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Abstract

In this paper we study optimal estimation design for sampled linear systems where the sensors measurements
are transmitted to the estimator site via a generic digital communication network. Sensor measurements are subject
to random delay or might even be completely lost. We show that the minimum error covariance estimator is
time-varying, stochastic, and it does not converge to a steady state. Moreover, the architecture of this estimator is
independent of the communication protocol and can be implemented using a finite memory buffer if the delivered
packets have a finite maximum delay. We also present two alternative estimator architectures which are more
computationally efficient and provide upper and lower bounds for the performance of the time-varying estimator.
The stability of these estimators does not depend on packet delay but only on the packet loss probability. Finally,
algorithms to compute critical packet loss probability and estimators performance in terms of their error covariance
are given and applied to some numerical examples.

Index Terms

Networked Control Systems, random time delay, packet drop, minimum variance estimator, Kalman filter,
stability

I. INTRODUCTION

Recent technological advances in MEMS, DSP capabilities, computing, and communication technology
are revolutionizing our ability to build large scale distributed networked control systems (NCS) as recently
surveyed in [1]. In particular, among NSCs, the class represented by wireless sensor networks (WSNs),
which are large networks of spatially distributed electronic devices – called nodes – capable of sensing,
computation and wireless communication, can offer access to an unprecedented quality and quantity of
information. This information can revolutionize our ability in controlling of the environment, such as
fine-grain building environmental control [2], vehicular networks and traffic control [3], surveillance [4],
habitat monitoring [5] [6], and manufacturing automation [7].

However, NCS also pose challenging problems in different research areas such as information theory,
signal processing, communication theory, and control theory, mainly caused the fact that sensors, actuators
and controllers are not physically co-located and need to exchange information via a digital communication
network. These problems are particularly harsh in WSNs [8], where measurements are sampled at each
node and then routed through a multi-hop network to a remote location for data analysis and decision-
making process. As a consequence, measurements arrive at the decision-making location with a non-
deterministic delay or can be totally lost along the way, thus possibly undermining the effectiveness of
the decision-making part. As a result, it is important to simultaneously evaluate the impact of random
packet delay and packet loss in the overall system performance.

Obviously, packet loss and delay can be reduced by network coding [9], distributed signal processing
[10], in-network data compression [11], and packet routing protocols [12], but not completely avoided due
to inherent unreliable nature of wireless communication. For example, communication scheduling protocols
based on time division medium access (TDMA) can reduce packet loss and power consumption at the price
of longer delay [13], while event-triggered protocols which adopt broadcasting of messages can reduce
packet delay at the price of larger packet loss [14]. This tradeoff is qualitatively visualized in Fig. 1, where
each point on the solid curve represents the performance achieved by a specific communication protocol.
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From a data-collection application perspective the best protocols are those sitting on the bottom of the
curve since delay is unimportant. Differently, from a real-time application perspective, both parameters
are important, therefore it is not easy to determine which is the optimal operating point on the curve.
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Fig. 1. Pictorial representation of a typical tradeoff curve (solid line) that is achieved by different communication protocols such as event-
triggered and TDMA-based routing protocols. The shaded areas indicated constraint regions for real-time and data-collection applications.

Currently, communications protocols and networked control systems are designed separately. In par-
ticular, protocols are designed based on conservative heuristics which specify what the maximum time
delay and maximum packet loss should be, but with no clear understanding of their impact on the overall
application performance. On the application side, control systems are not specifically designed to exploit
information about packet loss and delay statistics of the communication protocols over which they will
run.

Motivated by these considerations, the goal of this paper is to study optimal estimator design for systems
subject to random packet delay and packet loss. Estimator design is in fact a fundamental ingredient for
optimal control design and the estimator error covariance directly affects the closed loop performance
of the control system [15]. Moreover, the ability to exactly quantify estimator error covariance based on
packet arrival statistics, can also be employed to select the more appropriate communication protocol
strategy.

