
Oh, Schenato, Chen, and Sastry 1

Tracking and coordination of multiple agents using sensor
networks: system design, algorithms and experiments

Songhwai Oh, Luca Schenato, Phoebus Chen, and Shankar Sastry

Abstract— This paper considers the problem of pursuit evasion
games (PEGs), where a group of pursuers is required to chase
and capture a group of evaders in minimum time with the
aid of a sensor network. We assume that a sensor network
is previously deployed and provides global observability of the
surveillance region, allowing an optimal pursuit policy. While
sensor networks provide global observability, they cannot provide
high quality measurements in a timely manner due to packet
losses, communication delays, and false detections. This has been
the main challenge in developing a real-time control system
using sensor networks. We address this challenge by developing
a real-time hierarchical control system which decouples the
estimation of evader states from the control of pursuers via
multiple layers of data fusion. While a sensor network generates
noisy, inconsistent, and bursty measurements, the multiple layers
of data fusion convert them into consistent and high quality
measurements and forward them to the controllers of pursuers
in a timely manner. For this control system, three new algorithms
are developed: multi-sensor fusion, multi-target tracking and
multi-agent coordination algorithms. The multi-sensor fusion
algorithm converts correlated sensor measurements into position
estimates, the multi-target tracking algorithm tracks an unknown
number of targets, and the multi-agent coordination algorithm
coordinates pursuers to capture all evaders in minimum time
using a robust minimum-time feedback controller. The combined
system is evaluated in simulation and tested in a sensor network
deployment. To our knowledge, this paper presents the first
demonstration of multi-target tracking using a sensor network
without relying on classification.

I. INTRODUCTION

Recently we have been witnessing dramatic advances in
micro-electromechanical sensors (MEMS), digital signal pro-
cessing (DSP) capabilities, computing, and low-power wireless
radios which are revolutionizing our ability to build mas-
sively distributed, easily deployed, self-calibrating, dispos-
able wireless sensor networks [1, 2, 3]. Soon, the fabrication
and commercialization of inexpensive millimeter-scale au-
tonomous electromechanical devices containing a wide range
of sensors including acoustic, vibration, acceleration, pressure,
temperature, humidity, magnetic, and biochemical, will be
readily available [4]. These potentially mobile devices, called
”nodes”, are provided with their own power supply [5] and can
communicate with neighboring sensor nodes via low-power
wireless communication to form a wireless sensor network
with up to 100,000 nodes [6, 7]. Sensor networks can offer
access to an unprecedented quantity of information about our

Songhwai Oh, Phoebus Chen, and Shankar Sastry are
with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720, Emails:
{sho,phoebusc,sastry}@eecs.berkeley.edu.

Luca Schenato is with the Department of Information Engineering,
University of Padova, Via Gradenigo 6/B, 31100 Padova, Italy. Email:
schenato@dei.unipd.it.

environment, bringing about a revolution in the amount of
control an individual has over his environment. The ever-
decreasing cost of sensor networks will make them ubiquitous
in many aspects of our lives [8] such as building comfort
control [9], environmental monitoring [10], traffic control [11],
manufacturing and plant automation [12], service robotics
[13], and surveillance systems [14, 15].

In particular, wireless sensor networks are useful in appli-
cations that require locating and tracking moving targets and
real-time dispatching of resources. Typical examples include
search-and-rescue operations, civil surveillance systems, in-
ventory systems for moving parts in a warehouse, and search-
and-capture missions in military scenarios. The analysis and
design of such applications are often reformulated within the
framework of pursuit evasion games (PEGs), a mathematical
abstraction which addresses the problem of controlling a
swarm of autonomous agents in the pursuit of one or more
evaders [16, 17]. The locations of moving targets (evaders)
are unknown and their detection is typically accomplished by
employing a network of cameras or by searching the area
using mobile vehicles (pursuers) with on-board high resolution
sensors. However, networks of cameras are rather expensive
and require complex image processing to properly fuse their
information. On the other hand, mobile pursuers with their
on-board cameras or ultrasonic sensors with a relatively small
detection range can provide only local observability over
the area of interest. Therefore, a time-consuming exploratory
phase is required [18, 19]. This constraint makes the task
of designing a cooperative pursuit algorithm harder because
partial observability results in suboptimal pursuit policies (see
Figure 1 (left)). An inexpensive way to improve the overall
performance of a PEG is to use wireless ad-hoc sensor
networks [20]. With sensor networks, global observability of
the field and long-distance communication are possible (see
Figure 1 (right)). Global pursuit policies can then be used
to efficiently find the optimal solution regardless of the level
of intelligence of evaders. Also, with a sensor network, the
number of pursuers needed is a function exclusively of the
number of evaders and not the size of the field.

In this paper, we consider the problem of pursuit evasion
games (PEGs), where a group of pursuers is required to chase
and capture a group of evaders in minimum time with the aid
of a sensor network. The evaders can either move randomly to
model moving vehicles in search-and-rescue and traffic control
applications, or can adopt evasive maneuvers to model search-
and-capture missions in military scenarios.

While sensor networks provide global observability, they
cannot provide high quality measurements in a timely man-
ner due to packet losses, communication delays, and false

Oh, Schenato, Chen, and Sastry 2

Fig. 1. Sensor visibility in PEGs without sensor network (left) and with sensor network (right). Dots correspond to sensor nodes, each provided with a
vehicle detection sensor. Courtesy of [20]

detections. This has been the main challenge in developing
a real-time control system using sensor networks. In this
paper, we address this challenge by developing a real-time
hierarchical control system which decouples the estimation
of the evader states from the control of the pursuers via
multiple layers of data fusion. Although a sensor network
generates noisy, inconsistent, and bursty measurements, the
multiple layers of data fusion convert them into consistent,
high quality measurements and forward them to the controllers
of the pursuers in a timely manner.

The main contributions of this paper are (1) a real-time
hierarchical control system for tracking and coordination using
sensor networks; (2) a demonstration of the system on a large-
scale sensor network deployment; and (3) three new algorithms
developed for this control system:

• A Multi-sensor fusion algorithm that combines noisy and
inconsistent sensor measurements locally. The algorithm
produces coherent evader position reports and reduces the
communication load in the network.

• A Multi-target tracking algorithm that tracks an un-
known number of targets (or evaders). The algorithm
is a hierarchical extension of the Markov chain Monte
Carlo data association (MCMCDA) [21] algorithm for
sensor networks to add scalability. MCMCDA is a true
approximation scheme for the optimal Bayesian filter;
i.e., when run with unlimited resources, it converges to
the Bayesian solution [22]. MCMCDA is computationally
efficient and robust against the measurement noise and
inconsistency (including packet losses and delays) [23].
In addition, MCMCDA operates with no or incomplete
classification information, making it suitable for sensor
networks. In fact, the performance of the algorithm can be
improved given more measurements about the identities
of targets.

• A Multi-agent coordination algorithm that assigns one
pursuer to one evader such that the estimated time to cap-
ture the last evader is minimized based on the estimates
by the multi-target tracking algorithm.

Our control system was successfully demonstrated using
a large-scale sensor network. The system correctly found

the number of evaders and their tracks and coordinated the
pursuers to capture the evaders. Only a handful of the track-
ing algorithms in the literature that are designed for sensor
networks have been demonstrated on a real sensor network
deployment. Of these demonstrations, the algorithms usually
are used to track a single target [14,24,25,26] or track multiple
targets using classification, e.g., [15]. To our knowledge, this
paper presents the first demonstration of multi-target tracking
using a sensor network without relying on classification.

The remainder of this paper is structured as follows. The
overall control system architecture for a PEG using a sensor
network and formulations of multi-target tracking and multi-
agent coordination are described in Section III. The compo-
nents of the control system are described in Section IV. The
experimental results from the sensor network deployment are
given in Section V.

II. RELATED WORK: TARGET TRACKING IN SENSOR
NETWORKS

One of the main applications of wireless ad-hoc sensor
networks is surveillance. However, due to the constraints on
sensor nodes, the well known multi-target tracking algorithms
such as joint probabilistic data association filter (JPDAF)
[27] and multiple hypothesis tracker (MHT) [28, 29] are not
feasible for sensor networks due to their time and space
complexities. As a result, many new tracking algorithms have
been developed recently.

Most of the algorithms developed for sensor networks are
designed for single-target tracking [30,15,14,24,25,31,26,32,
33,34,35,36] and some of these algorithms are applied to track
multiple targets using classification [30, 15, 36] or heuristics,
such as the nearest-neighbor filter (NNF1) [14]. A few algo-
rithms are designed for multi-target tracking [37,38,39] where

1The NNF [27] processes the new measurements in some predefined order
and associates each with the target whose predicted position is closest, thereby
selecting a single association. Although effective under benign conditions,
the NNF gives order-dependent results and breaks down under more difficult
circumstances.

Oh, Schenato, Chen, and Sastry 3

the complexity of the data association problem2 inherent to
multi-target tracking is avoid by classification [37, 38, 39] or
heuristics [37, 38]. When tracking targets of a similar type
or when reliable classification information is not available,
the classification-based tracking algorithm behaves as the
NNF. Considering the fact that the complexity of the data
association problem is NP-hard [41, 42], a heuristic approach
breaks down under difficult circumstances. On the contrary,
the multi-target tracking algorithm developed in this paper is
based on a rigorous probabilistic model and based on a true
approximation scheme for the optimal Bayesian filter.

Tracking algorithms for sensor networks can be catego-
rized according to their computational structure: centralized
[15,24, 33], hierarchical [34,35], or distributed [30, 14,25,31,
26, 32, 36, 37, 38, 39] algorithms. However, since each sensor
has only local sensing capability and its measurements are
noisy and inconsistent, measurements from a single sensor and
its neighboring sensors are not sufficient to initiate, maintain,
disambiguate and terminate tracks of multiple targets in the
presence of clutter; it requires measurements from distant
sensors. Considering the communication load and delay when
exchanging measurements between distant sensors, a com-
pletely distributed approach to solve the multi-target tracking
problem is not feasible for real-time applications. On the other
hand, a completely centralized approach is not robust and
scalable. In order to minimize the communication load and
delay and be robust and scalable, a hierarchical architecture is
considered in this paper.

III. PROBLEM FORMULATION AND CONTROL SYSTEM
ARCHITECTURE

In this paper, we consider the problem of pursuing multiple
evaders over a region of interest (or the surveillance region).
Evaders (or targets) arise at random in space and time, persist
for a random length of time, and then cease to exist. When
evaders appear, a group of pursuers is required to detect,
chase and capture the group of evaders in minimum time
with the aid of a sensor network. In order to solve this
problem, we propose the control system architecture shown
in Figure 2. This hierarchical control system architecture is
composed of seven layers: the sensor network, the multi-
sensor fusion (MSF) module, the multi-target tracking (MTT)
modules, the multi-track fusion (MTF) module, the multi-agent
coordination (MAC) module, the path planner module, and the
path follower modules.

