
1

1 2

2

Exact and Heuristic Approaches for Directional
Sensor Control

Hans D. Mittelmann Domenico Salvagnin

Abstract—Directional sensors are gaining importance due to
applications, including surveillance, detection, and tracking. Such
sensors have a limited field-of-view and a discrete set of direc-
tions they can be pointed to. The Directional Sensor Control
problem (DSCP) consists in assigning a direction of view to each
sensor. The location of the targets is known with uncertainty
given by a joint a-priori Gaussian distribution, while sensor
locations are known exactly. In this paper we study exact and
heuristic approaches for the DSCP with the goal of maximizing
information gain on the location of a given set of immobile target
objects. In particular, we propose an exact mixed integer convex
programming (MICP) formulation to be solved by a black-box
MICP solver and several meta-heuristic approaches based on
local search. A computational evaluation shows the very good
performance of both methods.

Index Terms—mixed integer convex programming, metaheuris-
tics, directional sensors, Benders decomposition

I. INTRODUCTION

Directional sensors are a class of sensors that have limited
field-of-view (FOV), like surveillance cameras, infrared sen-
sors, and ultrasound sensors. Directional sensors are becoming
increasingly popular due to a wide range of applications, such
as surveillance, detection, and tracking. Directional sensor
control has been studied before in various contexts, and has
attracted a lot of research in the last decade. Traditionally, it
has mainly focused on coverage issues: see, e.g., [1]–[10] and
the references therein, although other aspects such as lifetime
maximization have been recently addressed [11]–[13]. Here,
we study the problem of controlling multiple 2D directional
sensors for maximizing information gain corresponding to
multiple targets, as introduced in [14], see also [15] for
an introduction to information-theoretic approaches to sensor
management. The problem can be described as follows.

We are given a list of n target on a 2D plane. The location χj

of each target j is not known with precision, but is described
instead by an a-priori distribution N (aj , Aj). We are also
given a list of m sensors. Each sensor i has known location
si and can be pointed into one of K possible directions. The
problem consists in choosing a direction for each sensor in
order to maximize the expected information gain. The choice
of the expectation of the information gain is motivated by the
following:
• We want our choice to be optimal not for a single possible

scenario, i.e., for a single assignment of each target to a

H. D. Mittelmann is at the School of Mathematical and Statistical Sciences,
Arizona State University, Tempe, USA, email:mittelmann@asu.edu.

D. Salvagnin is at the Department of Information Engineering, University
of Padova, Padova, Italy, email:salvagni@dei.unipd.it.

location according to its distribution, but on average for
all possible scenarios (hence the expectation), because we
have to decide the direction of the sensors once and for
all.

• The measurements obtained by the sensors are affected
by errors. In other words, covering a given target with
a single sensor is not enough to get perfect information
on the location of the target and so there is an incentive
on covering the same target with multiple sensors (the
more noisy the sensors, the more are needed to get the
same information gain for a given target). As such, for
each scenario, we compute a posterior distribution of each
target and use the information gain as a quality measure.

Note that having a finite set of directions is not a real
limitation, as in practice the possible set of direction is almost
always discrete, and, if the FOV of the sensors is not too
narrow, then even a coarse discretization of the interval [0, 2π)
is good enough for practical applications. In addition, dis-
cretizing the set of directions is a common modeling approach
in order to devise combinatorial optimization models. Finally,
the fact that directions have to be decided once and for all is
not to be interpreted literally, but rather for a time duration
with an appropriate scale, depending on the application.

Some additional intuition on the choice of the objective
function is provided by the following: if there were only one
scenario and no measuring error, we would just direct sensors
in order to cover as many targets as possible (basically a set
covering problem). If we had more scenarios (according to
a given prior distribution) but still perfect measures, then we
would look for the best coverage on average (still similar to
a set covering problem). Since we have many scenarios and
measurement errors, then we use the expected information gain
as objective.