The paper is organized as follows. The next section presents an overview of relevant previous work
and the contribution of this paper. Section III formalizes the minimum variance estimation problem and
the packet arrival process modeling. In Section IV the minimum variance estimation problem is solved
and optimality conditions on memory requirements are given. In Section V we derive stability conditions
and quantify performance in terms of expected estimation error covariance for the minimum variance
estimator with constant gains under i.i.d. packet arrival with known statistics. This suboptimal estimator
provides an upper bound for the estimation error of the time-varying optimal filter proposed in Section IV.
Section VI shows how estimation performance can be improved if sensors have computational resources
and are physically co-located. This estimator architecture also provides a lower bound for error covariance
of the time-varying optimal filter of Section IV. Section VII gives some numerical examples to illustrate
the use of the tools derived in the previous sections. Finally, Section VIII summarizes the conclusions
and suggest directions for future work.

II. PREVIOUS WORK AND CONTRIBUTION

Classical control has mainly focused on systems with constant delay [16] or with small delay pertur-
bation known as jitter [17]. Recently several groups have looked at networked control systems with large
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random delay or packet loss. Two recent survey papers presents several results in the context of packet-
switched networks [18], and in the context of bit-rate limited feedback control [19], respectively. Without
entering a detailed discussion, the bit-rate limited approach provides tighter analytical performance bounds
as compared to the packet-switched framework, but the practical implementation and coding schemes
proposed in former framework are not available in today’s communication protocols.

In this work, we focus on packet-switched network. Within this class of systems, results can be divided
into two main groups: the first group focusing on variable delay but no packet drop, while the second
group focusing on packet loss but no delay.

Within the first group, some authors derived stability conditions in terms of LMIs for closed loop
continuous time linear systems with stochastic sampling time [20][21], and Nesic at al. [22] obtained
Lyapunov-like stability conditions for continuous time nonlinear systems with unknown but bounded
sampling time. These works simply determine stability for a given closed loop system, and there is no
controller synthesis specifically designed to take into account delay. With this respect, Yue et al. [23]
proposed an LMI approach for the design of stabilizing controllers for bounded delay, while Nilsson at al.
[24] extended LQG optimal control design to sampled linear systems subject to stochastic measurement
and control packet delay, and showed how the optimal controller gains are time-delay dependent. Another
relevant line of research is data fusion of measurements obtained from sensors with different delays. For
example, Alexander [25] and Larsen et al. [26] derived suboptimal but computationally efficient Kalman-
like filters to account for random delay and they tested their performance through Monte-Carlo simulations.
Julier at al. [27] studied the estimation problem when measurement time-stamping is uncertain. All the
previous works rely on the major assumption that there is no packet loss or there is an upper bound on
the possible consecutive packet drops.

In the second group of results, there has been a considerably effort to apply optimal control and
estimation to discrete time systems where measurements and control packets can be dropped with some
probability, but have otherwise no delay. This framework is equivalent of saying that all packets have either
no delay or infinite delay. For example, in [28][29][30] the authors proposed compensation techniques
for i.i.d Bernoulli packet-drop communication networks and derived stability conditions for closed loop
discrete time system. Elia et al. [31][32] proposed a stochastic perturbation approach for general MIMO
LTI discrete time systems and showed that the optimal controller design is equivalent to solving a convex
LMI optimization problem. Sinopoli at al. [33], extending results that can be traced back to Nahi [34],
looked specifically at minimum variance estimation design for packet-drop networks and showed that the
optimal estimator is necessarily time-varying, including also stability conditions. These results have been
independently extended to LQG optimal control in [35] and [36]. Finally, a number of researches has
explored specific mechanisms to improve estimation performance by exploiting local computation at the
sensor location [37][38], controlled communication [39][38], and network topology [40].

The previous two groups of results suffer from some limitations. In fact, even with retransmission
mechanisms present in all current digital communication networks, and in particular in the wireless ones,
it is impossible to guarantee that all packets are correctly delivered to the destination. On the hand, in
wireless sensor networks which implement multi-hop communication, delay is not negligible and is subject
to large variations. Therefore, none of the modelings considered so far, i.e. random delay but no packet
loss and packet loss but no delay, fully represent control systems interconnected by digital communication
networks. Very little work has been done to take into account simultaneous packet drop and packet delay,
leading to somewhat conservative results as they are based on worst-case scenarios [41] [42].