Sensors are spread over the surveillance region and form an
ad-hoc network. The sensor network detects moving objects
in the surveillance region and the MSF module converts the
sensor measurements into target position estimates (or reports)
using spatial correlation. Since each sensor in a sensor network
has only local sensing capability and its measurements are
noisy and inconsistent, measurements from a single sensor and
its neighboring sensors are not sufficient to initiate, maintain,

2In multi-target tracking, the associations between measurements and
targets are not completely known. The data association problem is to work
out which measurements were generated by which targets; more precisely, we
require a partition of measurements such that each element of a partition is a
collection of measurements generated by a single target or clutter [40].

disambiguate and terminate tracks of multiple targets. This
would require measurements from distant sensors. Considering
the communication load and delay when exchanging mea-
surements between distant sensors, a completely distributed
approach to solve the multi-target tracking problem is not
feasible for real-time applications. On the other hand, a com-
pletely centralized approach is not robust and scalable. In order
to minimize the communication load and delay and be robust
and scalable, we propose a hierarchical sensor network. In
addition to regular sensor nodes (“Tier-1” nodes), we assume
the availability of “Tier-2” nodes which have long-distance
wireless links and more processing power. Examples of a Tier-
2 node include high-bandwidth sensor nodes such as iMote
and BTnode [43], gateway nodes such as Stargate, Intrinsyc
Cerfcube, and PC104 [43], and the Tier-2 nodes designed for
our experiment [44]. Each Tier-1 node is assigned to its nearest
Tier-2 node and the Tier-1 nodes are grouped by Tier-2 nodes.
We call the group of sensor nodes formed around a Tier-2 node
a “tracking group”. When a node detects a possible target, it
listens to its neighbors for their measurements and fuses the
measurements to forward to its Tier-2 node. Each Tier-2 node
receives the fused measurements from its tracking group and
the MTT module in each Tier-2 node estimates the number
of evaders, the positions and velocities of the evaders, and
the estimation error bounds. Each Tier-2 node communicates
with neighboring Tier-2 nodes when a target moves away from
the region monitored by its tracking group. Lastly, the tracks
estimated by the Tier-2 nodes are combined hierarchically by
the MTF module at the base station.

The estimates computed by the MTF module are then used
by the MAC module to estimate the expected time to capture
for each pursuer evader pair. Based on these estimates, the
MAC module assigns one pursuer to one evader via the bot-
tleneck assignment algorithm [45] such that the estimated time
to capture the last evader is minimized. Once the assignments
are determined, the path planner module determines the best
trajectory for each pursuer to minimize the time to capture its
assigned evader without colliding into other pursuers. Then,
the base station transmits each trajectory to the corresponding
pursuer. Each pursuer has its own path following controller
to follow its desired trajectory. This controller generates a
new collision-free trajectory from the original trajectory if
its on-board sensors sense an obstacle or another pursuer on
the original trajectory. The path planning and path follower
modules can be implemented using dynamic programming
[46] or model predictive control [47]. In the paper, we focus on
MSF, MTT, MTF, and MAC modules and they are described
in Section IV. In the remainder of this section, we describe
the sensor network model and the problem formulations of
multi-target tracking and multi-agent coordination.

A. Sensor Network and Sensor Models

In this section, we describe two sensor models and a sensor
network model considered in this paper. Two sensor models
are signal-strength and binary sensor models. A signal-strength
sensor provides range information about a nearby target while
a binary sensor reports only a binary value indicating whether

Oh, Schenato, Chen, and Sastry 4

Fig. 2. Hierarchical control system architecture for multi-target tracking and multi-agent coordination using a sensor network.

an object is detected near the reporting sensor or not. The
signal-strength sensor model is used for the development and
analysis of our system while the binary sensor model is used
in our experiments. While the signal-strength sensors provide
better accuracy, our evaluation of sensors developed for the
experiments showed that the variability in the signal strength
of the sensor reading prohibited easy extraction of ranging
information. However, we found that the sensors were still
effective as binary sensors. But we also found that binary
sensors were much less sensitive to time synchronization errors
than signal-strength sensors.

Let Ns be the number of sensor nodes, including both Tier-2
nodes and regular nodes, deployed over the surveillance region
R ⊂ R2. We assume that each Tier-2 node can communicate
with its neighboring Tier-2 nodes. Let si ∈ R be the location
of the i-th sensor node and let S = {si : 1 ≤ i ≤ Ns}. Let
G = (S, E) be a communication graph such that (si, sj) ∈ E
if and only if node i can communicate directly with node j.
Let Nss � Ns be the number of Tier-2 nodes and let ss

j ∈ S
be the position of the j-th Tier-2 node, for j = 1, . . . , Nss.
Let g : {1, . . . , Ns} → {1, . . . , Nss} be the assignment of
each sensor to its nearest Tier-2 node such that g(i) = j if
‖si−ss

j‖ = mink=1,...,Nss ‖si−ss
k‖. For a node i, if g(i) = j,

the shortest path from si to ss
j in G is denoted by sp(i). In this

paper, we assume that the length of sp(i), i.e., the number of
communication links from node i to its Tier-2 node, is smaller
when the physical distance between node i and its Tier-2 node
is shorter. But if this is not the case, we can assign a node to
the Tier-2 node with the fewest communication links between

them.
Signal-Strength Sensor Model
Let Rs ∈ R be the sensing range. If there is an object at
x ∈ R, a sensor can detect the presence of the object. Each
sensor records the sensor’s signal strength,

zi =
{ β

1+γ‖si−x‖α + ws
i, if ‖si − x‖ ≤ Rs

ws
i, if ‖si − x‖ > Rs,

(1)

where α, β and γ are constants specific to the sensor type, and
we assume that zi are normalized such that ws

i has the standard
Gaussian distribution. This signal-strength based sensor model
(1) is a general model for many sensors available in sensor
networks, such as acoustic and magnetic sensors, and has been
used frequently [14, 25, 26, 39]. �
Binary Sensor Model
For each sensor i, let Ri be the sensing region of i. Ri can
be in an arbitrary shape but we assume that it is known to
the system in advance. Let zi ∈ {0, 1} be the detection made
by sensor i, such that sensor i reports zi = 1 if it detects
a moving object in Ri, and zi = 0 otherwise. Let pi be the
detection probability and qi be the false detection probability
of sensor i. �

Local sensor measurements are fused by the MSF module
described in Section IV-A. Let ẑi be a fused measurement
originated from node i. Then node i transmits ẑi to the
Tier-2 node g(i) via the shortest path sp(i). A transmission
along an edge (si, sj) on the path fails independently with
probability pte and the message never reaches the Tier-2 node.
Transmission failures along an edge (si, sj) may include
failures from retransmissions from node i to node j. We can

Oh, Schenato, Chen, and Sastry 5

consider transmission failure as another form of a missing
observation. If k is the number of hops required to relay
data from a sensor node to its Tier-2 node, the probability
of successful transmission decays exponentially as k increases.
To overcome this problem, we use k independent paths to relay
data if the reporting sensor node is k hops away from its Tier-
2 node. The probability of successful communication pcs from
the reporting node i to its Tier-2 node g(i) can be computed
as pcs(pte, k) = 1−

(
1− (1− pte)k

)k
, where k = |sp(i)|.

We assume each node has the same probability pde of de-
laying a message. If di is the number of (additional) delays on
a message originating from the sensor i, then di is distributed
as

p(di = d) =
(
|sp(i)|+ d− 1

d

)
(1− pde)|sp(i)|(pde)d. (2)

We are modeling the number of (additional) delays by the
negative binomial distribution. A negative binomial random
variable represents the number of failures before reaching a
fixed number of successes from Bernoulli trials. In our case,
it is the number of delays before |sp(i)| successful delay-free
transmissions.

If the network is heavily loaded, the independence assump-
tions on transmission failure and communication delay may
not hold. However, the model is realistic under moderate
conditions and we have chosen it for its simplicity.

B. Multi-Target Tracking

The MTT and MTF modules shown in Figure 2 estimate
the number of targets, positions and velocities of targets,
and estimation error bounds. Since the number of targets is
unknown and time-varying, we need a general formulation of
the multi-target tracking problem. This section describes the
multi-target tracking problem and two possible solutions.

Let T ∈ Z+ be the duration of surveillance. Let K be the
number of targets that appear in the surveillance region R
during the surveillance period. Each target k moves in R for
some duration [tki , tkf] ⊂ [1, T]. Notice that the exact values of
K and {tki , tkf } are unknown. Each target arises at a random
position in R at tki , moves independently around R until tkf
and disappears. At each time, an existing target persists with
probability 1 − pz and disappears with probability pz. The
number of targets arising at each time over R has a Poisson
distribution with a parameter λbV where λb is the birth rate
of new targets per unit time, per unit volume, and V is the
volume of R. The initial position of a new target is uniformly
distributed over R.

Let F k : Rnx → Rnx be the discrete-time dynamics of
the target k, where nx is the dimension of the state variable,
and let xk(t) ∈ Rnx be the state of the target k at time t for
t = 1, . . . , T . The target k moves according to

xk(t + 1) = F k(xk(t)) + wk(t), for t = tki , . . . , tkf − 1, (3)

where wk(t) ∈ Rnx are white noise processes. The white
noise process is included to model non-rectilinear motions
of targets. When an target is present, a noisy observation

(or measurement3) of the state of the target is measured
with a detection probability pd. Notice that, with probability
1 − pd, the target is not detected and we call this a missing
observation. There are also false alarms and the number of
false alarms has a Poisson distribution with a parameter λfV ,
where λf is the false alarm rate per unit time, per unit volume.
Let n(t) be the number of observations at time t, including
both noisy observations and false alarms. Let yj(t) ∈ Rny

be the j-th observation at time t for j = 1, . . . , n(t), where
ny is the dimension of each observation vector. Each target
generates a unique observation at each sampling time if it is
detected. Let Hj : Rnx → Rny be the observation model.
Then the observations are generated as follows:

yj(t) =
{

Hj(xk(t)) + vj(t) if yj(t) is from xk(t)
uf(t) otherwise,

(4)
where vj(t) ∈ Rny are white noise processes and uf(t) ∼
Unif(R) is a random process for false alarms. We assume
that the targets are indistinguishable in this paper, but if ob-
servations include target type or attribute information, the state
variable can be extended to include target type information as
done in [48].

The main objective of the multi-target tracking problem is
to estimate K, {tki , tkf } and {xk(t) : tki ≤ t ≤ tkf }, for k =
1, . . . ,K, from noisy observations.

Let Y (t) = {yj(t) : j = 1, . . . , n(t)} be all measurements
at time t and Y = {Y (t) : 1 ≤ t ≤ T} be all measurements
from t = 1 to t = T . Let Ω be a collection of partitions of Y
such that, for ω ∈ Ω,

1) ω = {τ0, τ1, . . . , τK};
2)
⋃K

k=0 τk = Y and τi ∩ τj = ∅ for i 6= j;
3) τ0 is a set of false alarms;
4) |τk ∩Y (t)| ≤ 1 for k = 1, . . . ,K and t = 1, . . . , T ; and
5) |τk| ≥ 2 for k = 1, . . . ,K.

