . . , bm−2, β, c) = (for q > 0, c ∈ {0, 1})

=
β∑

x=2β−1

1∑
α=0

(
λp|x|cπ(q−α, α, b1, b2, . . . , bm−2, x) +

+(1−λ)p|x|cπ(q−α+1, α, b1, . . . , bm−2, x)
)

(1)

π(q, b1, . . . , bm−2, β,−1) = 0 (for q > 0) (2)

π(0, b1, . . . , bm−2, β, 0) =

=
β∑

x=2β−1

(
λp|x|0π(0, 0, b1, b2, · · · , bm−2, x) +

+
1∑

α=−1

(1−λ)p|x|0π
(
(1−α)u[α], αu[α], b1,··· , bm−2, x

))
(3)

π(0, b1, b2, . . . , bm−2, β, 1) =

=
β∑

x=2β−1

(
λp|x|1π(0, 0, b1, b2, . . . , bm−2, x) +

+
1∑

α=0

(1 − λ)p|x|1π(1 − α, α, b1, b2, . . . , bm−2, x)
)

(4)

π(0, b1, b2, . . . , bm−2, β,−1) =

=
β∑

x=2β−1

(
(1 − λ)p|x|1π(0, 0, b1, b2, . . . , bm−2, x)

)
(5)

This set of equations cover all possible states. In particular,
Eq. (1) includes two main cases, according to whether or not
there is an arrival during the previous slot, which give the
two terms multiplied by λ and (1 − λ), respectively. Thus,
a buffer occupancy q larger than 0 is derived in the former
case from a previous buffer occupancy q−α and a first bit of
the bitmap b equal to α, where α can be 0 or 1. This means
that either the number of packets in the buffer was q−1 but
a retransmission occurs (left-most bit equal to α = 1), so
that the number of packets in the buffer increases, or it was
q and the new arrival is compensated by the transmission of
a packet from the buffer. In the latter (no packet arrival) we
can repeat the above reasoning but we must account for a
buffer occupancy in the previous slot with one more packet.
Eq. (2) follows immediately from the observation that it is
impossible to have c = −1 when the buffer occupancy is larger
than 0; in fact, c = −1 describes a bad channel condition
where no packet is transmitted since the buffer is empty,
no retransmission is scheduled and no packets arrived in the
previous slot. Eq. (3) completes the case of good channel by
using the same approach as in Eq. (1). However, here the
inner sum comprises only one case in the first term, i.e.,
when a packet has arrived, as a buffer occupancy equal to 0
can be achieved only if the buffer was already empty and no

2In the following, the script bm−1 , which occurs often, has been replaced
by β, only to simplify the notation.
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retransmission is scheduled. In the second term instead three
possibilities are included, since we now have to account also
for the case where the buffer was empty and no transmission
was scheduled, which is the term of the sum corresponding
to α=−1, whereas α = 0, 1 gives the terms already included
in the sum, as in Eq. (1). Finally, Eqs. (4)–(5) describe any
remaining possibility of channel transition to the erroneous
state. Remember again that the case where the buffer is empty
and no retransmission is scheduled evolves with c = −1,
otherwise c = 1. Thus, the latter case is considered in Eq. (4),
where Eq. (5) accounts for the special case where c = −1.

If we impose the sum of all π’s to be 1, the above set of
equations can be analytically solved for any value of 0 ≤ λ <
1 − ε by observing that the matrix T(P, λ) is partitioned in
the form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0 L0 0 · · ·
M1 S1 L1 0 · · ·
0 M1 S1 L1 0 · · ·
... 0 M1 S1 L1 0 · · ·

...
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the block of size 3 · 2m−1 in position (q, q′) includes
the transitions from buffer occupancy q to buffer occupancy
q′.

