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Abstract— In this paper we study optimal information fusion
for sampled linear systems where the sensors are distributed
and measurements are collected to central unit via a wireless
network. Every sensor measurement is subject to random
delay or might even be completely lost. We show that optimal
sensor fusion consist in a time-varying Kalman filter with
bufferized measurements. We also propose a suboptimal but
computationally efficient fusion architecture based on a bank
of static gains that can be optimally designed if packet delay
statics are known. Finally, algorithms to check for the existence
of stable estimators and to evaluate their error covariance are
given and some special cases are analyzed.

Index Terms— Sensor fusion, packet drop, random delay,
remote estimation, stability, Kalman filtering

I. INTRODUCTION

Continuing improvements in IC and wireless technologies
are promoting the appearance of inexpensive devices pro-
vided with sensing, communication and data processing ca-
pabilities, thus revolutionizing our ability to build massively
distributed networked systems [1]. These systems, commonly
referred as wireless sensor networks (WSNs), can offer ac-
cess to an unprecedented quality and quantity of information
which can revolutionize our ability to monitor and control
the environment [2] [3]. However, they also pose challenging
problems such as sensor power scheduling, packet routing,
packet loss compensation, data compression and coding,
just to name a few, arising from the fact that sensors,
actuators and controllers are not physically co-located, are
often battery-powered and need to exchange information via
a wireless communication network. These are just few prob-
lems that appear in data-collection applications, whose goal
is to accurately reconstruct the sensor measurements. Real-
time monitoring and control applications add another level of
difficulty since not only packet loss but also delay of gathered
data can undermine the effectiveness of the decision-making
part. Therefore, it is important to evaluate the impact of
random packet delay and packet loss in the overall sys-
tem performance. Obviously, packet loss and delay can be
reduced by network coding, distributed signal processing,
in-network data compression, and packet routing protocols,
but not completely avoided due to inherent unreliable nature
of wireless communication. Indeed, different communication
protocol architectures can reduce packet loss at the price of
larger packet delay and viceversa. For example, fixed time-
division communication scheduling can reduce packet loss
and power consumption at the price of longer delivery [4],
while randomized geographical routing can reduce packet
delay at the price of larger packet loss [5].
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Fig. 1. Pictorial representation of Wireless Sensor Network for environment
monitoring. The small dots indicate the location of the sensing nodes, the
shaded circles indicate the sensing regions and the segments the commu-
nication links. Sensor network topology comprising M sensors showing
routing path from nodes i and node j to sensor fusion location.

Currently, communications protocols and networked con-
trol systems are designed separately. In particular, protocols
are design based on conservative heuristics which specify
what the maximum time delay and maximum packet loss
should be, but with no clear understanding of their impact
on the overall application performance. On the application
side, control systems are not specifically designed to exploit
information about packet loss and delay statistics of the
communication protocols over which they will run.

Motivated by these considerations, the goal of this paper
is to study optimal sensor fusion where measurements are
relayed via a wireless communication network to a single
location center and then fused to obtain the estimate of the
system state. Each sensor measurement is subject to its own
packet delay and packet loss probability, thus allowing to
associate different packet arrival distributions depending on
the distance of each sensor from the centralized fusion node.

II. PREVIOUS WORK AND CONTRIBUTION

Recently several groups have looked at networked control
systems with large random delay or packet loss. The survey
paper [6] nicely reviews several results in this area. These
results can be divided into two main groups: the first group
focuses on variable delay but no packet drop, while the
second group focuses on packet loss but no delay.

Within the first group, Nilsson at al. [7] extended LQG
optimal control design to sampled linear systems subject
to stochastic measurement and control packet delay, and
showed how the optimal controller gains are time-delay
dependent. However, their work was limited to co-located
sensors and actuators. Differently, other authors studied data



fusion of measurements obtained from senors with different
delays. For example, Alexander [8] and Larsen et al. [9]
derived suboptimal but computationally efficient Kalman-
like filters to account for random delay and they tested their
performance through Monte-Carlo simulations. Julier at al.
[10] studied the estimation problem when measurement time-
stamping is uncertain. All the previous works rely on the
major assumption that there is no packet loss or there are at
most m consecutive packet drops.

In the second group of results, there has been a consider-
ably effort to apply optimal control and estimation to discrete
time systems where measurements and control packets can
be dropped with some probability, but have otherwise no
delay. This framework is equivalent of saying that all packets
have either no delay or infinite delay. For example, in
[11][12][13] the authors proposed compensation techniques
for i.i.d Bernoulli packet-drop communication networks and
derived stability conditions for closed loop discrete time
system. Sinopoli at al. [14] [15], and Imer et al. [16],
extending results that can be traced back to Nahi [17], looked
specifically at minimum variance estimation and optimal
control. However, all these works where related to single
sensor and single actuator, and only Liu et al. [18]. Very little
work has been done to take into account simultaneous packet
drop and packet delay, leading to somewhat conservative
results as they are based on worst-case scenarios [19] [20].