An example of a partition is shown in Figure 3 and ω is also
known as a joint association event in literature. Here, K is
the number of tracks for the given partition ω ∈ Ω and |τk|
denotes the cardinality of the set τk. We call τk a track when
there is no confusion although the actual track is the set of
estimated states from the observations τk. This is because
we assume there is a deterministic function that returns a
set of estimated states given a set of observations, hence no
distinction is required. The fourth requirement says that a track
can have at most one observation at each time, but, in the
case of multiple sensors with overlapping sensing regions, we
can relax this requirement to allow multiple observations per
track. A track is assumed to contain at least two observations
since we cannot distinguish a track with a single observation
from a false alarm, assuming λf > 0. For special cases, in
which pd = 1 or λf = 0, the definition of Ω can be adjusted
accordingly.

Let ne(t− 1) be the number of targets at time t− 1, nz(t)
be the number of targets terminated at time t and nc(t) =
ne(t − 1) − nz(t) be the number of targets from time t − 1
that have not terminated at time t. Let nb(t) be the number

3Note that the terms observation and measurement are used interchangeably
in this paper.

Oh, Schenato, Chen, and Sastry 6

Fig. 3. (a) An example of observations Y (each circle represents an
observation and numbers represent observation times). (b) An example of
a partition ω of Y

of new targets at time t, nd(t) be the number of actual target
detections at time t and nu(t) = nc(t) + nb(t)− nd(t) be the
number of undetected targets. Finally, let nf(t) = n(t)−nd(t)
be the number of false alarms. Using the Bayes rule, it can be
shown that the posterior of ω is:

P (ω|Y) ∝ P (ω) · P (Y |ω)

=
T∏

t=1

pnz(t)
z (1− pz)nc(t)p

nd(t)

d (1− pd)nu(t)

×
T∏

t=1

λ
nb(t)

b λ
nf(t)
f · P (Y |ω), (5)

where P (Y |ω) is the likelihood of observations Y given
ω, which can be computed based on the chosen dynamic
and measurement models4. For example, the computation of
P (Y |ω) for the linear dynamics and measurement models can
be found in [21].

There are two major approaches to solve the multi-target
tracking problem [22]: maximum a posteriori (MAP) and
Bayesian approaches. The MAP approach finds a partition of
observations such that P (ω|Y) is maximized and estimates
the states of the targets based on this partition. The minimum
mean square error (MMSE) approach is a special case of the
Bayesian approach and it seeks estimates which minimizes
the expected (square) error. For instance, E(xk(t)|Y) is the
MMSE estimate for the state xk(t) of target k. However,
when the number of targets is not fixed, a unique labeling of
each target is required to find E(xk(t)|Y) under the MMSE
approach. In this paper, we take the MAP approach to the
multi-target tracking problem for its convenience.

C. Agent Dynamics and Coordination Objective

In a situation where multiple pursuers and evaders are
present, several assignments are possible and some criteria
need to be chosen to optimize performance. In this work,
we focus on minimizing the time to capture all evaders.
However, other criteria might be possible, such as minimizing
the pursuer’s energy consumption while guaranteeing capture
of all evaders or maximizing the number of captured evaders
within a certain amount of time. Since the evaders’ motions
are not known, an exact time to capture a particular evader

4Our formulation of (5) is similar to MHT [49] and the derivation of (5)
can be found in [50,49]. The parameters pz, pd, λb and λf have been widely
used in many multi-target tracking applications [27, 49]. Our experimental
and simulation experiences show that our tracking algorithm is not sensitive
to changes in these parameters in most cases. In fact, we used the same set
of parameters for all our experiments.

is also not known. Therefore, we need to define a metric to
estimate the time to capture. Let us define the state vector of a
vehicle as x = [x1, x2, ẋ1, ẋ2]T , where (x1, x2) and (ẋ1, ẋ2)
are the position and the velocity components of the vehicle
along the x and y axes, respectively. We denote by xp and xe

the state of the pursuer and the evader, respectively. We will
use the following definition of time-to-capture:

Definition 3.1 (Time-to-capture): Let xe(t0) be the position
and velocity vector of an evader in a plane at time t = t0, and
xp(t) be the position and velocity vector of a pursuer at the
current time t ≥ t0. We define the (constant speed) time-to-
capture as the minimum time Tc necessary for the pursuer
to reach the evader with the same velocity, assuming that the
evader will keep moving at a constant velocity, i.e.,

Tc := min
[
T | xp(t + T) = xe(t + T)

]
,

where xe
1,2(t + T) = xe

1,2(t0) + (t + T − t0)ẋe
1,2(t0),

ẋe
1,2(t + T) = ẋe

1,2(t0), and the pursuer moves according to
its dynamics.

This definition allows us to quantify the time-to-capture
in an unambiguous way. Although an evader can change
trajectories over time, it is a more accurate estimate than,
for example, some metric based on the distance between an
evader and a pursuer, since the time-to-capture incorporates
the dynamics of the pursuer.

Given Definition 3.1 and the constraints on the dynamics
of the pursuer, it is possible to calculate explicitly the time-
to-capture Tc, as well as the optimal trajectory xe∗(t) for the
pursuers as shown in Section IV-C.

We assume the following dynamics for both pursuers and
evaders:

x(t + δ) = Aδx(t) + Gδu(t) (6)
η(t) = x(t) + v(t) (7)

where δ is the sampling interval, u = (u1, u2) is the control
input vector, η(t) is the estimated vehicle state provided by
the MTF module, v(t) is the estimation error, and

Aδ =

1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 Gδ =

δ2

2 0
0 δ2

2
δ 0
0 δ

 ,

which correspond to the discretization of the dynamics of
a decoupled planar double integrator. Although this model
appears simplistic for modeling complex car-like vehicles,
it is widely used as a first approximation in path-planning
[51, 52, 53]. Moreover, there exist methodologies to map
such a simple dynamical model into a more realistic model
via consistent abstraction as shown in [54, 55]. Finally, any
possible mismatch between this model and the true vehicle
dynamics can be compensated for by the path-follower con-
troller implemented on the pursuer [47].

The observation vector η = [η1, η2, η̇1, η̇2]T is interpreted
as a measurement, although in reality it is the output from the
MTF module shown in Figure 2. The estimation error vt =
[v1, v2, v̇1, v̇2]T can be modeled as a Gaussian noise with zero
mean and covariance Q or as an unknown but bounded error,

Oh, Schenato, Chen, and Sastry 7

i.e., |v1| < V1, |v2| < V2, |v̇1| < V̇1, |v̇2| < V̇2, where V1, V2,
V̇1 and V̇2 are positive scalars that are possibly time-varying.
Both modeling approaches are useful for different reasons.
Using a Gaussian noise approximation allows a closed-form
optimal filter solution such as the well-known Kalman filter
[56]. On the other hand using the unknown but bounded error
modeling allows for the design of robust controller such as the
robust minimum-time control of pursuers proposed in Section
IV-C.

We also assume that the control input to a pursuer is
bounded, i.e.,

|up
1| ≤ Up, |up

2| ≤ Up (8)

where Up > 0. We consider two possible evader dynamics:

ue
1 ∼ N (0, qe), ue

2 ∼ N(0, qe) (random motion) (9)
|ue

1| ≤ Ue, |ue
2| ≤ Ue (evasive motion), (10)

where N (0, qe) is the Gaussian distribution with zero mean
and variance qe ∈ R+. Equation (9) is a standard model for
the unknown motion of vehicles, where the variation in a
velocity component is a discrete-time white noise acceleration
[57]. Equation (10) allows for evasive maneuvers but places
bounds on the maximum thrust. The multi-agent coordination
scheme proposed in Section IV-C is based on dynamics (10)
as pursuers choose their control actions to counteract the
best possible evasive maneuver of the evader being chased.
However, in our simulations and experiments, we test our
control architecture using the dynamics (9) for evaders where
we set qe = 2Ue.

Since the definition of the time-to-capture is related to
relative distance and velocity between the pursuer and the
evader, we consider the state space error ξ = xp − xe which
evolves according to the following error dynamics:

ξ(t + δ) = Aδξ(t) + Gδu
p(t)−Gδu

e(t)
ηξ(t) = ξ(t) + vξ(t) (11)

where the pursuer thrust up(t) is the only controllable input,
while the evader thrust ue(t) acts as a random or unknown
disturbance, and ve(t) is the measurement error which takes
into account uncertainties on the states of both the pursuer
and the evader. According to the definition above, an evader
is captured if and only if ξ(t) = 0, and the time-to-capture
Tc corresponds to the time necessary to drive ξ(t) to zero
assuming ue(t) = 0 for all future times t.

According to the definition of time-to-capture above and
the error dynamics (11), given the positions and velocities
of all the pursuers and evaders, it is possible to compute
the time-to-capture matrix C = [cij] ∈ RNp×Ne , where
Np and Ne are the total number of pursuers and evaders,
respectively, and the entry cij of the matrix C corresponds
to the expected time-to-capture between pursuer i and evader
j. When coordinating multiple pursuers to chase multiple
evaders, it is necessary to select an assignment between
pursuers and evaders. Our objective is to select an assignment
that minimizes the expected time-to-capture of all evaders,
which correspond to the global worst case time-to-capture. In
this paper, we focus on a scenario with the same number of
pursuers and evaders, i.e., Np = Ne. When there are more

Fig. 4. Single target position estimation error as a function of sensing range.
See Section IV-B.3 for the sensor network setup used in simulations (Monte
Carlo simulation of 1000 samples, unity corresponds to the separation between
sensors).

pursuers than evaders, then only a subset of all the pursuers
can be dispatched and the others are kept still and ready in
case more evaders appear. Alternatively, more pursuers can
be assigned to a single evader. When there are more evaders
than pursuers, one approach is to minimize the time to capture
the Np closest evaders. Obviously, many different coordination
objectives can be formulated as they are strongly application-
dependent. We have chosen the definition of global worst case
time-to-capture as it enforces strong global coordination to
achieve high performance.

IV. CONTROL SYSTEM IMPLEMENTATION

A. Multi-Sensor Fusion Module

1) Signal-Strength Sensor Model: Consider the signal-
strength sensor model described in Section III-A. Recall that
zi is the signal strength measured by sensor i. For each node
i, if zi ≥ η, where η is a threshold set for appropriate values
of detection and false-positive probabilities, the node transmits
zi to its neighboring nodes, which are at most 2Rs away from
si, and listens to incoming messages from neighboring nodes
within a 2Rs radius. We assume that the communication range
of each node is larger than 2Rs. For the node i, if zi is larger
than all incoming messages, zi1 , . . . , zik−1 , and zik

= zi, then
the position of an object is estimated by

ẑi =

∑k
j=1 zij

sij∑k
j=1 zij

. (12)

The estimate ẑi corresponds to the computation of a center
of mass of the sensing nodes weighed by measured signal
strengths. The node i transmits ẑi to the Tier-2 node g(i)
via the shortest path sp(i). If zi is not the largest compared
to the incoming messages, node i simply continues sensing.
Although each sensor cannot give an accurate estimate of the
object’s position, as more sensors collaborate, the accuracy of
the estimates improves as shown in Figure 4.