Let’s consider the computation of the information gain in
more detail. If a target j is within the field of view of sensor
i, when sensor i is pointed in direction ui, we get the measure
zij :

zij = Hχj + ηij

where H is the observation model and ηij is the measurement
noise, assumed to be normally distributed according to the
distribution N (0, R(si, ui, χj)) (R is the measurement error
covariance matrix). No measurement is obtained if the target
is not within the FOV of the sensor. For a given scenario, the
measurements from all sensors are fused in order to obtain
a global estimate for each target, as a posterior distribution.
Note that the posterior distribution is not Gaussian in general,
and computing it exactly is not tractable. For this reason, it is

3

approximated as Gaussian distribution N (yj , Pj), where the
parameters yj and Pj are computed as:

Pj =

(
A−1j +

∑
i

HT (R(si, ui, aj))
−1H

)−1

yj = Pj

(
Ajaj +

∑
i

HT (R(si, ui, aj))
−1zij

)
where the summations are done only over the sensors that
generated a measurement for target j.

Given a control vector u = (u1, . . . , um), the corresponding
objective (based on the information gain) is then:

E

 n∑
j=1

− log

(
det(Pj(u))

det(Aj)

)
For practical purposes, the expectation above can be approxi-
mated by Monte Carlo methods. More precisely, we generate
several samples from the joint prior distribution of the target
state, and we compute the average (over the samples) objective
value for a given control action.

As described above, the problem is of combinatorial nature,
with Km feasible solutions and a highly-nonconvex objective
function. The number of feasible solutions grows exponen-
tially with the number of sensors, while it is independent on
the number of targets and of scenarios. Of course, increasing
the number of targets and/or scenarios will make computations
more time consuming, but not exponential so. The number
of possible directions K also affects the complexity of the
problem: in this regard, a wide FOV, which allow for a coarse
discretization of the interval [0, 2π), yields easier instances
than a narrow FOV.

The outline of the paper is as follows: Section II describes
several metaheuristic approaches to the problem, while Sec-
tion III presents two exact methods based on a mixed integer
convex formulation. Section IV reports the computational ex-
periments. Finally, conclusions and future research directions
are drawn in Section V.

II. HEURISTIC METHODS

Two simple greedy approaches for the problem have been
proposed in [14]. While the computational results therein show
that those greedy methods do not find the optimal solution in
general, the solution quality is often good and can be further
improved by adding a rollout procedure [16]. However, imple-
menting the rollout procedure is not straightforward, and the
results are hard to judge performance-wise, being implemented
in MATLAB. It turns out that with rollout computing times are
comparable to those of our slowest exact method, see Table III,
and that without any guarantee of optimality.

For these reasons, we opted for a different approach to
heuristic solutions, namely general purpose local search meta-
heuristics. In particular, we implemented a random restart local
search algorithm (RLS) and an iterated local search algorithm
(ILS) [17].

Both algorithms are built upon a standard local search (LS)
algorithm, based on a natural neighborhood. Given a solution

u, encoded as a vector in Zm and whose components are in
the range {0, . . . ,K − 1}, the neighborhood N (u) is defined
as all solutions that can be obtained by changing the direction
of only one sensor: in other words, u′ ∈ N (u) if and only
if it differs in at most one component w.r.t. u. Clearly, the
neighborhood has polynomial size, containing exactly mK
solutions for each center u.

The first metaheuristic that we tried is random restart local
search (RLS). The idea behind the algorithm is very simple:
at each iteration the local search procedure is called from a
different random initial solution, and the process is iterated
until some termination criterion is met. Despite its simplicity,
RLS is already a definite improvement over a pure local search
approach, and it is also trivially parallelizable, an added bonus
given today’s computing architectures. On the other hand, it
is well known that such a simple strategy is not competitive
with other (more sophisticated) metaheuristics as the search
space grows [17].

The second metaheuristic that we studied is iterated local
search (ILS), which is designed to overcome most of the
issues of RLS, while retaining its simplicity. The idea behind
ILS is to perturb the current locally optimal solution s∗ to
get a new center t and call again the local search procedure
from there, obtaining a new local optimum t∗. If the new
solution t meets an acceptance criterion, then t is chosen as the
next starting point, otherwise it is rejected and the procedure
is repeated from s∗. Intuitively, ILS implements a heuristic
random walk on the set of locally optimal solutions of a given
optimization problem. A high level pseudocode for ILS is
given in Algorithm 1.