In this paper we propose a probabilistic framework to an-
alyze sensor fusion where observation packets from multiple
sensors are subject to arbitrary random delay and packet loss.
In this framework sensor measurements need to be time-
stamped at the sensor side, but packets can arrive in burst or
even out of order at the receiver side. This paper extends a
previous work of the author [21] where only a single sensor
was considered. This estimator structure is independent of
the packet arrival statistics and can be implemented using
a Kalman filter with finite memory buffer if the delivered
packets have a finite maximum delay. In particular, the
memory length is equal to the maximum packet delay of
the arrived packets. We also present an alternative sensor
fusion architecture which is computationally more efficient
since it does not require any matrix inversion, but simply
associate a constant gain to every slot of the measurement
buffer at the estimator location. Necessary and sufficient
conditions for stability for these estimators are shown to
depend only on the packet loss probability of each sensor.
We also provide quantitative measures for the expected error
covariance of such estimators which turns out to be the so-
lution of modified algebraic Riccati equations and Lyapunov
equations. These metrics can be used to compare different
communication protocols for real-time control applications
as long as the packet arrival statistics are known, i.i.d and
stationary. Very importantly, these results do not depend on
the specific implementation of the digital communication
network (fieldbuses, Bluetooth, ZigBee, Wi-Fi, etc .. ) in the
sense that it is not necessary to modify the communication
stack to implement the estimators.

III. PROBLEM FORMULATION

Consider the following discrete time linear stochastic
plant:

xt+1 = Axt + wt (1)
yi

t = Cixt + vi
t, i = 1, . . . , M (2)

where M is the total sensor number, t ∈ N = {0, 1, 2, . . .},
x,w ∈ Rn, A ∈ Rn×n, y ∈ Rmi , Ci ∈ Rmi×n,
(x0, wt, v

1
t , ..., vM

t ) are Gaussian, uncorrelated, white, with
mean (x̄0, 0, 0, ..., 0) and covariance (P0, Q, R1, ..., RM ) re-
spectively. Let also consider the full observation matrix
C ∈ Rm×n where m =

∑
i mi defined as:

C =




C1

...
CM




We also assume that the pair (A,C) is observable, (A,Q1/2)
is reachable, and Ri > 0, ∀i1. Measurements are time-
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Fig. 2. Optimal Kalman estimator memory requirements for general arrival
processes (A). Optimal Kalman estimator with finite memory buffer (B).

stamped, encapsulated into packets, and then transmitted
through a digital communication network (DCN), whose
goal is to deliver packets from a source to a destination.
Time-stamping of measurements is necessary to reorder
packets at the receiver side as they can arrive out of order.
Modern DCNs are in general very complex and can greatly
differ in their architecture and implementation depending
on the medium used (wired, wireless, hybrid), and on the
applications they are meant to serve (real-time monitoring,
data extraction, media-related, etc ..). In our work we model a
DCN as a module between the sensors and the fusion center
which delivers observation measurements to the estimator
with possibly random delays. This model allows also for

1These assumptions can be relaxed to (A, C) detectable, (A, Q1/2)
stabilizable, and Ri ≥ 0, however the proofs of the following theorems
would be more convoluted, therefore we decided to adopt the stronger
hypotheses.



packets with infinite delay which corresponds to a packet
loss. We assume that all observation packets correctly deliv-
ered to the estimator site are stored in an infinite buffer, as
shown in top panel of Fig. 2. The arrival process is modeled
via the random variables γi

t,k defined as follows:

γi
t,k =

{
1 if yi

k arrived before or at time t, t ≥ k
0 otherwise

(3)
From this definition it follows that (γt

k = 1) ⇒ (γt+h
k =

1, ∀h ∈ N), which simply states that if packet yk is present
in the receiver buffer at time t, then it will be present for all
future times. We also define the packet delay τ i

k ∈ {N,∞}
for observation yi

k of sensor node i as follows:

τ i
k =

{
∞ if γi

t,k = 0, ∀t ≥ k

tik − k otherwise, tik
∆= min{t | γi

t,k}
(4)

where tik is the arrival time of observation yi
k of i-th sensor

at the sensor fusion site. This measurement model is very
general since it allows for observation measurements to
arrive out of order at the estimator site. Also it is possible
that between two consecutive sampling periods no packet or
multiple packets are delivered. In our work we do not con-
sider quantization distortion due to data encoding/decoding
since we assume that observation noise is much larger then
quantization noise, as it is the case in most DCNs where
each packet allocates hundreds of bits for measurement data2.
Also we do not consider channel noise since we assume
that if any bit error incurred during packet transmission is
detected at the receiver, then the packet is dropped.

If observation yi
k is not yet arrived at the estimator at time

t, we assume that a zero is stored in the i, k-slot of the buffer,
as shown in Fig. 23. More formally, the value stored in the
i, k-slot of the estimator buffer at time t can be written as
follows:

yi
t,k = γi

t,kyi
k = γi

t,kCixk + γi
t,kvi

k (5)

We can also define the total measurement vector ỹt,k =
[ỹ1

t,k, . . . , ỹM
t,k]T ∈ Rm at the sensor fusion location that can

be written as:

yt,k =




γ1
t,kC1

γ2
t,kC2

...
γM

t,kCM


 xk +




γ1
t,kv1

k

γ2
t,kv2

k
...

