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Abstract—In this paper we look at the problem of accurately
reconstructing distributed signals through the collection of a small
number of samples at a data gathering point. The techniques that
we exploit to do so are Compressive Sensing (CS) and Principal
Component Analysis (PCA). PCA is used to find transformations
that sparsify the signal, which are required for CS to retrieve, with
good approximation, the original signal from a small number of
samples. Our approach dynamically adapts to non-stationary real
world signals through the online estimation of their correlation
properties in space and time; these are then exploited by PCA
to derive the transformations for CS. The approach is tunable
and robust, independent of the specific routing protocol in use
and able to substantially outperform standard data collection
schemes. The effectiveness of our recovery algorithm, in terms of
number of transmissions in the network vs reconstruction error,
is demonstrated for synthetic as well as for real world signals
which we gathered from an actual wireless sensor network (WSN)
deployment. We stress that our solution is not limited to WSNs but
it can be readily applied to other types of network infrastructures
that require the online approximation of large and distributed
data sets.

I. INTRODUCTION

In this paper we look at the problem of efficiently gathering
large amounts of data in Wireless Sensor Networks (WSNs).
Our objective is to measure large data sets with high accuracy
through the collection of a small number of readings. This
entails the design of distributed algorithms for the joint gath-
ering and compression of data and the exploitation, at the sink,
of signal processing techniques for the approximation of the
signal in space and time.

In our previous paper [1] we targeted this objective through
a joint routing and compression scheme based on Compressive
Sensing (CS), a technique that effectively exploits the correla-
tion among sensor readings for the recovery of the original
signal. The main problems of the approach in [1] are: 1)
the scheme needs perfect knowledge of a transformation that
makes the signal sparse in some domain, 2) the scheme is not
able to adapt to non-stationary signals, i.e., with a time varying
correlation structure and 3) the scheme was only designed for
grid topologies. In this paper we solve all these issues through
the combination of CS with Principal Component Analysis
(PCA), a technique that exploits the online estimation of signal
statistics. PCA allows to dynamically learn the optimal trans-
formation to be used by CS recovery, effectively accounting
for the time varying correlation affecting real signals. While
PCA has been used primarily as a measurement basis [2], we
exploit it as a transformation basis instead.
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The main contributions of this paper are:

• The combination of PCA and CS techniques for the online
estimation of signal statistics.

• The design of a technique which iteratively learns optimal
transformations through the online estimation of the signal
correlation structure.

• The design of a simple protocol, based on the above
technique, for the online recovery of large data sets
through the collection of a small number of readings.
With our scheme the correlation structure of the signal
is only estimated and exploited at the sink, whereas data
gathering and routing are independent of it.

• We prove the effectiveness of our approach for data
gathering and recovery for signals measured from an
actual WSN deployment.

The problem of gathering data while jointly performing
compression has been receiving increasing attention. One of
the first studies addressing this issue is [3], which exploits
classical source coding (see e.g., [4], [5]), suitable routing al-
gorithms and re-encoding of information at relay nodes. Along
the same lines, subsequent work such as [6], [7] proposes
algorithms involving the collaboration among sensors in order
to implement classical source coding in a distributed fashion.
Further, [8] investigates the relation between routing and
location of the aggregation/compression points according to
the joint correlation of data among sources. However, in these
approaches the required collaboration among nodes impacts
the WSN performance in terms of number of transmissions in
the network and complexity of the application running on the
sensor nodes.

One of the earliest studies that exploit CS in a distributed
communication scheme is [9], which targets the energy efficient
estimation of sensed data in a WSN. Multi-hop communication
and in-network data processing are not considered. Instead,
data packets are directly transmitted by each node to the
sink. This however requires synchronization among nodes. [10]
is a further study exploiting CS. The considered simulation
scenario is a network where a small set of nodes fails. The goal
is to correctly identify these nodes through the transmission
of random projections (i.e., linear combinations) indicating
the status of the nodes. However, these random projections
are obtained by means of a pre-distribution phase (via simple
gossiping algorithms), which is very expensive in terms of
number of transmissions. [11] also addresses the problem of
gathering data in distributed WSNs through multi-hop routing.
The authors of this paper, however, do not investigate the
impact of the network topology and that of the routing scheme