Algorithm 1: Basic ILS procedure

1 s0 = GenerateRandomSolution ();
2 s∗ = LocalSearch (s0);
3 repeat
4 s′ = Perturb (s∗, history);
5 t = LocalSearch (s′);
6 s∗ = AcceptanceCriterion (s∗, t, history);
7 until termination condition;

The perturbation mechanism and the acceptance criterion
are in general dependent on the history of the system: this
allows for more effective and elaborate strategies. The sim-
plest, yet very common, acceptance criterion is to accept the
new solution t if and only if its objective value is better than
that of s. Other strategies include a pure random walk option,
in which the new solution t is always accepted, regardless of
its cost, and a simulated annealing [18], [19] like acceptance
criterion based on temperature, in which t is always accepted
if it is an improving solution, but is also accepted with a given
probability even if its objective value is worse (the probability
is usually dependent on the “temperature” of the system and on
the difference between the two objective values, with slightly
worsening steps being more likely). Note that the first two
strategies do not make use of the history of the system, while
the third does.

4

It is worth noting that, given that the evaluation of the neigh-
borhood is multilinear in the entities of the problem (namely,
directions, sensors, targets and scenarios), the proposed meta-
heuristics scale quite well with the size of instances.

III. EXACT METHODS

Our approach to solve the problem to proven optimality is
to formulate it as a (hopefully convex) mixed integer nonlinear
program. While the description of the problem is highly
nonlinear, it turns out that we can get rid of most nonlinearities
(such as matrix inversions and conditional summations) by an
appropriate extended formulation and off-line computations.
In particular, given S as the set of samples, we can write the
model as

max
∑
s

∑
j

[
log(det(P js)) + log(det(Aj))

]
/|S| (1)∑

k

uik = 1 ∀i

(2)

P js = A−1j +
∑
i

∑
k

Rijksuik ∀j∀s

(3)
uik ∈ {0, 1} ∀i∀k

(4)

where
• P js is the inverse of the posterior covariance matrix of

target j in scenario s
• Rijks is the inverse of the measurement covariance matrix

between sensor i pointing in direction k and target j in
scenario s if the target is within the FOV in this case, or
the null matrix otherwise.

• uik is a binary variable whose value is 1 if and only if
sensor i is pointing in direction k

Constraints (2) are typical assignment constraints, stating
that each sensor must point in exactly one direction, while
constraints (3) define the value of matrices P js. Note that
in practice we cannot deal with matrix variables within most
solvers, but this is easily taken care of because we are dealing
with symmetric 2 × 2 matrices, and each of them can be
encoded with 3 continuous free variables. Finally, note that the
only nonlinearities left are the log det(·) terms in the objective
function, and that, since log det(·) is concave in the positive
semidefinite cone, the problem can be formulated as a mixed
integer convex program.

A. Generalized Benders decomposition

A closer look at the model in the previous section reveals a
clearly decomposable structure: indeed, given an assignment
of directions to sensors, the model splits into |S|×|J | subprob-
lems, whose only role is to compute a piece of the (nonlinear)
objective function. As such, the structure is amenable to a
generalized form of Benders decomposition. In particular, we
can introduce for each scenario s and target j an additional
continuous variable θsj , representing the subexpression

θsj = f(P js) = log(det(P js)) + log(det(Aj))

and define a Benders subproblem as the (feasibility) problem:{
f(P js) ≥ θ∗sj
P js = A−1j +

∑
i

∑
k Rijksu

∗
ik

where (u∗, θ∗) is any solution of the so-called master problem,
namely

max
[∑

s,j θsj

]
/|S|∑

k uik = 1

〈Benders cuts〉
uik ∈ {0, 1}
θsj free

It is worth noting that, given a solution (u∗, θ∗) of the master,
the value of the matrix P js is uniquely defined. As such,
in this case Benders cuts turn out to be simply outer ap-
proximation cuts of the nonlinear expression f(·), interpreted
here as a function of three variables (those representing the
corresponding symmetric 2× 2 matrix). After some algebraic
manipulation, and with a little abuse of notation, we get:

θsj ≤ f(P
∗
js) +∇f(P

∗
js)(P js − P

∗
js)

where
P
∗
js = A−1j +

∑
i

∑
k

Rijksu
∗
ik

The complexity of solving the problem to optimality is
exponential in the size of the instance, even with decomposi-
tion. The exact method will arguably not scale as well as the
heuristics in the previous section, but its purpose is different,
namely to provide a reference to evaluate heuristic approaches
when both options are viable.