γM
t,kvM

k


 = Ct,kxk + vt,k

Our goal to compute the optimal mean square estimator x̂t|t
based on all the sensor measurements arrived at the sensor
fusion location up to time t which is given by:

x̂t|t
∆= E[xt | yt, γt, x̄0, P0] (6)

where yt = (yt,1, yt,2, . . . , yt,t), γt = (γt,1, γt,2, . . . , γt,t),
and γt,k = [γ1

t,k, . . . , γM
t,k]T ∈ RM . It is important to

2For example, ATM communication protocols adopts packets with 384-
bit data field, Ethernet IEEE 802.3 packets allows for at least 368 bits for
data payload, Bluetooth for 499 bits [6] and IEEE 802.15.4 for up to 1000
bits. This assumption might not hold for multimedia signal like audio and
video signals, which however are not in the scope of this work.

3In practice, any arbitrary value can be stored in the buffer slots
corresponding to the packets which have not arrived, since as it will be
shown later, the optimal estimator does not use those values as they do not
convey any information about the state xt. Our choice of storing a zero
simply reduces some mathematical burden.

remark that the estimator above has the information weather
a packet has been delivered or not, and it is not equivalent
to computing x̂t|t 6= x̌t|t

∆= E[xt | yt, x̄0, P0]. The latter
estimator would in fact consider the zero entries of the
buffer as true measurements and not as dummy variables,
thus giving rise to a lower performance. It is also useful to
design the estimator error and error covariance as follows:

et|t
∆= xt − x̂t|t (7)

Pt|t
∆= E[ et|teT

t|t | yt, γt, x̄0, P0] (8)

The estimate x̂t|t is optimal in the sense that it minimizes the
error covariance, i.e. given any estimator x̃t|t = f(yt,γt),
where f is a measurable function, we always have

E[(xt − x̃t|t)(xt − x̃t|t)T | ỹt, γt, x̄0, P0] ≥ Pt|t.

Another property of the mean square optimal estimator is
that x̂t|t and its error et|t

∆= xt − x̂t|t are uncorrelated, i.e.
E[et|t x̂T

t|t] = 0. This is a fundamental property since it gives
rise to the separation principle for the LQG optimal control,
which is of the most widely used tool in control system
design [22] [15].

IV. MINIMUM ERROR COVARIANCE ESTIMATOR DESIGN

In this section we want to compute the optimal estimator
given by Equation (6). First, it is convenient to define the
following variables:

x̂t
k|h

∆
= E[xk | γt,h, . . . , γt,1, yt,h, . . . , yt,1, x̄0, P0]

P t
k|h

∆
= E[(xk−x̂t

k|h)(xt−x̂t
k|h)T|γt,h, .., γt,1, yt,h, .., yt,1, x̄0, P0]

from which it follows that, with a little abuse of notation,
x̂t|t = x̂t

t|t and Pt|t = P t
t|t.

It is also useful to note that at time t the information
available at the estimator site, given by Equation (5), can be
written as the output of the following system:

xk+1 = Axk + wk (9)
yt,k = Ct,kxk + ṽt,k, k = 0, . . . , t (10)

where the random vector ṽt,k is zero mean white noise with
covariance Rt,k = E[ṽt

k(ṽt
k)T ] ∈ Rm×m given as

Rt,k =




γ1
t,kR1 0 . . .

0
. . .

... γM
t,kRM


 = diag(γ1

t,kR1, ..., γ
M
t,kRM )

For any fixed t this system can be seen as a linear time-
varying system with respect to time k, where the only
time-varying elements are the observation matrix Ct,k and
measurement noise covariance Rt,k.

We can now state the main theorem of this section:
Theorem 1: Let us consider the stochastic linear system

given in Equations (1)-(2), where Ri > 0. Also consider the
arrival process defined by Equation (3), and the mean square
estimator defined in Equation (6). Let ỹt,k ∈ Rmt,k ,mt,k =∑

i γi
t,kmi the vector including only the measurements yi

k
which are present at the sensor fusion location at time t, i.e.
the vector obtained from yt,k by removing the dummy zero-
measurements. Similarly consider C̃t,k and R̃t,k the matrices
from which all the zeros rows corresponding to the dummy
zero measurements have been removed. Then we have:



(a) The optimal mean square estimator is given by x̂t|t =
x̂t

t|t where:

x̂t
0|0 = x̄0, P t

1|0 = P0 (11)

x̂t
k|k = Ax̂t

k−1|k−1+K̃t,k(ỹt,k−C̃t,kAx̂t
k−1|k−1) (12)

K̃t,k = P t
k|k−1C̃

T
t,k(C̃t,kP t

k|k−1C̃
T
t,k + R̃t,k)−1 (13)

P t
k+1|k = AP t

k|k−1A
T + Q−

−AP t
k|k−1C̃

T
t,k(C̃t,kP

t
k|k−1C̃

T
t,k+R)−1C̃t,kP

t
k|k−1A

T(14)

for k = 1, . . . , t.
(b) The optimal estimator x̂t|t can be computed iter-

atively using a buffer of finite length N if γi
t,k =

γi
t−1,k, ∀k ≥ 1,∀t ≥ k + N, ∀i. If this property

is satisfied, then x̂t|t = x̂t
t|t where x̂t

t|t is given by
Equations (11)-(14) for t = 1, . . . , N and as follows
for t > N :

x̂t
t−N |t−N = x̂t−1

t−N |t−N , (15)