2) Binary Sensor: In order to obtain finer position reports
from binary detections, we use spatial correlation among
detections from neighboring sensors. The idea behind the

Oh, Schenato, Chen, and Sastry 8

Fig. 5. (left) Sensing regions of two sensors 1 and 2. Ri is the sensing region
of sensor i. (right) A partition of the overall sensing region R1 ∪ R2 into
non-overlapping cells S1, S2 and S3, where S1 = R1 \R2, S2 = R2 \R1

and S3 = R1 ∩R2.

fusion algorithm is to compute the likelihood of a target
given detections assuming there is a single target. This is only
an approximation since there can be more than one target.
However, any inconsistencies caused by this approximation
are fixed by the tracking algorithm described in Section IV-B
using spatio-temporal correlation.

Consider the binary sensor model described in Section III-
A. Let x be the position of an object. For the purpose of
illustration, suppose that there are two sensors, sensor 1 and
sensor 2, and R1 ∩ R2 6= ∅ (see Figure 5 (left)). The overall
sensing region R1 ∪ R2 can be partitioned into a set of non-
overlapping cells (or blocks) as shown in Figure 5 (right)).
The likelihoods can be computed as follows:

P (z1, z2|x ∈ S1) = pz1
1 (1− p1)1−z1qz2

2 (1− q2)1−z2

P (z1, z2|x ∈ S2) = qz1
1 (1− q1)1−z1pz2

2 (1− p2)1−z2

P (z1, z2|x ∈ S3) = pz1
1 (1− p1)1−z1pz2

2 (1− p2)1−z2 ,
(13)

where S1 = R1 \ R2, S2 = R2 \ R1 and S3 = R1 ∩ R2 (see
Figure 5 (right)). Hence, for any deployment we can first parti-
tion the surveillance region into a set of non-overlapping cells.
Then, given detection data, we can compute the likelihood of
each cell as shown in the previous example.

An example of detections of two targets by a 10×10 sensor
grid is shown in Figure 6. In this example, the sensing region
is assumed to be a disk with radius of 7.62m (10 ft). We have
assumed pi = 0.7 and qi = 0.05 for all i. These parameters are
estimated from measurements made with the passive infrared
(PIR) sensor of an actual sensor node described in Section V.
From the detections shown in Figure 6, its likelihood can
be computed using equations similar to (13) for each non-
overlapping cell (see Figure 7). Notice that it is a time-
consuming task to find all non-overlapping cells for arbitrary
sensing region shapes and sensor deployments. Hence, we
quantized the surveillance region and the likelihoods are
computed for a finite number of points as shown in Figure 7.

There are two parts in this likelihood computation: the
detection part (terms involving pi) and the false detection part
(terms involving qi). Hereafter, we call the detection part of the
likelihood as the detection-likelihood and the false detection
part of the likelihood as the false-detection-likelihood. Notice
that the computation of the false-detection-likelihood requires
measurements from all sensors. However, for a large wireless
sensor network, it is not feasible to exchange detection data
with all other sensors. Instead, we use a threshold test to
avoid computing the false-detection-likelihood and distribute
the likelihood computation. The detection-likelihood of a cell
is computed if there are at least nd detections, where nd is a
user-defined threshold. Using nd = 3, the detection-likelihood
of the detections from Figure 6 can be computed as shown in

Fig. 6. Detections of two targets by a 10× 10 sensor grid (targets in (red)
×, detections in (blue) disks, and sensor positions in small dots).

Fig. 7. Likelihood of detections from Figure 6. (This figure is best viewed
in color.)

Figure 8. The computation of the detection-likelihood can be
done in a distributed manner. Assign a set of non-overlapping
cells to each sensor such that no two sensors share the same
cell and each cell is assigned to a sensor whose sensing region
includes the cell. For each sensor i, let {Si1 , . . . , Sim(i)} be
a set of non-overlapping cells, where m(i) is the number of
cells assigned to sensor i. Then, if sensor i reports a detection,
it computes the likelihoods of each cells in {Si1 , . . . , Sim(i)}
based on its own measurements and the measurements from
neighboring sensors. A neighboring sensor is a sensor whose
sensing region intersects the sensing region of sensor i. Notice
that no measurement from a sensor means no detection.

Based on the detection-likelihoods, we compute target po-
sition reports by clustering. Let S = {S1, . . . , Sm} be a set
of cells whose detection-likelihoods are computed, i.e., the
number of detections for each Si is at least nd. First, randomly
pick Sj from S and remove Sj from S. Then cluster around
Sj the remaining cells in S whose set-distance to Sj is less
than the sensing radius. The cells clustered with Sj are then
removed from S. Now repeat the procedure until S is empty.
Let {Ck : 1 ≤ k ≤ Kcl} be the clusters formed by this
procedure, where Kcl is the total number of clusters. For
each cluster Ck, its center of mass is computed to obtain a

Oh, Schenato, Chen, and Sastry 9

Fig. 8. Detection-likelihood of detections from Figure 6 with threshold
nd = 3. Estimated positions of targets are shown in (black) circles. (This
figure is best viewed in color.)

a fused position report, i.e., an estimated position of a target.
An example of position reports is shown in Figure 8.

The multi-sensor fusion algorithm described above runs on
two levels: Algorithm 1 on the Tier-1 nodes and Algorithm 2
on the Tier-2 node. Each Tier-1 node combines detection data
from itself and neighboring nodes using Algorithm 1 and
computes detection-likelihoods. The detection-likelihoods are
forwarded to its Tier-2 node and the Tier-2 node generates
position reports from the detection-likelihoods using Algo-
rithm 2. The position reports are then used by the MTT module
described in Section IV-B to track multiple targets.

Algorithm 1 Multi-Sensor Fusion: Sensor i

Input: detections from sensor i and its neighbors
Output: detection-likelihoods

1: for each Sij
, j = 1, . . . ,m(i) do

2: if number of detections for Sij
≥ nd then

3: compute detection-likelihood ẑi(j) of Sij

4: forward ẑi(j) to Tier-2 node g(i)
5: end if
6: end for

Algorithm 2 Multi-Sensor Fusion: Tier-2 Node
Input: detection-likelihoods from its tracking group
Output: position reports y

1: let S be a set of cells whose detection-likelihoods are
received from its tracking group

2: y = ∅
3: find clusters {Ck : 1 ≤ k ≤ Kcl} from S as described

above
4: for each Ck, k = 1, . . . ,Kcl do
5: compute the center of mass yk of Ck

6: y = y ∪ yk

7: end for

B. Multi-Target Tracking and Multi-Track Fusion Modules

Our tracking algorithms are based on Markov chain Monte
Carlo data association (MCMCDA) [21]. We first describe the
MCMCDA algorithm and then describe the MTT and MTF
modules of the control system shown in Figure 2.

Markov chain Monte Carlo (MCMC) plays a significant
role in many fields such as physics, statistics, economics, and
engineering [58]. In some cases, MCMC is the only known
general algorithm that finds a good approximate solution to
a complex problem in polynomial time [59]. MCMC tech-
niques have been applied to complex probability distribution
integration problems, counting problems such as #P-complete
problems, and combinatorial optimization problems [59, 58].

MCMC is a general method to generate samples from a
distribution π on a space Ω by constructing a Markov chain
M with states ω ∈ Ω and stationary distribution π(ω). We
now describe an MCMC algorithm known as the Metropolis-
Hastings algorithm [60]. If we are at state ω ∈ Ω, we propose
ω′ ∈ Ω following the proposal distribution q(ω, ω′). The move
is accepted with an acceptance probability A(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (14)

otherwise the sampler stays at ω, so that the detailed balance is
satisfied. If we make sure thatM is irreducible and aperiodic,
then M converges to its stationary distribution by the ergodic
theorem [61].

Algorithm 3 MCMCDA
Input: Y, nmc, ωinit, X : Ω→ Rn

Output: ω̂, X̂
1: ω = ωinit; ω̂ = ωinit; X̂ = 0
2: for n = 1 to nmc do
3: propose ω′ based on ω (see below)
4: sample U from Unif[0, 1]
5: ω = ω′ if U < A(ω, ω′)
6: ω̂ = ω if p(ω|Y)/p(ω̂|Y) > 1
7: X̂ = n

n+1X̂ + 1
n+1X(ω)

8: end for

The MCMC data association (MCMCDA) algorithm is
described in Algorithm 3. MCMCDA is an MCMC algorithm
whose state space is Ω, as described in Section III-B, and
whose stationary distribution is the posterior (5). The proposal
distribution for MCMCDA consists of five types of moves
(a total of eight moves). They are (1) a birth/death move
pair; (2) a split/merge move pair; (3) an extension/reduction
move pair; (4) a track update move; and (5) a track switch
move. The MCMCDA moves are illustrated in Figure 9. We
index each move by an integer such that m = 1 for a birth
move, m = 2 for a death move and so on. The move m
is chosen randomly from the distribution ξK(m) where K is
the number of tracks of the current partition ω. When there
is no track, we can only propose a birth move, so we set
ξ0(m = 1) = 1 and ξ0(m = 1) = 0 for all other moves.
When there is only a single target, we cannot propose a merge
or track switch move, so ξ1(m = 4) = ξ1(m = 8) = 0. For

Oh, Schenato, Chen, and Sastry 10

the other values of K and m, we assume ξK(m) > 0. For
a detailed description of each move, see [21]. The inputs for
MCMCDA are the set of all observations Y , the number of
samples nmc, the initial state ωinit, and a bounded function
X : Ω → Rn. Examples of the bounded function include the
state of a target and association probabilities [22]. At each step
of the algorithm, ω is the current state of the Markov chain.
The acceptance probability A(ω, ω′) is defined in (14) where
π(ω) = P (ω|Y) from (5). The output X̂ approximates the
MMSE estimate EπX and ω̂ approximates the MAP estimate
arg max P (ω|Y). The computation of ω̂ can be considered
as simulated annealing at a constant temperature. Notice that
MCMCDA can provide both MAP and MMSE solutions to
the multi-target tracking problem. In this paper, we use the
MAP estimate ω̂ to estimate the states of the targets5.

It has been shown that MCMCDA is an optimal Bayesian
filter in the limit, i.e., given a bounded function X : Ω→ Rn,
X̂ → EπX as nmc →∞ [22]. In addition, in terms of time and
memory, MCMCDA is more computationally efficient than
MHT and outperforms MHT with heuristics (i.e., pruning,
gating, clustering, N -scan-back logic and k-best hypotheses)
under extreme conditions, such as a large number of targets
in a dense environment, low detection probabilities, and high
false alarm rates [21].