IV. COMPUTATIONAL EXPERIMENTS

We implemented our codes in C++, using IBM ILOG
CPLEX 12.5.1 [20] as black box MIP solver through the Cplex
callable library APIs, and KNITRO 8.1 [21], [22] as black box
mixed integer nonlinear solver. All tests have been performed
on a standard desktop machine, equipped with an Intel i7-2600
CPU running at 3.40GHz and with 16GB of RAM.

We tested our algorithms on five random instances, charac-
terized as:
• the number of sensors m ranges from 4 to 8
• each sensor is placed at a random integer point in the

plane
• the number of targets n is equal to 9
• the prior Gaussian distribution of each target is randomly

chosen (the mean is again an integer point in the plane,
while the covariance matrix is randomly chosen with
entries in [0, 1])

• the set of K = 10 directions is {0, π/5, . . . , 9π/5}
• the FOV of each sensor is π/5
• the observation model H is taken as the identity matrix
• for each instance we sampled S = 150 scenarios to

approximate the information gain expectation.
Instance characteristics are detailed in Table I.

The considered instance are arguably small, although there
may be indeed applications in which those are reasonable

5

numbers. The choice is motivated by the significant amount of
time needed by some exact approaches to solve the problem
to optimality.

A. Landscape analysis

In order to evaluate the suitability of metaheuristic ap-
proaches to our directional sensor problem, we performed
a preliminary search landscape analysis [23]. Intuitively, the
search space of a combinatorial optimization problem can be
thought of as a multidimensional landscape with hills, valleys
and plateaus, and the performance of many metaheuristics
algorithms is strongly influenced by its topology, such as the
distribution of local minima and landscape ruggedness. Among
the (many) techniques for computing synthetic indicators
describing the properties of the search landscape, the fitness-
distance correlation (FDC) [24] has proved to be a useful
tool to predict the suitability of metaheuristic algorithms.
Given a list L of |L| feasible solutions for an instance of an
optimization problem, each described by a pair (zi, di), where
zi is the objective value of the solution and di is the distance
to the closest global optimum, the FDC coefficient is simply
defined as:

FDC(L) =
czd
sz · sd

where

czd =
1

|L|

|L|∑
i=1

(zi − z)(di − d)

z, d are the average solution value and distance and sz, sd
are the corresponding standard deviations. According to [24],
values of the FDC coefficient greater than 0.15 (for a min-
imization problem), indicate a strong correlation between
distance to optimum and objective value, suggesting that local-
search based heuristics (among others) should perform well.

For each instance in our testbed, we used the RLS algorithm
(with aggressive parameters) to sample a lot of feasible solu-
tions and compute the FDC coefficients. Detailed results are
shown in Table I, while scatter plots for the bigger instances
are given in Figure 1. Note that the distance function used
is the L1-norm of the difference between the two solution
vectors, interpreted as vectors in Zm. According to the table,
the FDC coefficient is always between 0.27 and 0.67, suggest-
ing that metaheuristic algorithms based on local-search should
perform well.

B. Metaheuristics results

We compared three basic heuristic approaches to our prob-
lem:

TABLE I: Instance characteristics.

instance n m K S FDC

1 9 4 10 150 0.27
2 9 5 10 150 0.55
3 9 6 10 150 0.63
4 9 7 10 150 0.67
5 9 8 10 150 0.60

• a pure local search approach approach (LS)
• random restart local search (RLS), accepting only im-

proving solutions. The method is given an iteration limit
L = 50 and a no-improve limit of NL = 10.

• iterated local search (ILS), with iteration limit of L =
50. If no improvement is obtained in the last NL = 10
iterations, then the method is restarted from a new random
solution.

