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Introduction

State of the art machine translation systems are based on
mathematical translation models , which account for all
the elementary operations that rule the translation process

Translation models are usually enriched with statistical
parameters to drive the search

Translation models are also exploited in word/phrase
alignment, multilingual document retrieval, automatic
dictionary construction, bilingual corpora annotation, etc.
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Introduction (cont’d)

Early translation models based on finite-state machinery :

IBM model, word to word [Brown et al. 1993]
Phrase-based [Och et al. 1999, Och and Ney 2002]

Finite state techniques cannot easily model translations
between languages with strong differences in word
ordering
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Introduction (cont’d)

Recent shift towards more powerful hierarchical translation
models :

Inversion Transduction Grammars [Wu 1997]
Head Transducer Grammars [Alshawi et al. 2000]
Tree-to-string models [Yamada and Knight 2001], [Galley et
al. 2004]
Loosely tree-based model [Gildea 2003]
Multi-Text Grammars [Melamed 2003]
Hierarchical phrase-based models [Chiang 2005]
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Introduction (cont’d)

Most of the translation models above can be abstractly
viewed as synchronous context-free grammars

Synchronous context-free grammars are rooted in the
theory of compilers, where they are called
syntax-directed translation schemata (SDTS)
[Lewis and Stearns 1968], [Aho and Ullman 1969]
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Synchronous context-free grammars

A synchronous context-free grammar (SCFG) is based
on three components :

Context free grammar (CFG) for source language
CFG for target language
Pairing relation (bijection) on the productions of the two
grammars and their nonterminals

Each rule pair called synchronous production

Pairing relation between nonterminals represented by
superscript integers called indices
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Example

Fragment SCFG (English to Japanese,
[Yamada and Knight 2001])

s1 : [VB → PRP(1) VB1(2) VB2(3), VB → PRP(1) VB2(3) VB1(2)]

s2 : [VB2 → VB(1) TO(2), VB2 → TO(2) VB(1) ga]
s3 : [TO → TO(1) NN(2), TO → NN(2) TO(1)]
s4 : [PRP → he, PRP → kare ha]
s5 : [VB1 → adores, VB1 → daisuki desu]
s6 : [VB → listening, VB → kiku no]
s7 : [TO → to, TO → wo]
s8 : [NN → music, NN → ongaku]
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Derivations

A SCFG generates pairs of strings/trees, representing the
desired translation

The derive relation applies a synchronous production to
simultaneously rewrite two paired nonterminals
(nonterminals with same index)

Pairing relation must be updated after each application of a
synchronous production
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Example (cont’d)

Fragment derivation:

[VB(1), VB(1)]

⇒s1
G [PRP(2) VB1(3) VB2(4), PRP(2) VB2(4) VB1(3)]

⇒s4
G [he VB1(3) VB2(4), kare ha VB2(4) VB1(3)]

⇒s5
G [he adores VB2(4), kare ha VB2(4) daisuki desu]

⇒s2
G [he adores VB(5) TO(6), kare ha TO(6) VB(5) ga daisuki desu]
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Example (cont’d)

Parse trees :

VB(1)

PRP(2)

he

VB1(3)

adores

VB2(4)

VB(5)

listening

TO(6)

TO(7)

to

NN(8)

music

VB(1)

PRP(2)

kare ha

VB2(4)

TO(6)

NN(8)

ongaku

TO(7)

wo

VB(5)

kiku no

ga

VB1(3)

daisuki desu
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Translation

Let G be a SCFG and w a string

Translation relation : Set of all string pairs generated by
G

T (G) = {[u, v ] | [S(1), S(1)] ⇒∗
G [u, v ]}

Image of w : Set of strings that are translations of w

T (w , G) = {v | [w , v ] ∈ T (G)}
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Probabilistic SCFGs

In a Probabilistic SCFG , each synchronous production
associated with a probability

pG([A1 → α1, A2 → α2])

Normalization conditions for each pair [A1, A2]

∑

α1,α2

pG([A1 → α1, A2 → α2]) = 1
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PSCFGs (cont’d)