1) Multi-Target Tracking Module: At each Tier-2 node,
we implement the online MCMCDA algorithm with a sliding
window of size ws using Algorithm 3 [21]. This online im-
plementation of MCMCDA is suboptimal because it considers
only a subset of past measurements. But since the contribution
of older measurements to the current estimate is less than
recent measurements, it is still a good approximation. At
each time step, we use the previous estimate to initialize
MCMCDA and run MCMCDA on the observations belonging
to the current window. Each Tier-2 node maintains a set of
observations Y = {yj(t) : 1 ≤ j ≤ n(t), tcurr − ws + 1 ≤ t ≤
tcurr}, where tcurr is the current time. Each yj(t) is either a
fused measurement ẑi from some signal-strength sensor i or
an element of the fused position reports y from binary sensors.
At time tcurr + 1, the observations at time tcurr − ws + 1 are
removed from Y and a new set of observations is appended to
Y . Any delayed observations are inserted into the appropriate
slots. Then, each Tier-2 node initializes the Markov chain
with the previously estimated tracks and executes Algorithm 3
on Y . Next, each Tier-2 node forwards track information to
the base station. Once the tracks are found, the next state of
each track is predicted. If the predicted next state belongs
to the surveillance area of another Tier-2 node, the track
information is passed to the corresponding Tier-2 node. These
newly received tracks are incorporated into the initial state of
MCMCDA for the next time step.

2) Multi-Track Fusion Module: Since each Tier-2 node
maintains its own set of tracks, there can be multiple tracks
from a single target maintained by different Tier-2 nodes.
To make the algorithm fully hierarchical and scalable, the
MTF module performs the track-level data association at the

5The states of the targets can be easily computed by running any filtering
algorithm since, given ω̂, the associations between the targets and the
measurements are completely known.

Fig. 9. Graphical illustration of MCMCDA moves (associations are indicated
by dotted lines and hollow circles are false alarms). Each move proposes a
new joint association event ω′ which is a modification of the current joint
association event ω. The birth move proposes ω′ by forming a new track
from the set of false alarms ((a) → (b)). The death move proposes ω′ by
combining one of the existing tracks into the set of false alarms ((b) → (a)).
The split move splits a track from ω into two tracks ((c) → (d)) while the
merge move combines two tracks in ω into a single track ((d) → (c)). The
extension move extends an existing track in ω ((e) → (f)) and the reduction
move reduces an existing track in ω ((f) → (e)). The track update move
chooses a track in ω and assigns different measurements from the set of false
alarms ((g) ↔ (h)). The track switch move chooses two track from ω and
switches some measurement-to-track associations ((i) ↔ (j)).

base station to combine tracks from different Tier-2 nodes.
Let ωj be the set of tracks maintained by Tier-2 node j ∈
{1, . . . , Nss}. Let Yc = {τi(t) ∈ ωj : 1 ≤ t ≤ T, 1 ≤ i ≤
|ωj |, 1 ≤ j ≤ Nss} be the combined observations only from
the established tracks. We form a new set of tracks ωinit from
{τi ∈ ωj : 1 ≤ i ≤ |ωj |, 1 ≤ j ≤ Nss} while making sure
that constraints defined in Section III-B are satisfied. Then
we run Algorithm 3 on this combined observation set Yc with
the initial state ωinit. An example in which the multi-track
fusion corrects mistakes made by Tier-2 nodes due to missing
observations at the tracking group boundaries is shown in
Section IV-B.3.

The algorithm is autonomous and shown to be robust against
transmission failures, communication delays and sensor local-
ization error. In simulation, there is no performance loss up
to an average localization error of 0.7 times the separation
between sensors, and the algorithm tolerates up to 50% lost-
to-total packet ratio and 90% delayed-to-total packet ratio [23].

3) An Example of Surveillance using Sensor Networks:
Here, we give a simulation example of surveillance using
sensor networks. The surveillance region R = [0, 100]2 is
divided into four quadrants and sensors in each quadrant form
a tracking group, where a Tier-2 node is placed at the center
of each quadrant. The scenario is shown in Figure 10 (top

Oh, Schenato, Chen, and Sastry 11

Fig. 10. (top left) Tracking scenario, where the numbers are target appearance and disappearance times, the initial positions are marked by circles, and the
stars are the positions of Tier-2 nodes. (top right) Accumulated observations received by Tier-2 nodes with delayed observations circled. (bottom left) Tracks
estimated locally by the MTT modules at Tier-2 nodes, superimposed. (bottom right) Tracks estimated by the MTF module.

left). We assume a 100 × 100 sensor grid, in which the
separation between sensors is normalized to 1. Thus, the unit
length in simulation is the length of the sensor separation.
For MCMCDA, we used nmc = 1000, and ws = 10. For the
sensor model, the signal-strength sensor model is used with
parameters α = 2, γ = 1, η = 2, and β = 3(1 + γRα

s).
We used pte = .3 and pde = .3. The surveillance duration is
T = 100.

The state vector of a target (or an evader) is x =
[x1, x2, ẋ1, ẋ2]T as described in Section III-C. The simulation
uses the dynamics model in (6) and the evader control inputs
are modeled by the random motion (9) with qe = .152 and Q
set according to Figure 4. However, the measurement model
given by (7) is modified as follows since the full state is not
observable:

y(t) = Cx(t) + v(t), where C =
[

1 0 0 0
0 1 0 0

]
(15)

and y is a fused measurement computed by the MSF module
in Section IV-A.

Figure 10 (top right) shows the observations received by the
Tier-2 nodes. There were a total of 1174 observations and 603
of these observations were false alarms. A total of 319 packets
out of 1174 packets were lost due to transmission failures
and 449 packets out of 855 received packets were delayed.
Figure 10 (bottom left) shows the tracks estimated locally by
the MTT modules on the Tier-2 nodes while Figure 10 (bottom

right) shows the tracks estimated by the MTF module using
track-level data association. Figure 10 (bottom right) shows
that the MTF module corrects mistakes made by Tier-2 nodes
due to missing observations at the tracking group boundaries.
This ability to correct mistakes made by a Tier-2 node is
another strength of our hierarchical system. The algorithm is
written in C++ and MATLAB and run on PC with a 2.6-GHz
Intel Pentium 4 processor. It takes less than 0.06 seconds per
Tier-2 node, per simulation time step.

C. Multi-Agent Coordination Module

The time-to-capture is estimated using the abstract model
of pursuer and evader dynamics given in Section III-C. Let
us consider the error between the pursuer and the evader
ξ = [ξ1, ξ2, ξ̇1, ξ̇2]T whose dynamics is given in (11). The
time-to-capture problem is equivalent to the following opti-
mization problem:

min
u

p
1(t),u

p
2(t)

T

subject to

 ξ(t + δ) = Aδξ(t) + Gδu
p(t)

|up
1(t)| ≤ Up, |up

2(t)| ≤ Up
ξ(t + T) = 0.

(16)
Recently, Gao et al. [62] solved the previous problem as
an application of minimum-time control for the discretized
double integrator. An extension to minimum-time control for

Oh, Schenato, Chen, and Sastry 12

Fig. 11. Optimal switching curve for the continuous minimum-time control of
the double integrator (thick solid line) and curves of constant time-to-capture
(thin solid lines) in the phase space (ξ1, ξ̇1). The shaded polygon corresponds
to the set of all possible locations of the true error state (ξ1(t+δ), ξ̇1(t+δ))
at the next time step t + δ given measurement (η1, η̇1) and pursuer control
input u

p
1 at time t.

the discretized triple integrator is also available [63]. Despite
its simplicity and apparent efficacy, minimum-time control is
rarely used in practice, since it is highly sensitive to small
measurement errors and external disturbances. Although, in
principle, minimum-time control gives the best performance,
it needs to be modified to cope with practical issues such as
the quantization of inputs, measurement and process noise, and
modeling errors. We propose an approach that adds robustness
while preserving the optimality of minimum-time control.

Since the state error dynamics is decoupled along the x and
y-axes, the solution of the optimization problem (16) can be
obtained by solving two independent minimum-time problems
along each axis. When δ → 0 in (11), the minimum-time
control problem restricted to one axis reduces to the well
known minimum-time control problem of a double integrator
in continuous time, which can be found in many standard
textbooks on optimal control such as [64, 65]. The solution
is given by a bang-bang control law and can be written in
state feedback form as follows:

up
1 =

−Up If 2Upξ̇1 > −ξ1|ξ1|
+Up If 2Upξ̇1 < −ξ1|ξ1|

−Up sign(ξ1) If 2Upξ̇1 = −ξ1|ξ1|
0 If ξ̇1 = ξ1 = 0.

(17)

The minimum time required to drive ξ1 to zero in the x-axis
can be also written in terms of the position and velocity error
as follows:

Tc,1(ξ1, ξ̇1) =

−ξ̇1+
√

2ξ̇2
1−4Upξ1

Up
if 2Upξ̇1 ≥ −ξ1|ξ1|

ξ̇1+
√

2ξ̇2
1+4Upξ1

Up
otherwise.

(18)
Figure 11 shows the switching curve 2Upξ̇1 = −ξ1|ξ1| and the
level curves of the time-to-capture Tc for different values.

Similar equations can be written for the control up
2 along

the y-axis. Therefore the minimum time-to-capture is given
by:

Tc = max(Tc,1, Tc,2) (19)

According to the previous analysis, given the state error ξ(t)
at current time t, we can compute the corresponding constant
velocity time-to-capture Tc, the optimal input sequence up∗(t′)
and the optimal trajectory ξ∗(t′) for t′ ∈ [t, t + Tc].

