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1 Introduction
Wireless sensor network technologies enable a wide vari-

ety of applications (e.g., environmental monitoring). Such
sensor networks are often deployed in regions that make
it difficult to collect and redistribute the nodes for mainte-
nance. However, there is often a need to reprogram all of the
nodes in the network, either during application test phaseson
deployed networks, or to support software upgrades. There-
fore, a reliable method of sending a relatively large amount
of data to each node in the network is required to support
these functions.

The challenge to designing such in-network node repro-
gramming protocols lies in the potentially large amount of
energy required to successfully transmit the entire program
to every node in the network. The wireless channels used by
small sensor nodes are often lossy and highly variable. The
use of unicast retransmissions to correct errors for each node
can be prohibitive in terms of traffic generation and hence
transmission cost. Additionally, such retransmission tech-
niques are known to result in feedback implosion in dense
networks [1]. Therefore, coding solutions allowing different
errors at various nodes to be corrected with single packet
transmissions are preferable. However, many such tech-
niques, using forward error correction codes (FEC), tend to
be inefficient for wireless sensor networks. This is mainly
due to the inherent computational complexity of standard
codes (e.g., Reed Solomon). In addition, standard block
codes have a fixed code rate, which cannot be changed on
the fly according to channel errors or number of receivers.

As a solution to the above problems, in this work we pro-
pose the Fountain Reprogramming Protocol (FRP), which
uses a Fountain Code [2] designed specifically to meet the
needs of sensor network reprogramming. In particular, this
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code is designed to maintain a high efficiency, in terms of
overhead, in the face of small packet sizes and typical pro-
gram lengths. In addition Fountain Codes are rateless and
have a low computational complexity, as encoding and de-
coding are performed efficiently through XOR operations.
Our fountain code has been implemented on Tmote Sky
nodes and shown to execute efficiently even with the limited
available processing power. Our experiments show that we
achieve reliable network programming with very low over-
head compared to other current in-network reprogramming
techniques [3, 4].

In the rest of this paper, we briefly describe the fountain
code. We additionally describe our testbed and test applica-
tion. Finally, we describe the demonstration.

2 Efficient Fountain Codes
When network programming begins using FRP, the orig-

inal program data is first encoded using our fountain code.
Essentially, the sending node first creates a number of lin-
ear combinations of the originalK (source) packets. These
encoded packets are generated thanks to a pseudo-random
number generator, which is used to obtain samples from a
selected degree distribution. To successfully decode the orig-
inal message, any receiver node needs to receiveK linearly
independent encoded packets. In this case, in fact, the corre-
sponding decoding matrix has full rank and can be inverted.
However, given the characteristics of typical degree distribu-
tions, the firstK encoded packets received are unlikely to be
independent. Thus, in practice full recovery occurs upon the
reception ofK′ ≥ K encoded packets. In the most general
case,K′ depends on the encoding distribution in use, on the
seed used for the initialization of the pseudo-random gener-
ator as well as on the error patterns introduced by the wire-
less channel. Nevertheless, for properly designed codesK′

is only slightly larger thanK. We found optimized encoding
distributions for different values ofK, having different per-
formance in terms of overhead (K′ −K) and decoding cost
(XOR operations needed to decode). For our demonstration
we selected a distribution leading to a good tradeoff between
overhead and cost.

In case a receiver is still unable of inverting its decod-
ing matrix after a first round of transmissions, it will ask
the transmitter for additional (encoded) packets. Note that
a single encoded packet can correct errors (i.e., increase
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Figure 1. Software architecture
the rank of the decoding matrix) at different receivers. A
special mechanism has been designed to get feedback from
the receivers and retransmit the needed amount of extra-
redundancy in a round based fashion. According to this
scheme each receiver computes, at every transmission round,
the rankr of its current decoding matrix and decides whether
to send a NACK on the feedback channel (thus requesting ad-
ditional packets). The process stops when all of the receivers
have afull rank decoding matrix, i.e., they can all recover
the original data. Due to the inherent scalability of our cod-
ing technique, feedback implosion is never caused, even in
the face of poor channel conditions. In fact, an ARQ request
from a single receiver can potentially resolve multiple losses
at all receivers.

The size of applications or data files we intend to dissem-
inate is relatively large (a simple TinyOS application thatin-
cludes radio communication capabilities is typically on the
order of 10 KB). Due to the small amount of RAM usually
available in the sensor nodes, to transmit such an application
to another node and store it in the flash memory, the data
needs to be split into chunks (ofK packets each), where the
chunk size depends on the available RAM. Hence, a chunk at
a time is sent to the receiving nodes according to the above
procedure. When a chunk is received, FRP stores it in the
flash memory of the node and waits for the transmission of a
new block of data, which will start when all the nodes have
finished decoding the current one. When all the nodes have
received the whole file a command is broadcast through the
network to begin the application reload process. FRP has
been designed for nodes based on the MSP430 microcon-
troller, that provides 10 KB of RAM. Due to the memory
needed for the decoding process, we chose a chunk size of
800 bytes. This leaves more than half of the RAM free for
other normal operations, such as radio protocols. Each chunk
is divided intoK = 32 packets of 25 bytes each. These pack-
ets are then coded and broadcast to the network.

As Fig. 1 shows, the application is designed in a modular
way that makes it very easy to alter. For example, it is simple
to adapt FRP to work with other node technologies (as in fact
we did with TDA5250 mounted on theEyesIFXnodes [5]),
simply by changing theRadio module.

In addition to the dissemination protocol, we designed
and implemented a dynamic partitioning system that allows
the use of the external flash memory as a WORM (Write
Once Read Many) device, without knowing in advance the
number and the size of the partitions, as the components pro-
vided by TinyOS2 require. Using a hash-code, a unique ID
is created for each file to be transmitted. This ID is used to
tag a partition of the size of the file, that can be mounted and
read at any time.

Figure 2. The monitoring application GUI
Finally we developed a bootloader that, when the node is

rebooted, can copy a new application from the external flash
into the program memory and run it.
3 Description of the Demonstration

The goal of this demonstration is to show FRP as it dis-
seminates data in a reliable fashion, proving its effectiveness
for network reprogramming. We will show how FRP deals
with packet loss and retransmission requests, without caus-
ing feedback implosions, even in the face of high error rates.
To simulate higher error rates than the ones we can obtain in
the small space of the demo, our application will randomly
drop packets with a given probability.

We will deploy a testbed at the conference, using 20
Tmote Sky nodes. One of these will be the transmitter, and it
will disseminate data to all of the other nodes. This node will
be transmitting a 20 KB program that performs a led blink-
ing scheme with different patterns each time it is loaded. At
the end of each run we will show the correctness of the dis-
semination, by verifying the data received and stored in the
external flash. After the data is verified, we will send a com-
mand to the nodes to load and run the new application and
check the led blinking pattern to confirm the new program
is in fact running. Finally, a new reprogramming session
will be started which will contain a program with a different
blinking pattern.

While the dissemination protocol is running, we will con-
stantly monitor the activity of the network (Fig. 2 shows the
GUI of the monitoring application), showing in real-time on
a laptop the number of data packets being transmitted as well
as the number of overhead packets (including feedback and
ARQ requests) that are received by the transmitter. We will
also monitor and report the time needed for the transmission
of each block of data as well as the time required for the
complete reprogramming cycle.
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