In this paper we propose a probabilistic framework to analyze estimation where observation packets
are subject to arbitrary random delay and packet loss. In this framework sensor measurements need to be
time-stamped at the sensor side, but packets can arrive in burst or even out of order at the receiver side.
We derive the optimal estimator in mean square sense and we show that the minimum error covariance
estimator is equivalent to a time-varying Kalman filter with a buffer, for which the optimal gain does
not converge to a steady state. Moreover, this estimator structure is independent of the packet arrival
statistics and can be implemented using a finite memory buffer if the delivered packets have a finite
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maximum delay. In particular, the memory length is equal to the maximum packet delay of the received
packets. We also present two alternative estimator architectures which are computationally more efficient.
In the first architecture, the estimator gains are constrained to be constant rather than stochastic as in the
time-varying optimal estimator. In the second architecture, smart sensors are used to preprocess data and
improve estimation performance. Also necessary and sufficient conditions for stability for these estimators
are shown to depend only on the over packet loss probability and not on delay. We also provide numerical
algorithms to compute the expected error covariances of such estimators which turns out to be the solution
of modified algebraic Riccati equations and Lyapunov equations. These metrics can be used to compare
different communication protocols for real-time control applications as long as the packet arrival statistics
are known, i.i.d and stationary. Very importantly, these results do not depend on the specific implementation
of the digital communication network (fieldbuses, Bluetooth, ZigBee, Wi-Fi, etc .. ) in the sense that it is
not necessary to modify the communication stack to implement the estimators.

III. PROBLEM FORMULATION

Consider the following discrete time linear stochastic plant:

xt+1 = Axt + wt (1)
yt = Cxt + vt, (2)

where t ∈ N = {0, 1, 2, . . .}, x,w ∈ Rn, y ∈ Rm, A ∈ Rn×n, y ∈ Rm, C ∈ Rm×n, (x0, wt, vt) are Gaussian,
uncorrelated, white, with mean (x̄0, 0, 0) and covariance (P0, Q, R) respectively. We also assume that the
pair (A,C) is observable, (A,Q1/2) is reachable, and R > 01.

PLANT ESTIMATOR
Digital

Communication

Network

Digital

Communication

Network
Buffer

Fig. 2. Networked systems modeling. Sampled observations at the plant site are transmitted to the estimator site via a digital communication
network. Due to retransmission and packet loss, observation packets arrive at the estimator site with possibly random delay.

Measurements are time-stamped, encapsulated into packets, and then transmitted through a digital
communication network (DCN), whose goal is to deliver packets from a source to a destination (see
Fig. 2). Time-stamping of measurements is necessary to reorder packets at the receiver side as they can
arrive out of order. Maintaining global clock synchronization in distributed systems is a challenging task,
but recent work has shown remarkably small synchronization errors even in large sensor networks [43].
Modern DCNs are in general very complex and can greatly differ in their architecture and implementation
depending on the medium used (wired, wireless, hybrid), and on the applications they are meant to serve
(real-time monitoring, data extraction, media-related, etc ..). In our work we model a DCN as a module
between the plant and the estimator which delivers observation measurements to the estimator with possibly
random delays. This model allows also for packets with infinite delay which corresponds to a packet loss.
We assume that all observation packets correctly delivered to the estimator site are stored in an infinite

1These assumptions can be relaxed to (A, C) detectable, (A, Q1/2) stabilizable, and R ≥ 0, however the proofs of the following theorems
would be more convoluted, therefore we decided to adopt the stronger hypotheses.
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buffer, as shown in Fig. 2. The arrival process is modeled via the random variable γt
k defined as follows:

γt
k =

{
1 if yk has arrived at the estimator before or at time t, t ≥ k
0 otherwise (3)

From this definition it follows that (γt
k = 1) ⇒ (γt+h

k = 1,∀h ∈ N), which simply states that if packet yk

is present in the receiver buffer at time t, then it will be present for all future times. We also define the
packet delay τk ∈ {N,∞} for observation yk as follows:

τk =

{ ∞ if γt
k = 0,∀t ≥ k

tk − k otherwise, where tk
∆
= min{t | γt

k = 1} (4)

where tk is the arrival time of observation yk at the estimator site . Since the packet delay can be random,
observation measurements can arrive out of order at the estimator site (see Fig. 3, t = 5). Also it is
possible that between two consecutive sampling periods no packet (see Fig. 3, t = 4) or multiple packets
(see Fig. 3, t = 6) are delivered. In our work we do not consider quantization distortion due to data
encoding/decoding since we assume that observation noise is much larger then quantization noise, as it
is the case in most DCNs where each packet allocates hundreds of bits for measurement data2. Also we
do not consider channel noise since we assume that if any bit error incurred during packet transmission
is detected at the receiver, then the packet is dropped.