However, the optimal input (17) is the solution when δ → 0
in (11) with no measurement errors and no change in the
evader’s trajectory. In order to add robustness to take into
account the digital implementation, measurement errors and
evasive maneuvers of the evader, we analyze how the time-
to-capture can be affected by these terms. Let us first rewrite
explicitly the error dynamics given by (11) for the x-axis:

ξ1(t + δ) = ξ1(t) + δ ξ̇1(t) + 1
2δ2up

1(t) + 1
2δ2ue

1(t)
ξ̇1(t + δ) = ξ̇1(t) + δ up

1(t) + δue
1(t)

ηξ
1(t) = ξ1(t) + vξ

1(t)
η̇ξ
1(t) = ξ̇1(t) + v̇ξ

1(t)

If we substitute the last two equations into the first two we
get:

ξ1(t + δ) = ηξ
1(t) + δη̇ξ

1(t)+
1
2
δ2up

1(t)−

−vξ
1(t)−δv̇ξ

1(t) +
1
2
δ2ue

1(t) (20)

ξ̇1(t + δ) = η̇ξ
1(t) + δ up

1(t)− v̇ξ
1(t) + δue

1(t) (21)

where (ηξ
1, η̇

ξ
1) are output estimates from the MTF module,

up
1 is the controllable input, and (ue

1, v
ξ
1, v̇

ξ
1) play the role of

external disturbances. Our goal now is to choose up
1, i.e., the

thrust of the pursuer, in such a way to minimize the time-to-
capture under the worst possible choice of (ue

1, v
ξ
1, v̇

ξ
1), which

are not known in advance but are bounded. Figure 11 illustrates
this approach graphically: the red set (the shaded polygon)
corresponds to the possible position of the true state error
(ξ1, ξ̇1) at the next time step t + δ for all possible evasive
maneuvers of the evader and estimation errors on the positions
of the pursuer and the evader for a given choice of up

1. Since
the center of that set (ηξ

1 + δη̇ξ
1 + 1

2δ2up
1, η̇

ξ
1 + δup

1) depends
on the pursuer control up

1, one could try to choose up
1 in such

a way that the largest time-to-capture Tc,1 corresponding to
points in that set is minimized. This approach is common in the
literature for non-cooperative games [66]. More formally, the
feedback control input will be chosen based on the following
min-max optimization problem

up
1
∗(t) = min

|up
1|≤Up

(
max

|vξ
1 |≤V1,|v̇ξ

1 |≤V̇1,|ue
1|≤Ue

Tc,1
(
ξ1(t+δ), ξ̇1(t+δ)

))
(22)

This is, in general, a nonlinear optimization problem. However,
thanks to the specific structure of the time-to-capture function
Tc,1, it is possible to show that (22) is equivalent to:

up
1
∗ = min

|up
1|≤Up

max
(
Tc,1(ξ+

1 , ξ̇+
1), Tc,1(ξ−1 , ξ̇−1)

)
(23)

ξ±1 := ηξ
1 + δη̇ξ

1± V1±δV̇1 ±
1
2
δ2Ue +

1
2
δ2up

1

ξ̇±1 := η̇ξ
1± V̇1±δUe + δup

1,

Oh, Schenato, Chen, and Sastry 13

Fig. 12. Trajectories of pursuers and evaders on the x-y plane. The feedback
control is based on noisy estimate (thin solid line) of true evader position
(thick solid line). The robust minimum time-to-capture feedback proposed in
this paper (dot-solid line) is compared with the discrete-time minimum time-
to-capture feedback (dashed line) proposed in [63].

i.e., it is necessary to compute only the time-to-capture of
the top right and the bottom left corner of the shaded set in
Figure 11 since all points inside the set always have smaller
value. Once the expected minimum time-to-capture control
input up∗(t′), t′ ∈ [t, t + Tc] is computed, then the correspond-
ing optimal trajectory for the pursuer xp∗(t′), t′ ∈ [t, t + Tc]
can be easily obtained by substituting up∗(t′) into the pur-
suer dynamics (6). The robust minimum-time path planning
algorithm is summarized in Algorithm 4.

Algorithm 4 Robust Minimum-Time Path Planning

Input: xp(t), xe(t) and bounds V1, V2, V̇1, V̇2, Ue, Up
Output: pursuer desired trajectory xp∗(t′), t′ ∈ [t, t + Tc]

1: compute up∗(t′), t′ ∈ [t, t + Tc] using (23)
2: compute xp∗(t′), t′ ∈ [t, t + Tc] given up∗(t′) using (6)

Figure 12 shows the performance of the proposed robust
minimum time-to-capture control feedback for a scenario
where the evader moves with random motion and the evader’s
position and velocity estimates are noisy. It is compared with
the discrete-time minimum-time controller proposed in [63]
and [62]. Our controller feedback design outperforms the
discrete-time minimum-time controller since the latter one
does not take into account process and measurement noises.
Note how both controllers do not direct pursuers toward the
actual position of evader, but to the estimated future location
of the evader to minimize the time-to-capture.

As introduced in Section III-C, given the positions and
velocities of all pursuers and evaders and the bounds on
measurement error and evader input, it is possible to compute
the expected time-to-capture matrix C = [cij] ∈ RNp×Ne

using the solution to the optimal minimum-time control prob-
lem, where the entry cij of the matrix C corresponds to the
expected time for pursuer i to capture evader j, Tc, that can
be computed as described in (18) and (19). As motivated in
Section III-C, we assume the same number of pursuers as the
number of evaders, i.e. Np = Ne = N ,

An assignment can be represented as a matrix Φ = [φij] ∈
RN×N , where the entry φij of the matrix Φ is equal to 1 if
pursuer i is assigned to evader j, and equal to 0 otherwise.
The assignment problem can therefore be written formally as
follows:

minφij∈{0,1} maxi,j=1,...,N (cij · φij)
subject to

∑N
i=1 φij = 1, ∀i∑N
j=1 φij = 1, ∀j.

(24)

As formulated in (24), the assignment problem is a combina-
torial optimization problem.

The optimization problem given in (24) can be reformulated
as a linear bottleneck assignment problem and can be solved
by any of the polynomial-time algorithms based on network
flow theory. Here we give a brief description of one algorithm
and we direct the interested reader to the survey [45] for a
detailed review of these algorithms. For our implementation,
we use a randomized threshold algorithm that alternates be-
tween two phases. In the first phase, we list the cost elements
cij in increasing order and we choose a cost element c∗, i.e.,
a threshold. Then we construct the matrices C̄(c∗) = [c̄ij] ∈
RN×N and CTutte(c∗) ∈ R2N×2N as follows:

c̄ij =
{

aij if cij > c∗

0 if cij ≤ c∗
, CTutte =

[
0 C̄
−C̄ 0

]
(25)

where aij’s are independent random numbers sampled from a
uniform distribution in the interval [0, 1], i.e. aij ∼ U([0, 1]).
Using Tutte’s Theorem [45], it is possible to show that if
det(CTutte(c∗)) 6= 0, then there exists an assignment that
achieves c∗6. Therefore, we search for the smallest c∗min in the
ordered list of costs cij which guarantees an assignment. Once
we find c∗min we find the evader-pursuer pair corresponding to
that cost, remove them from the cost matrix C and repeat
the procedure until all pursuers are assigned. The assignment
algorithm is summarized in Algorithm 5.

Algorithm 5 Pursuers-to-evaders Assignment
Input: xp

i , x
e
j , i, j = 1, . . . , N

Output: assignment (i→ j) for i = 1, . . . , N
1: compute matrix C = [cij], cij = Tc(x

p
i − xe

j)
2: for n = 1 to N do
3: [i∗, j∗] = argminij

�
cij | det(CTutte(cij)) 6= 0

	
, using (25)

4: assign pursuer i∗ to evader j∗

5: C ← {C | remove row i∗ and column j∗}
6: end for

It is important to note that an assignment based on the
solution of the global optimization problem described above
is necessary for high performance. In fact one simple coun-
terexample can be given by considering the greedy assignment
algorithm. This algorithm looks for the smallest time-to-
capture entry in the matrix C, assigns the corresponding
pursuer-evader pair, and removes the corresponding row and
column from the matrix C. The dimensions of the resulting

6In reality, since the algorithm is randomized, there is a small probability
equal to (1/N)r that there exists a feasible assignment if det(CTutte) = 0 for
r random Tutte’s matrices CTutte. In the rare cases when this event happens,
the algorithm simply gives a feasible assignment with a higher cost to capture.

Oh, Schenato, Chen, and Sastry 14

Fig. 13. Hardware for the sensor nodes. (left) Trio sensor node on a tripod.
On top is the microphone, buzzer, solar panel, and user and reset buttons.
On the sides are the windows for the passive infrared sensors. (right) A live
picture from the 2 target pursuit-evasion game experiment.

matrix C become (N − 1) × (N − 1) and the algorithm
repeats the same process until each pursuer is assigned to an
evader. This algorithm is very simple and can be implemented
in a fully distributed fashion. However, it is a suboptimal
algorithm, since there are cases where the greedy assignment
finds the worst solution. Consider the time-to-capture matrix

C =
[

1 2
3 100

]
. The optimal assignment that minimizes the

time-to-capture of all evaders for this matrix is (1 → 2) and
(2 → 1), which gives Tc,max = 3. The greedy assignment
would instead assign pursuer 1 to evader 1 and pursuer 2
to evader 2, with the time-to-capture of all evaders equal to
Tc,max = 100.

V. EXPERIMENTS

Multi-target tracking and a pursuit evasion game using
the control system described in the previous sections were
demonstrated at the Defense Advanced Research Projects
Agency (DARPA) Network Embedded Systems Technology
(NEST) final experiment on August 30, 2005. The experiment
was performed under warm sunny conditions on a large-scale,
long-term, outdoor sensor network testbed deployed on a short
grass field at UC Berkeley’s Richmond Field Station (see
Figure 13). A total of 557 sensor nodes were deployed and 144
of those nodes were allotted for the tracking and coordination
experiment. Of the 144 nodes that were deployed, 6 were not
functioning on the day of the demo. A small node failure rate
is expected for a large-scale, outdoor, distributed system.

The 144 nodes used for the tracking and coordination
experiment were deployed at approximately 5 meter spacing
in a 12 × 12 grid (see Figure 14). Each node was elevated
using a camera tripod to prevent the passive infrared (PIR)
sensors from being obstructed by grass and uneven terrain (see
Figure 13 (left)). The locations of the nodes were measured
during deployment using differential GPS and stored in a
table at the base station for reference and for generating
Figure 14. However, in the experiments the multi-tracking
system assumed the nodes were placed exactly on a 5 meter
spacing grid to highlight the robustness of the algorithm with
respect to localization error.

The deployed control system contained some modifications
to the architecture described in Section III. Due to the time

Fig. 14. Sensor network deployment. The disks and circles represent positions
of sensor nodes. The network of 144 nodes used in the multi-target tracking
and PEG experiments is highlighted. (This figure is best viewed in color.)

Fig. 15. (left) Telos B; (right) Trio sensor board, based off the XSM sensor
board and Prometheus solar power circuitry. See [44] for details.

constraint, the Tier-2 nodes were not fully functional on the
day of the demo. Instead, we used a mote connected to a
personal computer as the Tier-2 node. Only one such Tier-2
node was necessary to maintain connectivity to all 144 nodes
used for the tracking experiment. In the experiment, simulated
pursuers were used since it was difficult to navigate a ground
robot in the field of tripods.

A. Platform

A new sensor network hardware platform called the Trio
mote was designed by Dutta et al. [44] for the outdoor testbed.
The Trio mote is a combination of the designs of the Telos B
mote, eXtreme Scaling Mote (XSM) sensor board [67], and
Prometheus solar charging board [68], with improvements.
Figure 15 shows the Trio node components and the left of
Figure 13 shows the assembled Trio node in a waterproof
enclosure sitting on a tripod.

The Telos B mote [69] is the latest in a line of wire-
less sensor network platforms developed by UC Berkeley
and Moteiv Corporation for the NEST project. It features
an 8MHz Texas Instruments MSP430 microcontroller with
10kB of RAM and 48kB of Program Flash and a 250kbps,
2.4GHz, IEEE 802.15.4 standard compliant, Chipcon CC2420
Radio. The Telos B mote provides lower power operation than
previous motes (5.1 µA sleep, 19 mA on) and a radio range of
up to 125 meters, making it the ideal candidate for large-scale,
long-term deployments.