on the compression process. [12] advocates the need to exploit
the correlation of the data both temporally and spatially. The
projections of the signal measurements are performed at each
source node, taking into account the temporal correlation.
The spatial correlation is instead exploited at the sink by
means of decoders based on sparsity models which aim at
describing the different types of signals of interest. We note
that all these approaches for signal recovery are not suitable
for use in combination with lightweight routing protocols. In
contrast, our technique separates routing and recovery so that
computationally demanding algorithms are only executed at the
sink. This makes it possible to couple our approach with any
routing scheme.

The related paper [2] focuses on image recovery and
compares classical CS recovery assuming random projections
against an alternative method, where the projections are ob-
tained through PCA. Our objective is very different as we
use these two techniques in combination, by exploiting PCA
to obtain good sparsification bases for the signal and CS to
recover the signal given these bases.

The paper is structured as follows. In Section II we give a
mathematical overview of the CS and PCA techniques, which
is followed by the description of our framework. In Sec-
tions III and IV, through comparison with respect to standard
approaches, we prove the effectiveness of our combined CS
and PCA signal reconstruction technique for synthetic and real
signals, respectively. Section V concludes the paper.

II. JOINT PCA AND CS RECOVERY

In this section we first review basic tools from Principal
Component Analysis and Compressive Sensing, which we
subsequently combine to achieve an efficient technique for the
recovery of large signals from a small subset of measurements.
Principal Component Analysis [13]: the Karhunen-Loève
expansion is the theoretical basis for PCA. It is a method
to represent a generic N -dimensional signal given that we
have full knowledge of its correlation structure. In detail, the
signal can be well approximated through a small number of
coefficients according to a given basis, which in turn depends
on the correlation matrix of the signal itself. In practical cases,
such as the ones we are concerned with in this paper, this
correlation matrix may not be known a priori. Nevertheless,
the Karhunen-Loève expansion can still be achieved thanks to
the Principal Component Analysis (PCA) [13], which relies
on the online estimation of the signal correlation matrix. In
what follows, we describe the PCA along with its practical
application to our data gathering problem. The key point of
PCA is the Ky Fan theorem.

Ky Fan theorem [14]: let Σ ∈ R
N×N be a symmetric

matrix, let λ1 ≥ · · · ≥ λN be its eigenvalues and u1, . . . ,uN

the corresponding eigenvectors (which are assumed to be
orthonormal, without loss of generality). Given M orthonormal
vectors b1, . . . ,bM in R

N , with M ≤ N , it holds that

max
b1,...,bM

M∑

j=1

bT
j Σbj =

M∑

j=1

λi , (1)

and the maximum is attained for bi = ui, ∀i.

Compression through PCA: let xk ∈ R
N be the vector of

measurements from our WSN at a given time instant k, where
the network consists of N nodes. We collect measurements
according to a fixed sampling rate at discrete times k =
1, 2, . . . ,K. From a geometrical point of view, we consider
xk as a point in R

N and look for the M -dimensional plane
(with M ≪ N ) which best matches the points in xk in terms
of minimum Euclidean distance. The sample mean vector x

and the sample covariance matrix Σ̂ of xk are given as:

x =
1

K

K∑

k=1

xk , Σ̂ =
1

K

K∑

k=1

(xk − x)(xk − x)T .

Note that in the Ky Fan theorem, maximizing
∑M

j=1 bT
j Σbj

corresponds to finding the linear transformation T :RN →R
M

that maximally preserves the information contained in the
original signal xk ∈ R

N . In fact, in the LHS of (1) we
maximize the variance of the M -term (linear) approximation
of xk that, in turn, is strictly related to the information content
of the original signal. According to this rationale, we define
UM as the matrix whose columns are the first M eigenvectors

of Σ̂ (corresponding to the M largest eigenvalues). Due to the
Ky Fan result, the projection of a given measurement xk into
its best M -dimensional fitting plane is given by [13]:

x̂k = x + UMUT
M (xk − x) . (2)