P t
t−N+1|t−N = P t−1

t−N+1|t−N (16)

Eqns. (12),(13),(14) k = t−N+1, . . . , t (17)
Proof: (a) Since the information available at the es-

timator site at time t is given by the time-varying linear
stochastic system of Equations (9)-(10) , then the optimal
estimator is given by its corresponding time-varying Kalman
filter [22] [23]:

x̂t
k|k = Ax̂t

k−1|k−1 + Kt,k(yt,k − Ct,kAx̂t
k−1|k−1)

Kt,k = P t
k|k−1C

T
t,k(Ct,kP t

k|k−1C
T
t,k + Rt,k)†

P t
k+1|k = AP t

k|k−1A
T + Q−

− AP t
k|k−1C

T
t,k(Ct,kP t

k|k−1C
T
t,k+Rt,k)†Ct,kP t

k|k−1A
T

x̂t
0|0 = x̄0, P t

1|0 = P0

where the symbol † denotes the pseudoinverse. Note that
using the properties of the pseudoinverse it is easy to verify
that

CT
t,k(Ct,kP

t
k|k−1C

T
t,k+Rt,k)†Ct,k = C̃T

t,k(C̃t,kP
t
k|k−1C̃

T
t,k+R̃t,k)−1C̃t,k

which is equivalent to consider only the non-dummy obser-
vation vector ỹt,m.

(b)Let us consider t > N . If γt,k = γt−1,k, ∀k ≥ 1,∀t ≥
k + N , then also P t

k+1|k = P t−1
k+1|k and x̂t

k|k = x̂t−1
k|k

hold under the same conditions on the indices. In particular
it holds for k = t − N which implies P t

t−N+1|t−N =
P t−1

t−N+1|t−N and x̂t
t−N |t−N = x̂t−1

t−N |t−N . Therefore, it not
necessary to compute P t

t+1|t and x̂t
t|t at any time step t

starting from k = 1, but it is sufficient to use the values
x̂t−1

t−N |t−N and P t−1
t−N+1|t−N precomputed at the previous

time step t−1, as in Equations (15) and (16), and then iterate
Equations Equations (12)-(14) for the latest N observations.

If there is no packet loss and no packet delay, i.e. γt
k =

1, ∀(k, t), then Equations (11)-(14) reduce to the standard
Kalman filter equations for a time-invariant system. If we
consider only colocated sensors, i.e. M=1, then we recover
the same results from [21].

The previous theorem states that in general it is necessary
to invert up to t matrices at every time step t of dimen-
sion Rmt,k×mt,k . However, the optimal estimator can be
implemented incrementally according to Equations (15)-(17)

using a buffer of finite length N if all successfully received
observations have a delay smaller than N time steps, i.e.
γt

k = γt−1
k , ∀k ≥ 1, ∀t− k ≥ N (see Fig. 2). This does not

mean that all packets arrive at the receiver within N time
steps, but only that if a packet arrives then it does within N
time steps.

It is important to remark that the Kalman gain Kt,k and the
estimator error covariance Pt|t are time-varying since they
depend on the packet arrival history γt. Differently from the
standard Kalman filter which converges to a steady state, in
the context of random packet delay and packet loss this filter
is strongly time-varying, thus making it less computationally
efficient due to all matrix inversions.

Up to this point we made no assumptions on the packet
arrival process which can be deterministic, stochastic or
time-varying. However, from an engineering perspective it
is important to determine the performance of the estimator,
which is evaluated based on the error covariance Pt+1|t.
If the packet arrival process is stochastic, then also the
error covariance is stochastic. In this scenario a common
performance metric is the expected error covariance, i.e.
Eγ [Pt+1|t], where the expectation is performed with respect
to the arrival process γt

k. It is not clear whether is it
possible to compute Eγ [Pt+1|t] analytically even for a simple
Bernoulli arrival process, and so far only upper and lower
bounds have been be obtained [14]. Rather than trying to
bound the performance of the time-varying optimal estimator,
we will focus on a sensor fusion filter with a bank of constant
gains associated to each slot in the M ×N buffer of Figure
2(b), i.e. Ki

h for all i = 1, ..., M and h = 0, . . . , N−1. The
gains Ki

h will then be optimized to achieve the smallest error
covariance at steady-state. The advantage of using constant
gains is that it is not necessary to invert any matrix at all
differently from the optimal time-varying filter, thus making
it attractive for on-line applications. Moreover, since filters
with constant gains are necessarily suboptimal, the computa-
tion of their error covariance is useful per se as it provides an
upper bound for the error covariance of the optimal minimum
error covariance filter given by Equations (11)-(14).

V. OPTIMAL FILTERING WITH CONSTANT GAINS

In this section we will study minimum error covariance
sensor fusion filters with constant gains under stationary i.i.d
arrival processes.
Assumption: The packet arrival process at the estimator site is
stationary and i.i.d. with the following probability function:

P[τt ≤ h] = λh (18)

where t ≥ 0, and 0 ≤ λh ≤ 1 is a non-decreasing in h =
0, 1, 2, . . ., and τt was defined in Equation (4).

Equation (18) corresponds to the probability that a packet
sampled h time steps ago has arrived at the estimator.
Obviously, λh must be non-increasing since λh = P[τt ≤
h− 1] + P[τt = h] = λh−1 + P[τt = h].