The transition matrix above is very similar to the ones
characterizing Quasi Birth and Death (QBD) processes [10],
even though it is not a true QBD process since the sub-matrix
L0 is not equal to the sub-matrices L1. In fact, the topmost
row relates to Eqs. (3)–(5), whereas the rows describing the
transitions from every q > 0 can be inferred from Eqs. (1)–
(2). This difference does not prevent a recursive solution of
the chain by following an approach akin to the one presented
in [10] to solve generalized birth-and-death processes where
the arrival and departure rates depend on the system state. The
modifications necessary to solve our problem concern the fact
that the system state is not fully described by the channel
evolution only, since in our whole Markov chain also the
buffer state impacts on the feedback vector (in particular on c).
However, this changes only the first part of the recursion, i.e.,
when the π(1, ·, ·)’s are expressed in terms of the π(0, ·, ·)’s.
From this point on, the derivation of the π(q+ 1, ·, ·)’s in
terms of the π(q, ·, ·)’s is always the same. By following again
[10], we can prove that this approach admits a solution when
λ < 1− ε. In fact, the recursive approach is convergent if the
generalized departure rate, which is either 0 or 1 according
to 1 − b1, is on average higher than the arrival rate, which is
always equal to λ. The computational complexity of such an
approach corresponds to the solution of a linear system with
6 · 2m−1 equations, which accounts for the blocks q = 0 and
q = 1, then the recursion for higher q’s is obtained at the price
of subsequent multiplication by a 3 · 2m−1 matrix. Thus, the
complexity of the solution strongly depends on m.

IV. QUEUEING AND DELIVERY DELAY EVALUATION

The Markov chain described in the previous section allows
us to determine the delay statistics in an exact way. The
evaluation of the full statistics of both queueing and delivery
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Fig. 2. Complementary cumulative distribution (ccdf) of the number q of
packets in the queueing buffer for ε = 0.1, B = 5, m = 7.

delay for the general case of packet arrival rate λ are original
contributions presented here.

Define a as (b1, b2, . . . , bm−1), i.e., a truncated b, without
bm. Let π(q, a, c) be the stationary probability of a generic
state X(t) = (q, a, c). The probability of having queueing

buffer occupancy equal to q is: P [q] =
∑
a∈A

1∑
c=−1

π(q, a, c),

where A = {0, 1}m−1 = {w = (w1, w2, . . . , wm−1) |
wi ∈ {0, 1} ∀i = 1, 2, . . . ,m − 1}. In Fig. 2 we report
the complementary cumulative distribution function of the
queueing buffer occupancy, i.e., the probability that more than
q packets are queued in the transmitter’s buffer, evaluated in an
exact way with the above model for different values of λ when
the average error probability, the average burst length and the
round-trip delay are ε = 0.1, B = 5 and m = 7, respectively.
From Fig. 2 it can be observed that λ has a heavy impact
on the buffer occupancy, in particular when λ ≈ 1 − ε the
occupancy tends to become arbitrarily high.

To evaluate the packet delay, consider the arrival of a given
packet in the queueing buffer. The conditional probability
Λ(q, b1, b2, . . . , bm−2, β, c) that the system state is (q, a, c)
given that in the previous slot a packet had arrived can be
evaluated as follows:

Λ(q, b1, b2, . . . , bm−2, β, c) = (6)

=

⎧⎪⎪⎨
⎪⎪⎩

β∑
x=2β−1

u[q−1]∑
α=0

p|x|cπ(q − α, α, b1,··· , bm−2, x) if c ≥ 0

0 otherwise

Eq. (6) is easily derived from Eqs. (1)-(5) by considering only
the transitions with a packet arrival.

If the column vector vm is defined as a vector of m elements
all equal to 1, the newly arrived packet has q−u[q−1] +
bvm packets ahead in the transmission order, which are still
not correctly received3. Now, it is possible to consider the
Markov chain defined by the transition matrix T(P, 0), in
which the arrival process is “turned off.” In fact, as shown in
[3], future arrivals do not affect the queueing delay, nor the

3Observe that bvm is the number of elements of b equal to 1. If q = 0
after an arrival, this means that the packet has been transmitted immediately.
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delivery delay, of the packet of interest. The Markov chain
with λ = 0 evolves again by following the procedure outlined
in Section III.