In (2), UT
M (xk − x) is the projection of xk − x

into its best fitting M -dimensional plane. If we define

s = s(N) def
= UT

N (xk − x), by construction of the projection
matrix UT

N we have that the entries of s are ordered as follows:
s1 ≥ s2 ≥ · · · ≥ sN . If for i > M we have that si is
negligible with respect to the previous entries of s, i.e., si ≪ sj

with j = 1, . . . ,M , then xk can be very well approximated
through (2) by just accounting for M ≪ N coefficients. In
summary, the original point xk ∈ R

N is transformed into a
point s(M) ∈ R

M as follows:

s(M) def
= UT

M (xk − x) . (3)

Multiplication of (3) by UM and summation with the sample
mean return the best approximation of the original vector.

Compressive Sensing (CS) [15]: our goal is to recover a given
N -dimensional signal through the reception of a small number
of samples L, which should be ideally much smaller than N .
CS is the technique that we exploit to achieve this objective.

As above, we consider signals representable through one
dimensional vectors x ∈ R

N , containing the sensor readings
of a WSN with N nodes. We further assume that these vectors
are such that there exists a transformation under which they
are sparse. In detail, there exists an invertible transformation
matrix Ψ of size N × N such that

x = Ψs (4)

and the N -dimensional vector s is sparse. We say that s is
M -sparse if it has at most M non-zero entries, with M < N .
Assuming to know Ψ, x can be recovered from s by inverting
(4). Also, s can be obtained through a number L of random



projections of x, namely y, with M ≤ L < N , according to
the following equation:

y = Φx , (5)

where y is a vector of size L and Φ is an L × N matrix. In
our framework, Φ is referred to as routing matrix as it captures
the way in which our sensor data is gathered and transmitted
to the sink, which will receive the compressed vector y along
with the coefficients of matrix Φ. Now, using (4) and (5) we
can write

y = Φx = ΦΨs
def
= Φ̃s . (6)

In general this system is both ill-posed and ill-conditioned
as the number of equations L is smaller than the number
of variables N and small variations of the input signal can
produce large variations of the output y, respectively. However,
if s is sparse, it has been shown that (6) can be inverted
with high probability through the use of special optimization
techniques [16], [17]. These allow to retrieve s, whereas the
original signal x is found through (4).
Joint CS and PCA: the main contribution of this paper is the
design of a data recovery scheme combining CS and PCA. In
particular, CS is exploited to solve the system in (6) after L
data packets have been collected from the WSN and PCA is
the technique providing the transformation matrix Ψ.

In [1] we used CS for the recovery of 2D real signals by
considering different transformation matrices. None of them
was however sufficiently good in terms of 1) sparsification
and 2) incoherence with respect to Φ. In summary, while the
results1 obtained for synthetic signals were very promising,
those achieved for real signals were unsatisfactory. In this paper
we solve this issue showing that the theoretical performance
benefits of CS can still be retained if we use PCA to build the
transformation matrix Ψ.

Our joint recovery through CS and PCA works as follows.
Following the notation introduced in this section, at each time
step k the sink first gathers L packets. These correspond
to random projections of the input signal xk according to
y = Φxk. For the matrix Φ we consider a random sampling
(RS) scheme, as described in the following Section III.

According to the PCA framework, we can write the sparse

vector sk = s
(N)
k at time k as:

sk = UT
N (xk − x) .

Note that if x can be perfectly obtained using s(M) of (3) this

means that s is M -sparse since s =
[

s
(M)

0N−M

]
, where 0N−M is

the zero column vector of size N − M .
Moreover, since UN is orthonormal we have that UNUT

N =
IN , where IN is the N ×N identity matrix. Hence, the above
equation can be rewritten as:

xk − x = UNsk = Ψsk . (7)

where the transformation matrix Ψ is set equal to UN . Now,
using y = Φxk and (7), we can write:

y − Φx = Φ(xk − x) = ΦUNsk ,

1In terms of reconstruction error vs number of transmissions.

whose form is similar to that of (6) with Φ̃ = ΦUN . The
original signal xk is approximated as follows: 1) finding a
good estimate of sk, namely s̃k, using the techniques in [16]
or [17] and 2) applying the following calculation:

x̃k = x + UN s̃k .