Also, we define the packet loss probability as follows:

λloss
∆= 1− sup{λh|h ≥ 0} (19)

The arrival process defined by Equation (18) can be also
be defined with respect to the probability density of packet
delay. In fact, by definition we have P[τk = 0] = λ0, P[τk =
h] = λh − λh−1 for h ≥ 1, and P [τk = ∞] = λloss.



Finally, we define the maximum delay of arrived packets
as follows:

τmax
∆=
{
min{H|λH =λH+1} if ∃H s.t. λh = λH ,∀h ≥ H
∞ otherwise

(20)
We also assume that different sensors can have different

packet delay distribution, i.e. λh = λi
h for i = 1, ...,M . This

is very natural assumption for wireless sensor networks. In
fact, as indicated in Figure 1 sensor node i which is located
far away from the sensor fusion node is subject to longer
packet delay and packet loss than sensor node j. In fact the
node i needs to multi-hop its packet through the network,
while node j is only one-hop apart from the receiver.

In the rest of the paper we will use the following definition
of stability for an estimator.
Definition: Let x̃t|t = f(ỹt, γt) be an estimator, and ẽt|t =
xt − x̃t|t and P̃t|t = E[ẽt|tẽT

t|t|ỹt,γt] its error and error
covariance, respectively. We say that the estimator is mean-
square stable stable if and only if limt→∞ E[ẽt|t] = 0 and
E[P̃t|t] ≤ M for some M > 0 and for all t ≥ 1.

The previous definition can be rephrased in terms of the
moments of the estimator error. In fact the conditions above
are equivalent to limt→∞ E[||ẽt|t||] = 0 and E[ ||ẽt|t||2] ≤
trace(M).

Let us consider the following static-gain estimator x̃t|t =
x̃t

t|t with finite-buffer of dimension N , where x̃t
t|t is com-

puted as follows:

x̃t
t−k|t−k = Ax̃t

t−k−1|t−k−1 +

+
M∑

i=1

γi
t,t−kKi

k(yi
t,t−k − CiAx̃t

t−k−1|t−k−1)(21)

x̃t
t−N |t−N = x̃t−1

t−N |t−N (22)

x̃t
−k|−k = x̄0, γt

−k = 0, ỹt
−k = 0 (23)

for k = N − 1, . . . , 0, where the last line include some
dummy variables necessary to initialize the estimator for t =
1, . . . , N . where the last line includes some dummy variables
necessary to initialize the estimator for t = 1, . . . , N . Note
that constant-gain estimator structure is very similar to the
optimal estimator structure given by Equation (12) as the
estimate is corrected using only measurements yi

t−k that have
arrived at the sensor fusion location, i.e. using only yi

t,t−k for
which γi

t,t−k = 1. However, differently from Equation (12)
where the gain Kt,k is time-varying and requires several
matrix inversions for its computation, the gains Ki

k are
constant and independent of t, and the computation of the
estimate x̃t|t is obtained through a simple sequence of sum-
product operations.

We also define the following variables that will be useful
to analyze the performance of the estimator:

x̃t
k+1|k = Ax̃t

k|k (24)

ẽt
k+1|k = xk+1 − x̃t

k+1|k (25)

P̃ t
k+1|k = E[ẽt

k+1|kẽtT

k+1|k | ỹt,γt] (26)

P
t

k+1|k = E[ẽt
k+1|kẽtT

k+1|k] = E[P̃ t
k+1|k] (27)

where t ≥ k ≥ 1. From these definitions we get:

ẽt
k+1|k = A(I −

M∑
i=1

γi
t,kKi

t−kCi)ẽ
t
k|k−1 +

+wk −
M∑

i=1

γi
t,kAKi

t−kvi
k (28)

P̃ t
k+1|k =A(I−

M∑
i=1

γi
t,kK

i
t−kCi)P̃

t
k|k−1(I−

M∑
j=1

γj
t,kK

j
t−kCi)

TAT+

+Q +

M∑
i=1

γi
t,kAKi

t−kRiK
iT
t−kAT (29)

P
t
k+1|k =A(I−

M∑
i=1

λi
t−kK

i
t−kCi)P

t
k|k−1(I−

M∑
j=1

λj
t−kK

j
t−kCi)

TAT+

+

M∑
i=1

λi
t−k(1− λi

t−k)AKi
t−kCiP

t
k|k−1K

i
t−kC

T
i AT +

+Q +

M∑
i=1

λi
t−kAKi

t−kRiK
iT

t−kAT (30)

where I ∈ Rn×n is the identity matrix. To obtain the
previous equations we employed independence of γt

k, vk,
wk, and ẽt

k|k−1, the fact that vk and wk are zero mean, and
finally that E[γi

t,k] = E[(γi
t,k)2] = λi

t−k.
Note that the right had side of Equation (30) is linear in

P
t

k|k−1 for fixed Ki
t−ki , and that is quadratic in Ki

t−ki for
fixed P

t

k|k−1. Therefore we can write Equation (30) more
compactly by defining the following operator:

Lλ(K, P ) = A(I−KCλ)P (I−KCλ)T AT + Q +
+ AKPλKT AT +AKRλKT AT (31)

where

Cλ =




λ1C1

...
λMCM


 , K = [K1 . . . KM ]