Fig. 3. Packet arrival sequence and buffering at the estimator location. Shaded squares correspond to observation packets that have been
successfully received by the estimator. Cursor indicates current time.

If observation yk is not yet arrived at the estimator at time t, we assume that a zero3 is stored in the
2For example, ATM communication protocols adopts packets with 384-bit data field, Ethernet IEEE 802.3 packets allows for at least 368

bits for data payload, Bluetooth for 499 bits [18] and IEEE 802.15.4 for up to 1000 bits. This assumption might not hold for multimedia
signal like audio and video signals, which however are not in the scope of this work.

3In practice, any arbitrary value can be stored in the buffer slots corresponding to the packets which have not arrived, since as it will be
shown later, the optimal estimator does not use those values as they do not convey any information about the state xt. Our choice of storing
a zero simply reduces some mathematical burden.
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k-slot of the buffer, as shown in Fig. 3. More formally, the value stored in the k-slot of the estimator
buffer at time t can be written as follows:

ỹt
k = γt

kyk = γt
kCxk + γt

kvk (5)

Our goal to compute the optimal mean square estimator x̂t|t which is given by:

x̂t|t
∆
= E[xt | ỹt,γt, x̄0, P0] (6)

where ỹt = (ỹt
1, ỹ

t
2, . . . , ỹ

t
t) and γt = (γt

1, γ
t
2, . . . , γ

t
t). It is important to remark that the estimator above

has the information whether a packet has been delivered or not, and it is not equivalent to computing
x̂t|t 6= x̌t|t

∆
= E[xt | ỹt, x̄0, P0]. The latter estimator would in fact consider the zero entries of the buffer

as true measurements and not as dummy variables, thus providing a lower performance. It is also useful
to design the estimator error and error covariance as follows:

et|t
∆
= xt − x̂t|t (7)

Pt|t
∆
= E[ et|te

T
t|t | ỹt,γt, x̄0, P0] (8)

The estimate x̂t|t is optimal in the sense that it minimizes the error covariance, i.e. given any estimator
x̃t|t = f(ỹt,γt), where f is a measurable function, we always have

E[(xt − x̃t|t)(xt − x̃t|t)
T | ỹt,γt, x̄0, P0] ≥ Pt|t.

Another property of the mean square optimal estimator is that x̂t|t and its error et|t
∆
= xt − x̂t|t are

uncorrelated, i.e. E[et|t x̂T
t|t] = 0. This is a fundamental property since it is necessary to give rise to the

separation principle for the LQG optimal control, which is one of the most widely used tool in control
system design [15] [36].

IV. MINIMUM ERROR COVARIANCE ESTIMATOR DESIGN

In this section we want to compute the optimal estimator given by Equation (6). First, it is convenient
to define the following variables:

x̂t
k|h

∆
= E[xk | γt

h, . . . , γ
t
1, ỹ

t
h, . . . , ỹ

t
1, x̄0, P0]

P t
k|h

∆
= E[(xk − x̂t

k|h)(xt − x̂t
k|h)

T | γt
h, . . . , γ

t
1, ỹ

t
h, . . . , ỹ

t
1, x̄0, P0]

from which it follows that, with a little abuse of notation, x̂t|t = x̂t
t|t and Pt|t = P t

t|t.
It is also useful to note that at time t the information available at the estimator site, given by Equation (5),

can be written as the output of the following system:

xk+1 = Axk + wk (9)
ỹt

k+1 = Ct
k+1xk+1 + ṽt

k+1, k = 0, . . . , t− 1 (10)

where the random variables ṽt
k

∆
= γt

kvk are uncorrelated, zero mean white noise with covariance Rt
k =

E[ṽt
k(ṽ

t
k)