In PSCFG we can define several joint distributions (ti trees,
wi strings, y = yield)

pG([t1, t2] =
n∏

i=1

pG(si)

pG([w1, w2]) =
∑

y([t1,t2])=[w1,w2]

pG([t1, t2])

pG([w1, t2]) =
∑

y(t1)=w1

pG([t1, t2])

...
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Computational Problems

Translation problem : given SCFG G and string w ,
compute parse forest for strings in T (w , G)

Size of parse forest for T (w , G) can be a double
exponential function in the size of w

Highly compressed representation of parse forest is
needed; we consider context-free grammars [Lang 1994]
or, equivalently, hyper-graphs [Klein and Manning 2001]
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Computational Problems (cont’d)

Recognition/Parsing problem : given SCFG G and string
pair [u, v ]

decide whether [u, v ] ∈ T (G)
construct parse forest for all derivations of [u, v ] by G

The parsing problem is used in word/phrase alignment
applications, bilingual dictionary construction, parallel
corpora annotations, etc.
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Computational Problems (cont’d)

We introduce a new problem called the intersection
problem ; this generalizes the translation and the
recognition/parsing problems, and several others

We provide an abstract framework for the solution of the
intersection problem

Many of the (superficially different) translation and parsing
algorithms proposed in the literature can be viewed as
special cases of the above framework

Similar attempts to define abstract frameworks for
translation algorithms in [Bertsch and Nederhof 2001] and
[Melamed and Wang 2005]
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SCFG Projection

We can project SCFG G into its left and right grammar
components

proj(G, 1), proj(G, 2)

which are both CFGs

We can similarly project the translation T (G) into its left
and right language components (i = 1, 2)

proj(T (G), i) = {wi | [w1, w2] ∈ T (G)}
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SCFG Projection (cont’d)

In general the left grammar and the left language are not
equivalent

L(proj(G, 1)) 6= proj(T (G), 1)

(similarly for right case)

This is because in synchronous derivations the left and
right grammars interact; this is called mutual controlled
rewriting
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SCFG auto-projection

We can efficiently construct the left and right
auto-projection of SCFG G

auto-proj(G, 1), auto-proj(G, 2)

The left auto-projection grammar and the left language are
equivalent (similarly for right case)

auto-proj(G, 1) and auto-proj(G, 2) are CFGs; this proves
the weak language preservation property
[Rambow and Satta 1996]
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Intersection construction

Let M1, M2 be Finite Automata (FAs); define the Cartesian
product

L(M1) × L(M2) = {[u, v ] | u ∈ L(M1), v ∈ L(M2)}.

Given SCFG G and FAs M1, M2, the intersection
construction provides a new SCFG G∩ such that

T (G∩) = T (G) ∩ (L(M1) × L(M2))

Parse trees are also preserved (modulo node relabeling)

G∩ is called the intersection SCFG
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Intersection construction (cont’d)

G∩ has nonterminals of the form

(q1, A, q2)

for q1, q2 states of the source FAs and A a nonterminal of
the source SCFG

G∩ has productions of the form

[(q10, A10, q1r ) → (q10, A11, q11)
(t1) · · · (q1r−1, A1r , q1r )

(tr ),

(q20, A20, q2r ) → (q20, A21, q21)
(t

π(1)) · · · (q2r−1, A2r , q2r )
(t

π(r ))]
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Translation algorithm

Input: SCFG G, string w

Algorithm:

construct M1 such that L(M1) = {w}
construct M2 such that L(M2) = V ∗

T
construct G∩ by intersection of G with M1 and M2

output parse forest (CFG) auto-proj(G∩, 2)
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Parsing algorithm

Input: SCFG G, strings u, v

Algorithm:

construct M1 such that L(M1) = {u}
construct M2 such that L(M2) = {v}
construct G∩ by intersection of G with M1 and M2

output parse forests (CFG) auto-proj(G∩, 1),
auto-proj(G∩, 2) and synchronous parse forest (SCFG) G∩
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Computational analysis

Parameters:

SCFG G with maximum right-hand side length r , called
rank
FA M1 with states Q1 and transitions δ1

FA M2 with states Q2 and transitions δ2

Auto-projection can be constructed in time O(|G|)