The Trio sensor board includes a microphone, a piezoelec-
tric buzzer, x-y axis magnetometers, and four passive infrared

Oh, Schenato, Chen, and Sastry 15

Fig. 16. Software services on the sensor network platform. The core
network management services are Deluge for network reprogramming [70]
and Marionette for fast reconfiguration of parameters on the nodes [71]. The
DetectionEvent application relies on the Drip and Drain routing layer for
dissemination of commands and collection of data [72]. For more details on
the software architecture used in the outdoor testbed, see [44, 71].

(PIR) motion sensors. For the multi-target tracking application,
we found that the PIR sensors were the most effective for
sensing human subjects moving through the sensor field. The
magnetometer sensor had limited range even detecting targets
with rare earth magnets and the acoustic sensor required
complex signal processing to pick out the various acoustic
signatures of a target from background noise. The PIR sensors
provided an effective range of approximately 8 meters, with
sensitivity varying depending on weather conditions and time
of day. Unfortunately, the variability in the signal strength of
the PIR sensor reading prohibited easy extraction of ranging
information from the sensor, and we were relegated to use PIR
sensors as binary detectors.

The software running on the sensor nodes are written in
NesC [73] and run on TinyOS [74], an event-driven operating
system developed for wireless embedded sensor platforms.
The core sensor node application is the DetectionEvent mod-
ule, a multi-moded event generator for target detection and
testing node availability. The sensor node application relies
on a composition of various TinyOS subsystems and services
that facilitate management and interaction with the network
(See Figure 16).

The DetectionEvent module provides four modes of event
generation from the node – events generated periodically by
a timer, events generated by pressing a button on the mote,
events generated by the raw PIR sensor value crossing a
threshold, and events generated by a three-stage filtering,
adaptive threshold, and windowing detection algorithm for PIR
sensor readings developed by the University of Virginia (UVa)
[75]. The timer generated events aided visualizing which nodes
in the network were alive after parsing and displaying the re-
sponses on the base station. The three-stage PIR detection filter
code by UVa was used during the development cycle. While
it had potential to be more robust to different environmental
conditions, during the day of the demo we reverted to the
simple threshold PIR detector because the simple threshold

Fig. 17. A snapshot from an experiment with three people walking in the
field. (upper left) Detection panel. Sensors are marked by small dots and
detections are shown in large disks. (lower left) Fusion panel shows the fused
likelihood. (right) Estimated Tracks and Pursuer-to-evader Assignment panel
shows the tracks estimated by the MTT module, estimated evader positions
(stars) and pursuer positions (squares). (This figure is best viewed in color.)

detector was easy to tune and performed well.
The multi-sensor fusion, tracking, assignment, and pursuit

algorithms are written in MATLAB and C++ and run on the
base station. The same core implementation of the MCM-
CDA tracking algorithm and robust minimum time-to-capture
controller used for the simulations generating Figure 10 and
Figure 12 are used in the real-time experiments. The data was
timestamped at the base station.

B. Live Demonstration

The multi-target tracking algorithm was demonstrated on
one, two, and three human targets, with targets entering the
field at different times. In all three experiments, the tracking
algorithm dynamically predicted the number of targets and
produced correct tracks. Furthermore, the algorithm was robust
to crossing tracks and correctly disambiguated crossing targets
in the two and three target experiments without generating
spurious tracks. The multi-target tracking algorithm does this
without classification labels on the targets. Instead, the algo-
rithm uses the dynamic models of the targets and the past
measurements to help determine their trajectories.

Figure 17 shows the multi-target tracking results with three
people walking through the field. The three people entered and
exited the field around time 10 and 80, respectively. During the
experiment, the algorithm correctly rejected false alarms and
compensated for missing detections. There were many false
alarms during the span of the experiments, as can be seen
in Figure 18, before time 10 and after time 80. Also, though
not shown in the figures, the algorithm dynamically corrected
previous track hypotheses as it received more sensor readings.
Figure 18 also gives a sense of the burstiness of the traffic.
The spike in traffic shortly after time 50 was approximately
when two of the targets crossed. It shows that the multi-target
tracking algorithm is robust against missing measurements,
false measurements and burstiness in the network.

Oh, Schenato, Chen, and Sastry 16

Fig. 18. Binary detection report raster plot for the three target tracking demo.
Dots represent detections from nodes (node IDs on the y-axis) received at the
base station.

In the last demonstration, two simulated pursuers were
dispatched to chase two crossing human targets. The com-
putation of the pursuer-to-target assignment and the robust
minimum time-to-capture control law were computed in real-
time, in tandem with the real-time tracking of the targets. The
simulated pursuers captured the human targets, as shown in
Figure 19. In particular, note that the MTT module is able
to correctly disambiguate the presence of two targets (top-
right panel) using past measurements, despite the fact that
the Detection/Fusion module reports the detection of a single
target (top-left panels). Similarly, the MTT module rejects
false alarms (small dot in bottom-left Detection panel) and
correctly reports the presence of only two targets (bottom-right
panel). A live picture of this experiment is shown on the right
of Figure 13.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a hierarchical control system to track
a group evaders and coordinate a group of pursuers to cap-
ture the group of evaders using sensor networks. Although
sensor networks provide global observability, which allows
an optimal pursuit policy, they cannot provide high quality
measurements in a timely manner due to packet losses, com-
munication delays, and false detections. These factors have
been the main challenge to developing a real-time control
system using sensor networks.

This paper proposes a possible solution for closing the
loop around wireless ad-hoc sensor networks. A hierarchical
control system is developed to decouple the estimation of
evader states from the control of pursuers by using multiple
layers of data fusion, including the multi-sensor fusion (MSF)
module, the multi-target tracking (MTT) module, and the
multi-track fusion (MTF) module. While a sensor network
generates noisy, inconsistent, and bursty measurements, the
three layers of data fusion convert them into consistent and
high quality measurements and forward them to the controllers
of the pursuers in a timely manner.

Fig. 19. Estimated tracks of evaders and pursuer positions (top) before and
(bottom) after crossing from the pursuit evasion game experiment. (This figure
is best viewed in color.)

In order to coordinate multiple pursuers, the multi-agent
coordination (MAC) module is developed. The assignments
of pursuers to evaders are chosen such that the time to
capture all evaders is minimized. The controllers for the
pursuers are based on minimum-time control but designed
against the worst-case evader motions for robustness despite
the quantization of inputs, measurement and process noises,
and modeling errors.

Simulation and experimental results have shown that this
control system is well suited for solving real-time control
problems using sensor networks and that a sensor network
is an attractive solution for the surveillance of a large area.

In this work, we assumed a stationary hierarchy, i.e., the
Tier-2 nodes and base station are fixed. However, a stationary
hierarchy is not robust against malicious attacks. In our future
work, we will address this issue by introducing redundancy,
distributing the coordination tasks among Tier-2 nodes, and
dynamically managing the hierarchy of the system. Our im-
mediate goal is to quantify the robustness of the system against
false measurements and packet losses and to identify the
requirements in sensor networks, such as the maximum delay,
packet loss and false detection rates, for seamless operations
of the control system.

Oh, Schenato, Chen, and Sastry 17

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful com-
ments and suggestions. The experiments were made possible
by contributions of David Culler, Prabal Dutta, Eric Fraser,
Mike Howard, Jonathan Hui, Jaein Jeong, August Joki, Sukun
Kim, Philip Levis, Michael Manzo, Joseph Polastre, Travis
Pynn, Peter Ray, Tanya Roosta, Shawn Shaffert, Cory Sharp,
Bruno Sinopoli, Jay Taneja, Gilman Tolle, David Shim, Robert
Szewczyk, Kamin Whitehouse, and Bonnie Zhu. This material
is based upon work supported by the Defense Advanced
Research Projects Agency under Grant No. F33615-01-C-1895
(NEST), National Science Foundation under Grant No. EIA-
0122599 and the European Community Research Information
Society Technologies under Grant No. RECSYS IST-2001-
32515 and Grant No. MIRG-6-CT-2005-014815.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
vol. 1, no. 1, pp. 59–69, January 2002.

[2] I. A. W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp.
102–116, August 2002.

[3] “Sensor networks and applications,” Proceedings of the IEEE, Special
Issue, vol. 91, no. 8, pp. 1151–1256, August 2003.

[4] B. Warnake, M. Scott, B. Leibowitz, L. Zhou, C. Bellew, J. Chediak,
J. Kahn, and B. B. K. Pister, “An autonomous 16mm3 solar-powered
node for distributed wireless sensor networks,” in IEEE International
Conference on Sensors 2002, Orlando, FL, USA, June 2002, pp. 1510–
15.

[5] S. Roundy, D. Steingart, L. Frchette, P. Wright, and J. Rabaey, “Power
sources for wireless networks,” in Proc. 1st European Workshop on
Wireless Sensor Networks (EWSN ’04), Berlin, Germany, January 2004,
pp. 1–17.

[6] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” in International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2001), Salt Lake
City, UT, May 2001.

[7] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
IEEE Computer, Special Issue in Sensor Networks, Aug. 2004.

[8] “10 emerging tecnology that will change the world,” Technol. Rev., vol.
106, no. 1, pp. 33–49, February 2003.

[9] M. Kintner-Meyer and R. Conant, “Opportunities of wireless sensors
and controls for building operation,” Energy Engineering Journal, vol.
102, no. 5, pp. 27–48, 2005.

[10] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. M. Mainwaring,
and D. Estrin, “Habitat monitoring with sensor networks,” Communica-
tion of the ACM, vol. 47, no. 6, pp. 34–40, 2004.

[11] M. Nekovee, “Ad hoc sensor networks on the road: the promises and
challenges of vehicular ad hoc networks,” in Workshop on Ubiquitous
Computing and e-Research, Edinburgh, UK, May 2005.

[12] A. Willig, K. Matheus, and A.Wolisz, “Wireless technology in industrial
networks,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, June
2005.

[13] A. LaMarca, W. Brunette, D. Koizumi, M. Lease, S. B. Sigurdsson,
K. Sikorski, D. Fox, and G. Borriello, “Making sensor networks practical
with robots,” in Pervasive ’02: Proceedings of the First International
Conference on Pervasive Computing, London, UK, 2002, pp. 152–166.

[14] R. R. Brooks, D. Friedlander, J. Koch, and S. Phoha, “Tracking multiple
targets with self-organizing distributed ground sensors,” J. Parallel
Distrib. Comput., vol. 64, pp. 874–884, 2004.

[15] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman,
S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, , and M. Miyashita,
“A line in the sand: A wireless sensor network for target detection,
classification, and tracking,” Computer Networks, vol. 46, no. 5, pp.
605–634, Dec. 2004.

[16] J. Hespanha, H. Kim, and S. Sastry, “Multiple-agent probabilistic
pursuit-evasion games,” in IEEE Int. Conf. on Decision and Control,
1999, pp. 2432–2437.

[17] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: Theory, implementation and experimental eval-
uation,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5,
pp. 662–669, October 2002.