All methods start from a randomly constructed solution.
In order to speed up computations on parallel architectures,

we implemented a multi-threaded objective function evaluator.
Such evaluation is trivially parallelizable, the contribution of
each sample being independent of the others. We used 4
threads in our code, to match the number of available cores.
Note that this is (positively) affecting all metaheuristics.

TABLE II: Heuristics comparison.

Time (s) Objective
instance LS RLS ILS opt. LS RLS ILS

1 0.02 0.52 0.63 36.885 36.174 36.655 36.885
2 0.04 1.07 1.04 44.693 43.486 44.693 44.693
3 0.06 1.83 1.56 49.387 48.030 49.387 49.387
4 0.08 2.90 2.14 53.456 51.836 53.456 53.456
5 0.11 3.90 2.76 57.531 56.350 57.531 57.311

Table II reports average results for the instances in our
testbed. Each algorithm was run 10 times starting from a
different random solution. Median solution values and running
times are reported. Column opt. reports the value of the
optimal solution, as obtained by the exact algorithms of the
next section. According to the table, both RLS and ILS are
able to significantly improve upon the basic LS algorithm,
while still being very fast on average (taking at most a few
seconds on the largest instance). As far as the comparison
between RLS and ILS, there is no clear winner, and both of
them perform very satisfactorily, yielding the optimal solution
in 4 out of 5 cases each.

C. Implementing Benders decomposition

Although the general Benders scheme is simple, there are
quite a few design choices that must be made to come up with
an efficient implementation. The first (and main) decision is
how to implement the enumeration part. In particular, we have
basically two options:

(a) [the original Benders method] keep the integrality re-
quirement on the master variables, and solve an MIP
to proven optimality using a black box MIP solver.
If the optimal solution (u∗, θ∗) is not violated by any
Benders cuts, then it is optimal for the original problem.
Otherwise, add a few violated cuts to the master and
repeat.

(b) [a modern branch-and-cut method] solve the master
problem only once, but separate Benders cuts throughout
the tree. In particular, integer feasible solution need
always be checked.

Although common wisdom suggests that option (b) should
be a superior implementation, in practice this is not always

6

0 5 10 15 20 25 30 35 40
Distance to global optimum

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
P
e
rc

e
n
ta

g
e
 o

b
je

ct
iv

e
 d

e
v
ia

ti
o
n

(a)

0 5 10 15 20 25 30 35 40
Distance to global optimum

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc

e
n
ta

g
e
 o

b
je

ct
iv

e
 d

e
v
ia

ti
o
n

(b)

0 5 10 15 20 25 30 35 40
Distance to global optimum

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc

e
n
ta

g
e
 o

b
je

ct
iv

e
 d

e
v
ia

ti
o
n

(c)

0 5 10 15 20 25 30 35 40
Distance to global optimum

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc

e
n
ta

g
e
 o

b
je

ct
iv

e
 d

e
v
ia

ti
o
n

(d)

Fig. 1: Fitness-distance correlation plots for selected instances.

the case. In addition, even if option (b) eventually turns out
to be faster than option (a), it may not be so for the whole
duration of the solving process. Indeed, the two approaches
have complementary strengths:

• option (a) can use the MIP solver as a black box, without
the need to disable dual reductions and messing with
callbacks (that can disable key features in some solvers).
In addition, solving a MIP at each iteration has a powerful
restart strategy built in. On the other hand, solving a MIP
at each iteration can potentially waste a lot of effort, in
particular at the end of the process, where masters tend
to be quite hard.

• option (b) never wastes any enumeration effort (a single
tree is maintained). However, at the very beginning the
master formulation is usually a very poor approximation
of the real model and the very first branching decisions
(the most important ones) are not properly taken.

A comparison between the two methods on an instance from
our testbed is depicted in Figure 2.