T ] = γt
kR, and Ct

k
∆
= γt

kC. For any fixed t this system can be seen as a linear time-varying
system with respect to time k, where the only time-varying elements are the observation matrix Ct

k and
measurement noise covariance Rt

k.
We can now state the main theorem of this section:
Theorem 1: Let us consider the stochastic linear system given in Equations (1)-(2), where R > 0. Also

consider the arrival process defined by Equation (3), and the mean square estimator defined in Equation (6).
Then we have:
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(a) The optimal mean square estimator is given by x̂t|t = x̂t
t|t where:

x̂t
0|0 = x̄0, P t

1|0 = P0 (11)

x̂t
k|k = Ax̂t

k−1|k−1 + γt
kK

t
k(ỹ

t
k − CAx̂t

k−1|k−1), k = 1, . . . , t (12)

Kt
k = P t

k|k−1C
T (CP t

k|k−1C
T + R)−1 (13)

P t
k+1|k = AP t

k|k−1A
T + Q− γt

kAP t
k|k−1C

T (CP t
k|k−1C

T + R)−1CP t
k|k−1A

T (14)

(b) The optimal estimator x̂t|t can be computed iteratively using a buffer of finite length N if γt
k =

γt−1
k , ∀k ≥ 1, ∀t ≥ k + N . If this property is satisfied, then x̂t|t = x̂t

t|t where x̂t
t|t is given by

Equations (11)-(14) for t = 1, . . . , N and as follows for t > N :

x̂t
t−N |t−N = x̂t−1

t−N |t−N , (15)

P t
t−N+1|t−N = P t−1

t−N+1|t−N (16)
Equations (12),(13),(14) k = t−N + 1, . . . , t (17)

Proof: (a) Since the information available at the estimator site at time t is given by the time-varying
linear stochastic system of Equations (9)-(10) , then the optimal estimator is given by its corresponding
time-varying Kalman filter:

x̂t
k|k = Ax̂t

k−1|k−1 + Kt
k(ỹ

t
k − Ct

kAx̂t
k−1|k−1)

Kt
k = P t

k|k−1C
tT

k (Ct
kP

t
k|k−1C

tT

k + Rt
k)
†

P t
k+1|k = AP t

k|k−1A
T + Q− AP t

k|k−1C
tT

k (Ct
kP

t
k|k−1C

tT

k + Rt
k)
†Ct

kP
t
k|k−1A

T

x̂t
0|0 = x̄0, P t

1|0 = P0

whose derivation can be found in any standard textbook on stochastic control [15] [44], and the symbol
† denotes the matrix pseudoinverse4. By substituting Ct

k+1 = γt
k+1C and Rt

k = γt
kR into the previous

equations and after performing some straightforward simplifications we obtain the optimal estimator
Equations (11)-(14).

(b) Let us consider t > N . If γt
k = γt−1

k ,∀k ≥ 1,∀t ≥ k+N , then also P t
k+1|k = P t−1

k+1|k and x̂t
k|k = x̂t−1

k|k
hold under the same conditions on the indices. In particular it holds for k = t − N which implies
P t

t−N+1|t−N = P t−1
t−N+1|t−N and x̂t

t−N |t−N = x̂t−1
t−N |t−N . Therefore, it not necessary to compute P t

t+1|t and
x̂t

t|t at any time step t starting from k = 1, but it is sufficient to use the values x̂t−1
t−N |t−N and P t−1

t−N+1|t−N

precomputed at the previous time step t − 1, as in Equations (15) and (16), and then iterate Equations
Equations (12)-(14) for the latest N observations.

Note that the previous theorem does not necessarily implies that any optimal estimator needs to have an
infinite buffer when packet delay cannot be bounded. Indeed, this poses the interesting problem of proving
or disproving the existence of a filter that never requires an infinite buffer.