Pλ = diag(λ1(1− λ1)C1PCT
1 , . . . , λM (1− λM )CMPCT

M ),
Rλ = diag(λ1R1, . . . , λMRM )

If we substitute k = t − N into Equation (30), and
noting that from Equation (22) follows that P̃ t

t−N+1|t−N =

P̃ t−1
t−N+1|t−N and P

t

t−N+1|t−N = P
t−1

t−N+1|t−N , we obtain:

P
t
t−N+2|t−N+1 = LλN−1(KN−1, P

t−1
t−N+1|t−N ) (32)

P
t
t−k+1|t−k =Lλk (Kk, P

t
t−k|t−k−1), k = N−2, . . . , 0 (33)

where λk = (λ1, . . . , λM ). Observe that Equation (32) and
(33) define a set of linear deterministic equations for fixed
λk and Kk. In particular, if we define St = P t−1

t−N+1|t−N ,
then Equations (32) can be written as

St+1 = LλN−1(KN−1, St) (34)

Since all matrices P
t

t−k+1|t−k, k = 0, . . . , N − 1 can be
obtained from St it follows that stability of estimator can be
inferred from the properties of the operator Lλ(K, P ). The
following lemma provides these properties:

Lemma 1: Consider the operator Lλ(K,P ) as defined in
Equation (31). Assume also that P ≥ 0, (A,C) is observable,
(A,Q1/2) is reachable, R > 0, and 0 ≤ λ ≤ 1, where the



inequalities are to be interpreted for each component of the
vector λ = (λ1, . . . , λM ) ∈ RM . Also consider the following
operator:

Φλ(P ) = APAT +Q−APCT
λ (CλPCT

λ +Pλ+Rλ)−1CλPAT

(35)
and the gain KP = PCT

λ (CλPCT
λ + Pλ + Rλ)−1.

Then the following statements are true:
(a) Lλ(K, P ) = Φλ(P ) + A(K −KP )(CλPCT

λ + Pλ +
Rλ)(K −KP )T AT .

(b) Lλ(K,P ) ≥ Φλ(P ) = Lλ(KP , P ), ∀K
(c) (P1 ≥ P2) =⇒ (

Φλ(P1) ≥ Φλ(P2)
)
.

(d) (λ1 ≥ λ2) =⇒ (
Φλ1(P ) ≤ Φλ2(P )

)
, ∀P .

(e) If there exists P ∗ such that P ∗ = Lλ(K,P ∗), then
P ∗ > 0 and it is unique. Consequently this is true also
for K = KP∗ , where P ∗ = Φλ(P ∗).

(f) If (λ1 ≥ λ2) and there exist P ∗1 , P ∗2 such that P ∗1 =
Φλ1(P

∗
1 ) and P ∗2 = Φλ2(P

∗
2 ), then P ∗1 ≤ P ∗2 .

(g) Let St+1 = Lλ(K, St) and S0 ≥ 0. If S∗ =
Lλ(K, S∗) has a solution, then limt→∞ St = S∗,
otherwise the sequence St is unbounded.

(h) If there exists S∗,K such that S∗ = Lλ(K, S∗), then
also P ∗ = Φλ(P ∗) exists and P ∗ ≤ S∗.
Proof: The proofs for all the claims of this lemma can

ba obtained along the lines of the proofs in [21], therefore
in the interest of space they are omitted.

The previous theorem provides all tools necessary to
analyze and design the optimal estimator with constant gains.
In particular, fact (g) indicates that the constant gain K∗
that minimizes the steady state error covariance P ∗ can be
derived from the unique fixed point of the nonlinear operator
P ∗ = Φλ(P ∗), where K∗ = KP∗ . If the optimal gain K∗
is used, then the expected error covariance converges to P ∗
regardless of the initial conditions (P0, x̄0), as follows from
fact (f). Fact (i) shows that if the system A is unstable the
arrival probability λ needs to be sufficiently large to ensure
stability, and that the critical value λc is a function of the
unstable eigenvalues of A. Finally, although λc and the the
fixed point P ∗ = Φλ(P ∗) cannot be computed analytically,
from fact (j) follows that they can be computed efficiently
using numerical optimization tools. Finally, fact (k) will be
used to show that if the error covariance is bounded then the
estimator is also unbiased.

Lemma 2: Let us consider the nonlinear operator
Ψλ(P ) = APAT −APCT

λ (CλPCT
λ +Pλ)−1CλPAT . Then

the operator Φλ has a unique fixed point solution Φλ(P ) = P
if and only if

lim
k→∞

trace(Ψk
λ(I))

1
k < 1 (36)

Proof: The proof follows along the lines of Theorem 5
in [24], therefore in the interest of space is omitted.
Note that Ψλ(P ) = Φλ(P )|Q=0,Rλ=0, i.e. it is the error
covariance update in the absence of process and measure-
ment noise, therefore stability is independent of the error
noise covariances. The previous lemma provides a numer-
ical algorithm to verify whether the operator Φλ has a
fixed point. In fact, it is sufficient to define the sequence
Vk+1 = Ψ(Vk), V0 = I and check if it converges to zero
exponentially. Obviously, the stability is a complex function
of the probability vector λ and the observation matrices Ci,
and it is difficult to derive analytical expression even for
M = 1 [15].