We present two equivalent ways to solve this Markov chain.
The first method exploits the fact that, intuitively speaking,
any packet eventually exits the queue and arrives at correct
delivery with probability 1. Formally, Q = {(0,a, c) : a ∈
A,−1≤ c≤1} is an absorbing set for the Markov chain and
so is G = {(0,0, 0), (0,0,−1)}, where 0 is an (m−1)-sized
zero vector. The proof of this statement follows immediately,
for if λ = 0, then lim

t→∞q and lim
t→∞bvm are both zero. When

the Markov chain enters the set Q the packet of interest is
released from the queueing buffer, where the set G corresponds
to the conditions where the packet and also all previously
transmitted packets are acknowledged. Thus, if f(q,a,c)Q(t)
and f(q,a,c)G(t) are the probabilities that the first passage
times [11] from the state (q, a, c) to the absorbing sets Q and
G, respectively, equal t slots, the statistics of the queueing
delay τQ can be evaluated as:

Prob{τQ = t} =
+∞∑
q=0

∑
a∈A

+1∑
c=−1

Λ(q, a, c)f(q,a,c)Q(t) . (7)

An alternative view of the problem can be given by consider-
ing a column vector eQ of all ones in the entries with q = 0
and all zeros in the entries with q > 0, i.e., the vector of
indicator functions of the set Q. In this case:

CQ[t] = Λ · [T(P, 0)]t · eQ, t ≥ 0 , (8)

where Λ denotes the vector collecting all Λ(q, a, c)’s. The
distribution CQ[t] is the probability that the queueing delay is
lower than or equal to t. Thus, the probability Prob{τQ = t}
is:

Prob{τQ = t} =
{ CQ[0] if t = 0

CQ[t] − CQ[t− 1] if t > 0 (9)

In both cases apparently q goes to infinity, which requires
either an infinite sum in Eq. (7) or an infinite matrix in Eq. (8).
However, the observation that f(q,a,c)Q(t) = 0 if q > t, i.e.,
a buffer with q packets can not be emptied in less than q
timeslots, means that the evaluations above only involve a
finite number of terms, i.e., the terms where q > t are all
zero. The statistics of the overall delay τG can be evaluated
by following the same approach. Only, to obtain Prob{τG =
t} it is necessary to replace f(q,a,c)Q(t) with f(q,a,c)G(t), or
equivalently eQ with a vector eG which has ones only in
positions (0,0, 0) and (0,0,−1), and zeros elsewhere. Finally,
the delivery delay τD is τG− τQ. Thus, Prob{τD = t} can be
obtained as deconvolution of Prob{τG = t} and Prob{τQ =
t}.

In Fig. 3 we report the complementary cumulative distribu-
tions of the queueing delay. We consider the same parameters
as in Fig. 2. Fig. 3 shows how the trend of the buffer
occupancy is reflected on the queueing delay (even though
the queueing delay distribution has a heavier tail). Simulation
results are plotted to show the accuracy of the analysis. Note
that the analytical results are even more accurate, since for
example for low probability values or for high values of
the delay the simulation results require a very long time to
converge.

10-6

10-5

10-4

10-3

10-2

10-1

1

 0  10  20  30  40  50  60  70  80

cc
df

 [τ
Q

]

Queueing Delay τQ

Queueing Delay  (m = 7  B = 5  ε = 0.1)

 λ=0.4
 λ=0.6
 λ=0.8

 λ=0.85
 λ=0.89

 simulations

Fig. 3. Complementary cumulative distribution (ccdf) of the queueing delay
for ε = 0.1, B = 5, m = 7.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

 0  5  10  15  20  25  30

P
ro

b{
τ Q

=t
}

Time t

Queueing Delay distribution  (m = 7  λ = 0.7)

 ε = 0.01, iid
 ε = 0.01, B = 5

 ε = 0.1, iid
 ε = 0.1, B = 5

simulations

Fig. 4. Statistics of the queueing delay for m=7 and λ=0.7 for different
values of the channel burstiness B and error probability ε.