[18] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to con-
current mapping and localization for mobile robots,” Machine Learning
and Autonomous Robots (joint issue), vol. 31, no. 5, pp. 1–25, 1998.

[19] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry and Applications, vol. 9, no. 4/5, pp. 471–
493, 1999.

[20] B. Sinopoli, C. Sharp, S. Schaffert, L. Schenato, and S. Sastry, “Dis-
tributed control applications within sensor networks,” IEEE Proceedings
Special Issue on Distributed Sensor Networks, November 2003.

[21] S. Oh, S. Russell, and S. Sastry, “Markov chain Monte Carlo data
association for general multiple-target tracking problems,” in Proc. of
the 43rd IEEE Conference on Decision and Control, Paradise Island,
Bahamas, Dec. 2004.

[22] ——, “Markov chain Monte Carlo data association for multiple-target
tracking,” Univ. of California, Berkeley, Tech. Rep. UCB//ERL M05/19,
2005.

[23] S. Oh, L. Schenato, P. Chen, and S. Sastry, “A scalable real-time
multiple-target tracking algorithm for sensor networks,” Univ. of Cali-
fornia, Berkeley, Tech. Rep. UCB//ERL M05/9, 2005.

[24] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and
D. Culler, “Design and implementation of a sensor network system
for vehicle tracking and autonomous interception,” in Proc. of the 2nd
European Workshop on Wireless Sensor Networks, January 2005, pp.
93–107.

[25] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group
management for track initiation and maintenance in target localization
applications,” in Proc. of the 2nd workshop on Information Processing
in Sensor Networks, April 2003.

[26] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network processing for
target tracking,” J. of Applied Signal Processing, April 2003.

[27] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association. San
Diego, CA: Academic Press, 1988.

[28] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transaction
on Automatic Control, vol. 24, no. 6, pp. 843–854, December 1979.

[29] C. Chong, S. Mori, and K. Chang, “Distributed multitarget multisensor
tracking,” in Multitarget-Multisensor Tracking: Advanced Applications,
Y. Bar-Shalom, Ed. Artech House: Norwood, MA, 1990, pp. 247–295.

[30] D. Li, K. Wong, Y. H. Hu, and A. Sayeed, “Detection, classification
and tracking of targets,” IEEE Signal Processing Magazine, vol. 17-29,
March 2002.

[31] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative signal and
information processing: An information directed approach,” Proceedings
of the IEEE, vol. 91, no. 8, pp. 1999–1209, Aug. 2003.

[32] D. McErlean and S. Narayanan, “Distributed detection and tracking in
sensor networks,” in Proc. of the 36th Asilomar Conference on Signal,
System and Computers, November 2002.

[33] J. Aslam, Z. Butler, V. Crespi, G. Cybenko, and D. Rus, “Tracking a
moving object with a binary sensor network,” in ACM International
Conference on Embedded Networked Sensor Systems, 2003.

[34] W. Chen, J. Hou, and L. Sha, “Dynamic clustering for acoustic target
tracking in wireless sensor networks,” in Proc. of the 11th IEEE
International Conference on Network Protocols, November 2003.

[35] M. Coates, “Distributed particle filters for sensor networks,” in Proc. of
the 3nd workshop on Information Processing in Sensor Networks, April
2004.

[36] S. Oh and S. Sastry, “Tracking on a graph,” in Proc. of the Fourth
International Conference on Information Processing in Sensor Networks,
Los Angeles, CA, April 2005.

[37] J. Shin, L. Guibas, and F. Zhao, “A distributed algorithm for managing
multi-target identities in wireless ad-hoc sensor networks,” in Proc. of
the 2nd workshop on Information Processing in Sensor Networks, April
2003.

[38] M. Chu, S. Mitter, and F. Zhao, “Distributed multiple target tracking
and data association in ad hoc sensor networks,” in Proc. of the 6th
International Conference on Information Fusion, July 2004.

[39] J. Liu, J. Liu, M. Chu, J. Reich, and F. Zhao, “Distributed state
representation for tracking problems in sensor networks,” in Proc. of
the 3nd workshop on Information Processing in Sensor Networks, April
2004.

[40] R. Sittler, “An optimal data association problem on surveillance theory,”
IEEE Trans. on Military Electronics, vol. MIL-8, pp. 125–139, April
1964.

Oh, Schenato, Chen, and Sastry 18

[41] J. Collins and J. Uhlmann, “Efficient gating in data association with
multivariate distributed states,” IEEE Trans. Aerospace and Electronic
Systems, vol. 28, no. 3, pp. 909–916, July 1992.

[42] A. Poore, “Multidimensional assignment and multitarget tracking,”
Partitioning Data Sets. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 19, pp. 169–196, 1995.

[43] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The platforms en-
abling wireless sensor networks,” Communications of the ACM, vol. 47,
no. 6, pp. 41–46, 2004.

[44] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. White-
house, and D. Culler, “Trio: Enabling sustainable and scalable outdoor
wireless sensor network deployments,” in Proc. of the International
Conference on Information Processing in Sensor Networks (submitted),
2006.

[45] R. Burkard and R. Çela, “Linear assignment problem and extensions,”
Karl-Franzens University of Graz, Graz, Austria, Tech. Rep. 127, 1998.

[46] A. Nilim and L. E. Ghaoui, “Algorithms for air traffic flow management
under stochastic environments,” in Proc. of American Control Confer-
ence, 2004.

[47] D. Shim, H. Kim, and S. Sastry, “Decentralized reflective model
predictive control of multiple flying robots in dynamic environment,”
in Proc. of IEEE Conf. on Decision and Control, Las Vegas, 2003.

[48] H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov, “Tracking many ob-
jects with many sensors,” in Proc. of the International Joint Conference
on Artificial Intelligence, Stockholm, 1999.

[49] T. Kurien, “Issues in the design of practical multitarget tracking al-
gorithms,” in Multitarget-Multisensor Tracking: Advanced Applications,
Y. Bar-Shalom, Ed. Artech House, Norwood, MA, 1990.

[50] S. Oh, “Multiple target tracking for surveillance,” Univ. of California,
Berkeley, Tech. Rep. UCB/ERL MO3/54, 2003.

[51] M. Lepetic, G. Klancar, I. Skrjanc, D. Matko, and B. Potocnic, “Time
optimal path planning considering acceleration limits,” Robotics and
Autonomous Systems, vol. 45, pp. 199–210, 2003.

[52] A. Saccon, “Minimum time maneuver for nonholonomic car with
acceleration constraints: Preliminary results,” in 13th Mediterranean
Conference on Control and Automation (MED), Limassol, Cyprus, 2005.

[53] E. Velenis and P. Tsiotras, “Optimal velocity profile generation for given
acceleration limits: Receding horizon implementation,” in American
Control Conference (ACC05), Portland, OR, USA, June 2005, pp. 2147–
2152.

[54] C. Belta, V. Isler, and G. Pappas, “Discrete abstractions for robot motion
planning and control in polygonal environments,” IEEE Transactions on
Robotics, vol. 21, no. 5, pp. 864–874, October 2005.

[55] P. Tabuada and G. Pappas, “Hierarchical trajectory refinement for a class
of nonlinear systems,” Automatica, vol. 41, no. 4, pp. 701–708, April
2005.

[56] T. Kailath, A. Sayed, and B. Hassibi, State Space Estimation. Prentice-
Hall, 1999.

[57] D. Lerro and Y. Bar-Shalom, “Interacting multiple model tracking
with target amplitude feature,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 29, pp. 494–509, 1993.

[58] I. Beichl and F. Sullivan, “The Metropolis algorithm,” Computing in
Science and Engineering, vol. 2, no. 1, pp. 65–69, 2000.

[59] M. Jerrum and A. Sinclair, “The Markov chain Monte Carlo method: An
approach to approximate counting and integration,” in Approximations
for NP-hard Problems, D. Hochbaum, Ed. PWS Publishing, Boston,
MA, 1996.

[60] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte
Carlo in Practice, ser. Interdisciplinary Statistics Series. Chapman and
Hall, 1996.

[61] G. Roberts, “Markov chain concepts related to sampling algorithms,” in
Markov Chain Monte Carlo in Practice, ser. Interdisciplinary Statistics
Series, W. Gilks, S. Richardson, and D. Spiegelhalter, Eds. Chapman
and Hall, 1996.

[62] Z. Gao, “On discrete time optimal control: A closed-form solution,” in
Proceeding of the 2004 American Control Conference (ACC), Boston,
Massachusetts, U.S.A., June 2004, pp. 52–58.

[63] R. Zanasi and R. Morselli, “Discrete minimum time tracking problem
for a chain of three integrators with bounded input,” Automatica, vol. 39,
pp. 1643–1649, 2003.

[64] E. Lee and L. Markus, Foundations of optimal control theory. New
York: Wiley, 1967.

[65] E. Ryan, Optimal relay and saturation control synthesys. London: Peter
Peregrinus Ltd., 1982.

[66] T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, 2nd ed.
London and San Diego: Academic Press, 1995.

[67] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random, and
ephemeral events,” in Proc. of the Fourth International Conference on
Information Processing in Sensor Networks, April 2005.

[68] X. Jiang, J. Polastr, and D. Culler, “Perpetual environmentally powered
sensor networks,” in Proc. of the Fourth International Conference on
Information Processing in Sensor Networks, April 2005.

[69] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. of the Fourth International Confer-
ence on Information Processing in Sensor Networks, April 2005.

[70] J. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proc. of the 2nd Inter-
national Conference on Embedded Networked Sensor Systems, 2004.

[71] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong,
J. Hui, P. Dutta, and D. Culler, “Marionette: Providing an interactive
environment for wireless debugging and development,” in Proc. of the
International Conference on Information Processing in Sensor Networks
(submitted), 2006.

[72] G. Tolle, “A network management system for wireless sensor networks,”
Master’s thesis, Univ. of California, Berkeley, 2005.

[73] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: a holistic approach to networked embedded sys-
tems,” in Proc. of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, June 2003, pp. 1–11.

[74] “TinyOS,” http://www.tinyos.net/.
[75] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, T. He, A. Tirumala, Q. Cao,

J. Stankovic, T. Abdelzaher, and B. Krogh, “Lightweight detection and
classification for wireless sensor networks in realistic environments,” in
SenSys, November 2005.

	Introduction
	Related Work: Target Tracking in Sensor Networks
	Problem Formulation and Control System Architecture
	Sensor Network and Sensor Models
	Multi-Target Tracking
	Agent Dynamics and Coordination Objective

	Control System Implementation
	Multi-Sensor Fusion Module
	Signal-Strength Sensor Model
	Binary Sensor

	Multi-Target Tracking and Multi-Track Fusion Modules
	Multi-Target Tracking Module
	Multi-Track Fusion Module
	An Example of Surveillance using Sensor Networks

	Multi-Agent Coordination Module

	Experiments
	Platform
	Live Demonstration

	Conclusions and Future Work
	References