The previous results are sufficient to derive the optimal
sensor fusion estimator with constant gains.

Theorem 2: Let us consider the stochastic linear system
given in Equations (1)-(2), where (A,C) is observable,
(A,Q1/2) is reachable, and Ri > 0,∀i = 1, .., M . Also
consider the arrival process defined by Equations (18)-(20),
and the set of estimators with constant gains {Kk}N

k=0 where
Kk = [K1

k ...KM
k ] ∈ Rn×m are defined in Equations (21)-

(23). If condition given by Eqn. (36) is not satisfied for
λ = λN = (λ1

N , ..., λM
N ), then there exist no stable estimator

with constant gains. Otherwise, let consider the optimal gains
{K∗

k}N
k=0 defined as follows:

K∗
k = V N

k CT
λk

(CλkV N
k CT

λk
+ (V N

k )λk + Rλk )−1 (37)

V N
N−1 = ΦλN−1(V

N
N−1) (38)

V N
k = Φλk (V N

k+1), k = N − 1, . . . , 0 (39)

Also consider P
t

k+1|k as defined in Equation (27), then
limt→∞ P

t

t−k+1|t−k = V N
k , independently of initial con-

ditions (P0, x̄0). For any other choice of gains {Kk}N
k=0 for

which the solution {Tk}N
k=0 to the following equations exist:

TN
N = LλN (KN , TN

N ) (40)
TN

k = Lλk
(Kk, TN

k+1), k = N − 1, . . . , 0 (41)

then limt→∞ P
t

t−k+1|t−k = TN
k , and V N

k ≤ TN
k for

k = 0, . . . , N . Also V N+1
0 ≤ V N

0 . Finally, if τmax =
supM

i=1(τ
i
max) < ∞, then V N

0 = V τmax
0 for all N ≥ τmax.

Proof: First we prove by contradiction that there is no
stable estimator with constant gains if condition Eqn. (36) is
not satisfied. Suppose such an estimator exists, i.e. there exist
N and {Kk}N−1

k=0 such that P
t

t|t is bounded for all t. Since
P

t

t+1|t = AP
t

t|tA
T + Q also P

t

t+1|t must be bounded for
all t. From Equations (32) and (33) it follows that P

t

t+1|t is
bounded if and only if P

t

t−k+1|t−k for k = 0, . . . , N −1 are
bounded for all t. Therefore, since the bounded sequence
St = P

t

t−N+1|t−N needs to satisfy Equation (34), from
Lemma 1(g) follows that S∗ = LλN−1(KN−1, S

∗) has
a solution. From Lemma 1(h) follows that also P ∗ =
ΦλN−1(P

∗) has a solution. However, according to Lemma 2,
P ∗ = ΦλN−1(P

∗) cannot have a solution, which contradicts
the hypothesis that a stable estimator exists.

Consider now the case when N is such that λN satisfies
condition Eqn. (36) . From Theorem 1(h) it follows that
Equations (37)-(39) are well defined and have a solution.
From Lemma 1(g) it follows that limt→∞ P

t

t−k+1|t−k = V N
k

for the optimal gains {KN
k }N−1

k=0 , and limt→∞ P
t

t−k+1|t−k =
TN

k when using generic gains {Kk}N−1
k=0 . From Lemma 1(h)

it follows that V N
N−1 ≤ TN

N−1. From Lemma 1(c) we
have V N

N−2 = ΦλN−2(V
N
N−1) ≤ LλN−2(KN−2, V

N
N−1) ≤

LλN−2(KN−2, T
N
N−1) = TN

N−2. Inductively, it is easy to
show that V N

k ≤ TN
k for all k = 0, . . . , N − 1.

Now we want to show that V N+1
0 ≤ V N

0 . From
Lemma 1(f) and the property λN+1 ≥ λN follow also that
V N+1

N+1 = ΦλN+1(V
N+1
N+1 ) ≤ V N

N = ΦλN (V N
N ). Therefore

V N+1
N = ΦλN (V N+1

N+1 ) ≤ ΦλN (V N
N ) = V N

N and inductively
V N+1

k ≤ V N
k for all k = N, . . . , 0 which proves the

statement.
Finally, if τmax is finite, then λk = λτmax for all k ≥

τmax. Assume N > τmax, then V N
N = ΦλN

(V N
N ) =



ΦλN−1(V
N
N ) = V N

N−1 = ΦλN−1(V
N
N−1) = ΦλN−2(V

N
N−1) =

V N
N−2 = . . . = V N

τmax
= Φλτmax

(V N
τmax

). Since V τmax
τmax

=
Φλτmax

(V τmax
τmax

), then by Lemma 1(e) we have that V τmax
τmax

=
V N

τmax
. According to Equation (39) we also have V τmax

k =
V N

k for k = τmax, . . . , 0, which concludes the theorem.
The previous theorems shows that the optimal gains can

be obtained by finding the fixed point of a modified algebraic
Ricatti Equation (38) and then iterating N time an operator
with the same structure but with different probability vector
λk. The theorem also demonstrates that a stable sensor fusion
estimator with constant gains exists if and only if the optimal
estimator with constant gains exists, therefore the optimal
estimator design implicitly solves the problem of existence
of stable estimators.