As is clear from the above recovery procedure, our method
takes as input the sample mean x and the covariance matrix

Σ̂ (from which we obtain UN ). In what follows, we show
that an online estimation of these parameters is possible, e.g.,
by alternating training and monitoring phases, and that this
joint CS and PCA recovery leads to substantial performance
improvements also for real world signals.

III. ANALYSIS OF SIGNALS WITH A FIXED SUPPORT

In this section we study the effectiveness of joint CS and
PCA recovery when applied to synthetic signals that are
measured through the grid network model used in [1].

Network: we consider a square area of side H units, which is

split into a grid of N square cells of side H/
√

N . We place
each of the N nodes uniformly within the N cells so that each
cell contains exactly one node. For the transmission range R
of the nodes we adopt a unit disk model, i.e., they can only
communicate with all other nodes placed at a distance less

than or equal to R.2 We set R = H
√

5/N as this guarantees
a fully connected structure. A further node, referred to as sink,
is placed in the center of the deployment area. For the routing,
we use a geographic forwarding technique, where each node
considers as its next hop the node within range that provides
the largest geographical advancement towards the sink. For our
simulations we considered N = 400.

Signals: the input signal is a square matrix X with N elements,
where element (i, j) (referred to as xi,j) is the value sampled
by the sensor placed in cell (i, j) of the grid. Here, we consider
synthetic signals which are only spatially correlated, i.e., at
each time k we generate a new signal X according to the
following procedure: 1) we start from a discrete 2D signal
S with a fixed support in the frequency domain (DCT). S is
low frequency, i.e., entries in position (p, q), where p + q ≤√

N/2+1 are uniformly picked in [0.5, 1.5], while other entries
are zero. 2) X is obtained from S by DCT inversion, 3) in
order to verify the robustness of our recovery schemes, we add
to each xi,j of X an i.i.d. random gaussian noise component
ωi,j ∈ N (0, σ2).

Now, we define a vec(·) function, transforming a
√

N×
√

N
matrix into a vector of length N (through a reordering of the
matrix elements)

vec(X) =
(
x1,1, .., xk,1, x1,2, .., xk,2, .., x1,k, .., xk,k

)T

and we consider the vector representation of X, i.e.,
x = vec(X). x can be obtained through a linear transformation
of s = vec(S) using tools from linear algebra. A more accurate
description of this transformation can be found in [1].

2The unit disk graph model is used here for simplicity of explanation and
topology representation. However, the presented methodology can be readily
applied to more realistic propagation models, e.g., fading channels.
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Fig. 1. Performance of three different recovery techniques for a synthetic
low-pass signal: number of transmissions per data collection vs ε.

Data gathering: the data collection at the generic time k
adopts a simple random sampling scheme as follows. Each
node becomes a source with probability p = L/N , which
was varied in the simulations to obtain tradeoff curves for
increasing transmission overhead. Hence, on average L nodes
transmit a packet containing their own sensor reading. Each
packet is routed to the sink via geographical routing. The sink
collects incoming data from all transmitting nodes according
to y = Φx, where x is the original signal and Φ represents
the routing matrix. Φ has a single one in each row and at most
a single one in each column. In detail, row i with 1 ≤ i ≤ M
has a one in column j with 1 ≤ j ≤ N if the i-th packet was
transmitted by node j. The cost of delivering a single packet
to the sink is given by the number of hops that connect the
source node to the sink.3

Recovery: we consider the following recovery techniques:

R1. Random sampling with Spline interpolation (RS-Spline):

the signal is reconstructed by spline interpolation [18] of
the values collected through RS.

R2. Compressive Sensing (RS-DCT-CS): we use the CS recov-
ery technique described in Section II, where Φ is the RS
routing matrix defined above and Ψ implements the DCT
transformation in two dimensions.