In the worst case, construction of intersection grammar
takes time

Θ(|G| · (|Q1|
r+1 + |δ1|) · (|Q2|

r+1 + |δ2|))
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Applications

One of the very first translation algorithms has been
proposed in [Wu and Wong 1998] for Stochastic Inversion
Transduction Grammars (SITG)

Translates an English sentence w into Chinese, using a
filtering 2-gram language model for target language

Algorithm runs in time O(|w |7) (grammar size ignored
here)

Improved to O(|w |6) in [Huang et al. 2005]
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Application (cont’d)

We can provide a very simple account of previous upper
bound within our framework

SITG have rank r = 2
M1 encodes w in |w | + 1 states
M2 encodes Chinese 2-gram model in O(|w |) states; this is
restricted to Chinese words that are image of English words
in w

Intersection algorithm then runs in time

O(|Q1|
r+1 · |Q2|

r+1) = O(|w |6)
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Application (cont’d)

We can provide a similar polynomial time upper bound for
Head Transducer Grammars [Alshawi et al. 2000]

Polynomial time also holds if

SCFG is fixed; or else
there is a constant upper bound on the rank of the SCFG

Otherwise, intersection construction runs in exponential
time in the size of the input
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Rank

Result : SCFGs do not admit canonical forms with
bounded rank [Aho and Ullman 1969] (contrast with
Chomsky normal form for CFGs)

Higher rank (flat structure) used when language pair does
not satisfy direct correspondence assumption
[Hwa et al. 2002]

Question : Is constant upper bound on rank a plausible
hypothesis for natural language translation?

If you need unbounded rank, your translation relation may
be out of the reach of CFG analysis (scrambling, etc.)
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Rank (cont’d)

Synchronous productions that cannot be reduced in rank
implement so-called simple permutations

Percentage of the r ! permutations that are simple
approaches e−2 [Albert et al. 2003]

How many simple permutations are observed in real data?

Result : One can decompose a rank r synchronous
production into smallest rank components in time O(|r |)
[Gildea et al. 2006]

Above algorithm can also be used to decide whether a
permutation is simple
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Parsing

Result : Parsing problem for SCFGs is NP-hard
[Satta and Peserico 2005]

Proof: Reduction from 3SAT; complexity comes from
complex permutations

Result transfers to translation models in
[Yamada and Knight 2001], [Gildea 2003], [Melamed 2003]
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Translation

String-to-tree (1-best) translation problem :

Input a probabilistic SCFG G and a string w
Output the parse tree with highest probability that translates
w

argmax
t

pG([w , t])

Result : String-to-tree problem is NP-hard
[Satta and Peserico 2005]

Proof: Reduction from the consensus problem
[Casacuberta and de la Higuera 2000]; complexity comes
from hidden layer of source parse trees
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Translation (cont’d

String-to-tree problem remains hard even in case of
constant upper bound on rank of SCFG

Becomes polynomial time if paired nonterminals are
always equal

Algorithm: Intersection construction + Viterbi search on
right auto-projection

Becomes undecidable if infinite ambiguity is allowed, even
for a fixed SCFG !!
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Parsing

Parsing problem for SCFGs usually solved through tabular
methods (chart parsing)

if we parse left-to-right on the source sentence, we end up
with discontinuous constituents on the target sentence

Discontinuous constituents (multiple edges) increase the
time complexity of the parser

Are there better strategies for tabular methods?
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Parsing (cont’d)

In the worst case, tabular methods require time

Θ(|G| · |w |k(G))

We know that, unless P = NP, k(G) cannot be a constant

Result : In the worst case, standard tabular methods for
the SCFG parsing problem require an amount of time
Ω(|G| nc·

√
r ), with r the rank of G and c some constant

[Satta and Peserico 2005]

Proof: combinatorial argument
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Conclusions

All hardness and lower bound results exploit constructions
that are quite artificial

If unbounded rank is needed, then the translation is
probably out of the reach of CFG analysis

Efficient algorithms exist for reducing rank to a minimum
(expected low)

Intersection construction extends to

specialized and efficient parsing strategies
estimation algorithm based on frequency count of
synchronous productions
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