While option (b) is clearly the winner in this case, the dual
bound provided by option (a) is strictly better for the first 100

10-1 100 101 102 103
40

50

60

70

80

90

oldbd (a)
newbd (b)

Time (s)

D
u
a
l
B

o
u

n
d

Fig. 2: Comparison of old-style and new-style Benders imple-
mentations.

seconds of computation (approximately). The considerations
above suggests that the branch-and-cut approach may benefit

7

from a warm-start phase, provided by an old-style Benders
implementation. Although such a simple idea is already quite
an improvement (preliminary tests showed that this hybrid
approach easily outperforms both options), it turns out that
can we can devise an even more effective warm-start phase,
by exploiting the metaheuristics presented in Section II. In par-
ticular, we can use the randomized local search framework to
sample many feasible solutions of our problem, generate outer
approximation cuts from them, and add these cuts (as well
as the best solution found) to the initial master formulation.
In the following, we will denote by BD the straightforward
implementation of option (b), and with HBD the version using
this ad-hoc warm starting procedure.

D. Exact methods results

We compared two exact methods:
• a black box nonlinear solver (namely, KNITRO), on the

MINLP model (1)-(4). We will refer to this method as
NLP

• the generalized Benders approach described in Sec-
tion III-A, using a state of the art MIP solver (namely,
IBM ILOG CPLEX) and its callback facilities. We pro-
vide two implementations of the methods, BD and HBD

Detailed results are given in Table III. According to the
table, all methods are able to solve to optimality the instances
in our testbed, but with significantly different computing times.
In particular, there is approximately a factor of 2-3 between
NLP and BD. Note, however, that while CPLEX is a multi-
threaded solver, KNITRO is not, so the difference between the
two may not imply a ranking between the two methods, but
rather between the two implementations. On the other hand,
the improved Benders implementation, HBD, is one order of
magnitude faster than BD (and thus also than NLP), and is the
clear winner, solving the hardest instance in less the half an
hour.

TABLE III: Exact methods running times (in seconds).

instance NLP BD HBD

1 139.32 22.85 6.12
2 409.96 110.20 9.78
3 1637.55 398.66 26.03
4 9188.71 3660.68 144.38
5 31619.70 20937.65 1757.69

V. CONCLUSIONS

The accomplishments of this work can be summarized are
as follows:
• to transform the DSCP, non-convex in its original form,

into a mixed-integer convex program;
• to show that the landscape of the solution space is

favorable to local search based metaheuristics, and show
computationally that two of them can find consistently
near optimal solutions in a matter of seconds;

• to show that a black-box MINLP solver reliably solves
the problem to optimality, at least for small instances;

• to develop a parallel Benders decomposition approach
that, when hybridized and combined with the metaheuris-
tic above, yielding the first reasonably efficient exact
solution procedure for the problem.

The proposed methods, both exact and heuristics, are central-
ized in nature and, admittedly, not easily decentralized to an
environment with autonomous agents, if at all. However, they
can be considered as a first step in the study of information-
theoretic approaches to sensors management, and will con-
stitute a useful reference, both in terms of solution quality
and computing time, in the development of decentralized ap-
proaches. In particular, the metaheuristic approaches presented
here should provide near-optimal solutions at a reasonable
computational effort, even on relatively large instances.

ACKNOWLEDGMENT

We thank Shankarachary Ragi and Edwin K. P. Chong for
providing us the MATLAB code used to generate the instances
in this paper and for the clarifications on the definition of the
problem. We are also grateful to three anonymous referees
for their valuable comments. The work of the first author was
supported in part by AFOSR under grant FA9550-12-1-0153.

REFERENCES

[1] J. Ai and A. A. Abouzeid, “Coverage by directional sensors in randomly
deployed wireless sensor networks,” J. Comb. Optim, vol. 11, no. 1, pp.
21–41, 2006.

[2] G. Fusco and H. Gupta, “Selection and orientation of directional sensors
for coverage maximization,” in SECON. IEEE, 2009, pp. 1–9.

[3] M. A. Güvensan and A. G. Yavuz, “On coverage issues in directional
sensor networks: A survey,” Ad Hoc Networks, vol. 9, no. 7, pp. 1238–
1255, 2011.

[4] S. Roy and N. Mukherjee, “Dynamic topology construction of wireless
sensor network using computational geometric approach,” International
Journal of Sensor Networks, vol. 12, pp. 210–222, 2012.

[5] Y.-C. Hsu, Y.-T. Chen, and C.-K. Liang, “Distributed coverage-
enhancing algorithms in directional sensor networks with rotatable sen-
sors,” in ICDCN’12: Proceedings of the 13th international conference
on Distributed Computing and Networking, 2012, pp. 201–213.