Note also that the estimator stability does not depend on
the complete packet arrival statistics, but only in the overall
packet loss of each sensor. In fact, let λc = (1−λ1

loss, ..., 1−
λM

loss) the vector of successful packet transmission probabil-
ity for all sensor node, then a stable sensor fusion estimator
exists if and only if there exist ε > 0 such that condition
given by Eqn. (36) is satisfied for λ = λc + ε.

Moreover, the performance of the estimator, i.e.
its steady state error covariance limt→∞ Pt+1|t =
limt→∞ E[et+1|teT

t+1|t] = V N
0 , improves as the buffer length

N is increased, which is to be expected since more informa-
tion is stored. However, if the maximum packet delay is finite
τmax < ∞, then the performance of the estimator does not
improve for N > τmax. This is consistent with Theorem 1(b)
since if a measurement packet has not arrived within τmax

time steps after it was sampled, then it will never arrive and
it is useless to wait longer.

From a practical perspective, the previous tools can be
used by the designer to evaluate the tradeoff between the
estimator performance V N

0 and buffer length N which is
directly related to computational requirements.

VI. SPECIAL CASES

In this section we consider some special cases that gives
rise to simpler equation.

A. Colocated sensors (M=1)
If all sensors are colocated, then all measurements are

instantaneously collected at the transmitter node and are then
sent over the network. This correspond to the scenario for
which M = 1, and C = C1. In this context the optimal gain
and the nonlinear operator in Lemma 2 are given by

Φλ(P ) = APAT + Q− λAPCT (CPCT + R)−1CPAT(42)

KP = PCT (CPCT + R)−1

where λ is a scalar. This scenario was previously studied in
[21].

B. Identical sensors (Ci = C, Ri = R)
If all sensors are identical, i.e. they have the same obser-

vation matrix Ci = C and measurement noise covariance
Ri = R, but different packet arrival probabilities, i.e. λi

k 6=
λj

k, then also the sensor gain are different, i.e. Ki
k 6= Kj

k.
At first look this seems unexpected since if there are two
sensor measurements from two identical sensor taken at the
same step time k corresponding to the same column k in the
sensor fusion buffer, then one might expect to give them the
same weight. However, this is reasonable at the light of the
previous analysis where packet loss distribution affect the
design of the optimal gains Ki

h.

C. Identical packet arrival distribution (λi
h = λh)

If all sensors have identical packet arrival probabilities,
i.e. λi

k = λk, ∀i, then we can restrict the stability analysis
to a single parameter λ. Let the observation matrix C =
[CT

1 . . . CT
M ]T and R = diag(R1, . . . , RM ). In this context

the optimal gain and the nonlinear operator in Lemma 2 are
given by

Φλ(P ) = APAT + Q−
−λAPCT (λCPCT − (1− λ)PC + R)−1CPAT

≤ APAT + Q− λAPCT (CPCT + R)−1CPAT

KP = PCT (λCPCT − (1− λ)PC + R)−1

PC = diag(C1PCT
1 , . . . , CMPCT

M )

where we employed the fact that λCPCT − (1− λ)PC ≤
CPCT . The matrix Φλ(P ) considered here is smaller than
the corresponding operator in Eqn. (42) for all P , from which
it follows that it better to independently send measurements
along different paths than sending a single packet which
includes all measurements. Indeed, this is a common strat-
egy for most routing protocols adopted in wireless sensor
networks.

VII. CONCLUSIONS

In this work we proposed a framework to optimally design
and analyze the performance of sensor fusion filters based on
measurements collected from a set of distributed in a single
location. We showed that the optimal filter is a time-varying
Kalman filter with a buffer. We also proposed a suboptimal
sensor fusion filter which is computationally more efficient
since it requires only a finite memory buffer and constant
gains. For this class of filters it was shown that if packet
arrival of each sensor is i.i.d. but possibly different for each
sensor, then the estimators are mean square stable if the
packet loss is sufficiently small. Therefore, implicitly we also
provided necessary and sufficient conditions about existence
of stable sensor fusion filter. Finally, we presented numerical
algorithms for the computation of the expected estimator
error covariance of all the proposed estimators.

The tools developed in this paper are useful both from a
control system design perspective and from a communication
design perspective. In fact, from a control perspective they
can help to evaluate the tradeoffs between performance
(error covariance), memory requirements (buffer length),
and the hardware resources (“smart” sensor and fast matrix
inversion). In particular, the knowledge of the packet arrival
statistics can be used to find the optimal constant gains Ki

k
and thus improving performance. From a communication
perspective, these tools can be used to aid communica-
tion protocol design for real-time applications. In fact, as
mentioned in Section I, when designing communication
protocols, in particular for wireless systems, there is tradeoff
between packet loss and packet delay. At the moment,
the choice between favoring reduction of overall packet
delay or reduction of packet loss is based on heuristics and
experience, and it is not tailored to the specific real-time
applications. Therefore, being able to quantitatively measure
performance of different protocols can improve cross-layer
design of complex networked control systems.

As future work, we are currently implementing the most
popular wireless sensor network routing protocols to obtain
experimental packet arrival distributions in order to evaluate
these routing protocols for on-line monitoring applications
using the tools developed in this paper.
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