The effect of the distribution of the error bursts of the
Markov channel on the queueing delay is presented in Fig. 4,
where simulation results are again shown for comparison. It is
emphasized that the performance reported in Fig. 3 is similar
to other cases with different values of ε, where the curves are
simply translated without changing their behavior. However,
the impact of the channel burstiness deserves more emphasis.
The comparison made in Fig. 4 of the performance of bursty
(B = 5) and iid channel shows in fact that, even though the
trend is similar, an iid channel is not a good model for wireless
channels, which are often characterized by bursty errors. In
particular, the delay distribution of the bursty channel has a
heavier tail than in the iid case. This means that bursts of
errors can bring the delay to higher values [1]; in fact, once
the bad channel state is entered the system stays in that state
for a longer period, thereby postponing the resolution of the
corrupted packets.

In Fig. 5 we plot complementary cumulative distribution of
the delivery delay. Here, the case with λ = 0.7, ε = 0.1,
B = 5 is plotted as a reference, so that this curve can
be compared with other results obtained by changing only
one of the parameters. However, we tested the comparison
also for different combinations, so that the conclusions are
quite general. The main insight gained from Fig. 5 is that
the delivery delay is almost insensitive to the packet arrival
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Fig. 6. Average values of the queueing delay, delivery delay and overall
delay for m = 7, B = 5, ε = 0.1 as a function of λ.

process (λ). In fact, even with a different λ the curves remain
very close. Note that for λ ≥ 0.3 the curves overlap almost
perfectly, so they are not even plotted as they would be
indistinguishable from the case λ = 0.7. As a consequence, the
study of the delivery delay under the Heavy Traffic condition
is reasonable, unless λ is very small. This justifies the studies
presented in [1], [3], where the delivery delay has been ana-
lyzed under Heavy Traffic. The effect of the average channel
error probability is simply quantitative and not qualitative,
as a change in ε has simply the effect of translating the
curves. Instead, the comparison between different values of
the channel burstiness offers again interesting conclusions. In
particular, for an iid channel the results are also qualitatively
different. We observe the same trend of the bursty channel,
which brings the tail of the distribution to higher values. This
phenomenon will increase as B is increased. However, the
main gap is between the iid case and the bursty channel.
This again confirms that neglecting the channel correlation
leads to poor approximations in evaluating the transmission
performance.

Finally, the dependence of all these results on the arrival rate
is summarized in Fig. 6, where the average delays (queueing,
delivery and overall4) are plotted versus λ. Here, the same

4Recall that the constant propagation term tc is to be added to the delivery
delay and hence also to the overall delay.

system parameters as in Fig. 2 have been considered, and also
simulation results are plotted for both delays (queueing and
delivery), which demonstrate that the analysis is accurate5.
In Fig. 6 it is shown again that the average τQ and hence
the average τG heavily increase as λ increases, whereas the
average τD remains constant. Such a figure can also be useful
to recognize the contribution to the total overall delay of
the two terms. In fact, the queueing and the delivery delays
have comparable weights when λ is between 0.5 and 0.7. For
lower values, the delivery delay is more relevant, whereas the
queueing delay dominates for λ > 0.7 and approaching the
Heavy Traffic condition. However, these conclusions depend
on the specific scenario.

V. CONCLUSIONS

In this letter we studied an exact Markov model to investi-
gate the delay statistics by considering the effect of the arrival
process. We derived the statistics of all delay contributions
in close form for a Bernoulli arrival process with arbitrary
packet arrival rate λ. This allows us to quantify the overall
delay and the single delay components not only as average
values but with detailed statistics. In particular, we analytically
showed that the impact of the arrival process on the delivery
delay is negligible for the majority of the cases, i.e., unless
the error rate is unrealistically high and the arrival rate is low.
Conversely, our analysis is of interest for the queueing delay
evaluation, which is the most significant part of the overall
delay when λ is high. Note that when the round-trip time m
is large, this exact approach becomes prohibitive; therefore,
approximate models, accurate enough to be used for practical
purposes, are possible topics of future research.
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