[6] H. Mohamadi, A. S. Ismail, S. Salleh, and A. Nodehi, “Learning
automata-based algorithms for solving the target coverage problem in
directional sensor networks,” Wireless Personal Communications: An
International Journal, vol. 73, pp. 1309–1330, 2013.

[7] A. G. Y. M. Amac Guvensan, “Hybrid movement strategy in self-
orienting directional sensor networks,” Ad Hoc Networks, vol. 11, pp.
1075–1090, 2013.

[8] X. Gong, J. Zhang, D. Cochran, and K. Xing, “Barrier coverage in
bistatic radar sensor networks: cassini oval sensing and optimal place-
ment,” in Proceedings of the fourteenth ACM international symposium
on Mobile ad hoc networking and computing, 2013, pp. 49–58.

[9] I. Khoufi, P. Minet, A. Laouiti, and E. Livolant, “A simple method for
the deployment of wireless sensors to ensure full coverage of an irregular
area with obstacles,” in Proceedings of the 17th ACM international
conference on Modeling, analysis and simulation of wireless and mobile
systems, 2014, pp. 203–210.

[10] T.-W. Sung and C.-S. Yang, “Voronoi-based coverage improvement
approach for wireless directional sensor networks,” Journal of Network
and Computer Applications, vol. 39, pp. 202–213, 2014.

[11] Y.-H. Kim, Y.-H. Han, Y.-S. Jeong, and D.-S. Park, “Lifetime max-
imization considering target coverage and connectivity in directional
image/video sensor networks,” The Journal of Supercomputing, vol. 65,
pp. 365–382, 2013.

[12] A. Singh and A. Rossi, “A genetic algorithm based exact approach for
lifetime maximization of directional sensor networks,” Ad Hoc Networks,
vol. 11, pp. 1006–1021, 2013.

[13] H. Mohamadi, S. Salleh, A. S. Ismail, and S. Marouf, “Scheduling
algorithms for extending directional sensor network lifetime,” Wireless
Networks, vol. 21, pp. 611–623, 2015.

8

[14] S. Ragi, H. D. Mittelman, and E. K. P. Chong, “Directional sensor
control: Heuristic approaches,” IEEE Sensors Journal, vol. 1, no. 15,
pp. 374–381, 2014.

[15] A. O. Hero, C. M. Kreucher, and D. Blatt, “Information theoretic
approaches to sensor management,” in Foundations and Applications
of Sensor Management, A. O. Hero, D. Castanon, and K. K. Dou-
glas Cochran, Eds. Springer, 2008, pp. 33–57.

[16] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for
combinatorial optimization,” J. Heuristics, vol. 3, no. 3, pp. 245–262,
1997.

[17] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search:
Framework and applications,” in Handbook of Metaheuristics, F. Glover
and G. Kochenberger, Eds. Kluwer Academic Publishers, 2002, vol. 57,
pp. 321–353.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[19] V. Černý, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” Journal of Optimization Theory
and Applications, vol. 45, no. 1, pp. 41–51, 1985.

[20] IBM, “IBM ILOG Cplex Optimization Studio,” http://www.cplex.com.
[21] Ziena, “Ziena KNITRO,” http://ziena.com/knitro.htm.
[22] R. Byrd, J. Nocedal, and R. Waltz, “KNITRO: An integrated package

for nonlinear optimization,” in Large-Scale Nonlinear Optimization,
G. di Pillo and M. Roma, Eds. Springer-Verlag, 2006, pp. 35–59.

[23] E. D. Weinberger, “Correlated and uncorrelated fitness landscapes and
how to tell the difference,” Biological Cybernetics, vol. 63, pp. 325–336,
1990.

[24] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in Proceedings of the 6th
International Conference on Genetic Algorithms, L. J. Eshelman, Ed.,
1995, pp. 184–192.

http://www.cplex.com
http://ziena.com/knitro.htm

	Introduction
	Heuristic Methods
	Exact Methods
	Generalized Benders decomposition

	Computational Experiments
	Landscape analysis
	Metaheuristics results
	Implementing Benders decomposition
	Exact methods results

	Conclusions
	References