R3. Compressive Sensing with PCA (RS-PCA-CS): the orig-
inal signal is recovered through joint CS and PCA, as
described in Section II. The sample mean x and the

covariance matrix Σ̂ are calculated from a large enough
number of instances of the synthetic signal so as to obtain
accurate estimates of these statistics. The regularization
parameters of the CS algorithms were set according to
the default values suggested in [16], [17].

Results: to simplify the investigation and to pinpoint the
fundamental performance tradeoffs, we assume a unit cost
for each packet transmission. The metrics of interest are the
total number of transmissions in the network for any given
time k and the reconstruction quality at the sink, defined
as ε = ‖x − x̃‖2/‖x‖2, where x is the original signal and x̃

is the signal reconstructured at the sink from the received

3Other cost metrics, e.g., energy, could also be used.

Fig. 2. Layout of the WSN testbed.
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Fig. 3. Signal sample: luminosity in the range 320 − 730 nm.

samples y. In Fig. 1 we compare the performance of the
above recovery techniques in terms of ε vs total number of
transmissions per data collection for a low-pass signal. RS-
DCT-CS outperforms RS-Spline only when L approaches N ,
i.e., when the sink receives nearly all N packets and the
total number of transmissions is close to the maximum (about
1800 for the considered network). In addition, the gain that
RS-DCT-CS can provide is very small. Instead, RS-PCA-CS
recovery significantly outperforms both RS-Spline and RS-
DCT-CS for all values of L and allows the recovery of x̃ with
small reconstruction errors. For example, an error requirement
of ε = 0.05 is achieved in RS-PCA-CS with about 1000
transmissions, whereas RS-DCT-CS would need 50% more
transmissions for the same error performance. We note that the
performance of RS-Spline for high-frequency signals would be
dramatically impacted, whereas RS-DCT-CS and RS-PCA-CS
would undergo minimal performance impairments.

IV. ANALYSIS OF REAL SIGNALS FROM A WSN TESTBED

In this section we apply the joint CS and PCA recovery
described above to the signals that we gathered from an actual
WSN deployment.
Network: we consider the WSN testbed of Fig. 2.4 This
experimental network is deployed on the ground floor of
the Department of Information Engineering at the Univer-
sity of Padova. The WSN consists of N = 68 TmoteSky

4Our framework is flexible and does not depend on a specific topology; the
only requirement is to bring the sensor nodes into an order, e.g., based on
their IDs.
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Fig. 4. ε vs E[Cround]: humidity.
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Fig. 5. ε vs E[Cround]: luminosity.
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Fig. 6. Average ε (signals 1–5) vs E[Cround].

wireless nodes equipped with IEEE 802.15.4 compliant radio
transceivers.

Signals: From the above WSN, we gathered five different types
of signals X: 1) temperature, 2) humidity, 3) voltage, 4-5) lu-
minosity in two different ranges (320−730 and 320−1100 nm,
respectively), collecting measurements from all nodes every 5
minutes for 3 days. We repeated the data collection for three
different measurement campaigns, choosing different days of
the week. Fig. 3 shows an example signal of type 4, i.e.,
luminosity in the range 320 − 730 nm.

Data gathering and Results: to test the effectiveness of
the proposed technique we considered the real data collected
through the testbed in Fig. 2 and a data gathering scheme based
on geographical routing. We placed the sink in the center of
the network, where the signal is reconstructed at each time k
based on our joint CS and PCA technique. Note that the signals
in the testbed differ from those we generated in the previous
section as they do not necessarily have the well-defined low-
frequency representation that was assumed in Section III and
are characterized by spatial and temporal correlations that are
in general non-stationary. This means that the statistics that we
use in our solution (i.e., sample mean and covariance matrix)
must be learned at runtime and might not be valid throughout
the entire data collection phase. Hence, in order to implement
PCA in conjunction with CS for real signals, we alternate the
following two phases:

1. a training phase of K data collection rounds, during
which the sink collects the readings from all N sensors

and uses this information to compute x and Σ̂;
2. a subsequent monitoring phase of ζK rounds during

which, on average, only L ≤ N nodes become sources
according to the random sampling scheme of Section III
(each with probability p = L/N ). The input signal is thus

reconstructed using the statistics x and Σ̂ computed in the
previous phase.

The ratio ζ between the duration of monitoring and training
phases should be chosen according to the temporal correlation
of the observed phenomena.

In Figs. 4–6 we show the performance in terms of re-
construction error (ε) as a function of the average cost per
round, which is given by the number of transmissions for the

collection of a single instance of the signal Xk. In these plots
each training phase lasts K = 2 rounds and ζ = 4 (the impact
of these parameters is addressed at the end of this section).
A training phase entails a cost KCN , where CN is the total
number of transmissions needed to gather the readings from
all nodes. The average number of packets sent during the
following 2ζ = 8 monitoring phases depends on p, which
is varied from 1/N to 1, and ε is computed for each case.
For a given p = L/N each monitoring phase has a cost of
ζKE[CL], where E[CL] is the total number of transmissions
needed to collect the readings from the source nodes during
a data collection round. Thus, the average cost per round is
calculated as:

E[Cround] =
CN + ζE[CL]

1 + ζ
. (8)

For comparison, in the plots we also show the recovery
performance of RS-Spline, see Section III. The cost per round
for RS-Spline is E[CL].5

In Figs. 4–6 we demonstrate the effectiveness of our re-
covery technique (“RS-PCA-CS” in the figures). These results
prove that PCA is a suitable transformation to be used in
conjunction with CS and that, despite the cost incurred in the
training phases, the approach still provides substantial benefits
with respect to standard data gathering schemes. In Fig. 4 ε is
close to zero as this specific signal varies slowly in time, i.e.,
its correlation structure is quasi-stationary during a monitoring
phase. Also, we note that for those signals showing higher
variations over space and time, such as luminosity, RS-Spline
has unsatisfactory performance.

In the last two graphs, Figs. 7 and 8, we show the impact
of K and ζ on performance. From Fig. 7 (fixed K) we see
that decreasing ζ leads to: 1) a decreased cost per round for
a given quality goal and 2) smaller variance for ε. On the
other hand, the minimum admissible cost per round so that the
CS algorithm is able to approximate the input signal becomes
smaller for increasing ζ. From Fig. 8 (fixed ζ) we see that
decreasing K is beneficial. This means that, for the considered

5We do not analyze the performance of RS-DCT-CS. In contrast to the
the synthetic signals of Section III, the real signals considered here are not
sparse in the DCT domain, and thus RS-DCT-CS performs much worse than
RS-Spline.
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signals, a smaller reconstruction error is achievable through

more frequent updates of x and Σ̂. In Figs. 7 and 8 solid
and dotted lines without marks represent lower bounds on the
error recovery performance, which are obtained as follows.
For each (K, ζ) pair and for each time k the input signal xk

is reconstructed using RS-PCA-CS with x and Σ̂ calculated
assuming perfect knowledge of the previous K instances of
the signal xk−1, . . . , xk−K . As mentioned above, the error so
obtained is a lower bound on the reconstruction performance
of RS-PCA-CS for a given training set of length K. The cost
associated with the new ε is set equal to that of the real
RS-PCA-CS scheme for the given (K, ζ) pair. These curves

reveal the impact of the obsolescence of x and Σ̂ during the
monitoring phase for the considered signals. In particular, the
recovery performance degrades for either increasing ζ (Fig. 7)
or K (Fig. 8).

V. CONCLUSIONS

In this paper we designed an algorithm, based on Compres-
sive Sensing (CS) and Principal Component Analysis (PCA),
for the approximation of large and distributed data sets through
the collection of a small number of samples. Our technique
adapts, in an online fashion, to the non-stationariety of real

world signals and is independent of the considered routing
scheme. This is possible through the online estimation of
statistical properties of the signals, which are then used by PCA
to derive the optimal transformation for CS. Hence, we showed
the effectiveness of this solution and its superiority to standard
data gathering approaches by considering real world signals,
which were gathered from an actual WSN deployment. Even
though a WSN scenario was considered for our performance
evaluation, we stress that the technique is general and can be
readily applied to the online approximation of distributed data
in other types of network, e.g., cellular networks.
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