If there is no packet loss and no packet delay, i.e. γt
k = 1, ∀(k, t), then Equations (11)-(14) reduce to the

standard Kalman filter equations for a time-invariant system. In practice, the optimal estimator correspond
to a time-varying Kalman filter with a buffer. Differently from the Kalman filter for a time-invariant
system, neither the optimal gain not the error covariance converge to a steady state value. Therefore, it
is not possible adopt a static filter the with the steady-state Kalman gain Kt = K∞, but in general it is
necessary to store all past measurements and to invert of up to t matrices at any time step t to calculate
the optimal estimate x̂t|t, which is particularly onerous for on-line implementation.

It is well known that the optimal estimator subject to measurement delay can be obtained by augmenting
the state by the maximum measurement delay [25]. Since packet loss is equivalent to infinite delay, this
might suggests that the optimal estimator should have an infinite buffer. However, the optimal estimator

4We employed the fact that the Kalman filter equations can be generalized to the case R ≥ 0 by using pseudoinverse rather than the
inverse in the computation of the posterior error covariance.
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can be implemented incrementally according to Equations (15)-(17) using a buffer of finite length N
if all successfully received observations have a delay smaller than N time steps, i.e. γt

k = γt−1
k ,∀k ≥

1,∀t−k ≥ N (see Fig. 4). This does not mean that all packets arrive at the receiver within N time steps,
but only that if a packet arrives then it does within N time steps.

ESTIMATOR

(A)
ESTIMATOR

N

(B)

Fig. 4. Optimal estimator for general packet arrival processes (left). Optimal estimator with finite memory buffer for packet arrival processes
with bounded delay (right).

Up to this point we made no assumptions on the packet arrival process which can be deterministic,
stochastic or time-varying. However, from an engineering perspective it is important to determine the
performance of the estimator, which is evaluated based on the error covariance Pt+1|t. If the packet arrival
process is stochastic, then also the error covariance is stochastic. In this scenario a common performance
metric is the expected error covariance, i.e. Eγ[Pt+1|t], where the expectation is performed with respect
to the arrival process γt

k. However, other metrics can be considered, such as the probability that the error
covariance exceeds a certain threshold, i.e. P[Pt+1|t > Pmax] [45]. In this work we focus on the expected
error covariance Eγ[Pt+1|t]. It is not clear whether is it possible to compute Eγ[Pt+1|t] analytically even for
a simple Bernoulli arrival process, and so far only upper and lower bounds have been be obtained [33].
Rather than trying to bound performance of the time-varying optimal estimator, in the next section we will
focus on filters with constant gains and with a finite buffer dimension, i.e. we will consider Kt

t−h = Kh for
all t ∈ N, h = 0, . . . , N−1. The gains Kh will then be optimized to achieve the smallest error covariance at
steady-state. The advantage of using constant gains is that, differently from the optimal time-varying filter,
it is not necessary to invert any matrix at all thus making it attractive for on-line applications. Moreover,
since filters with constant gains are necessarily suboptimal, the computation of their error covariance
is useful per se as it provides an upper bound for the error covariance of the optimal minimum error
covariance filter given by Equations (11)-(14).

V. OPTIMAL ESTIMATION WITH CONSTANT GAINS

In this section we will study minimum error covariance filters with constant gains under stationary i.i.d
arrival processes.
Assumption: The packet arrival process at the estimator site is stationary and i.i.d. with the following
probability function:

P[τt ≤ h] = λh (18)

where t ≥ 0, and 0 ≤ λh ≤ 1 is a non-decreasing in h = 0, 1, 2, . . ., and τt was defined in Equation (4).
Equation (18) corresponds to the probability that a packet sampled h time steps ago has arrived at the

estimator. Obviously, λh must be non-increasing since λh = P[τt ≤ h−1]+P[τt = h] = λh−1 +P[τt = h].
Also, we define the packet loss probability as follows:

λloss
∆
= 1− sup{λh| h ≥ 0} (19)

The arrival process defined by Equation (18) can be also be defined with respect to the probability density
of packet delay. In fact, by definition we have P[τk = 0] = λ0, P[τk = h] = λh − λh−1 for h ≥ 1, and
P [τk = ∞] = λloss.
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Finally, we define the maximum delay of arrived packets as follows:

τmax
∆
=

{
min{H|λH = λH+1} if ∃H such that λh = λH , ∀h ≥ H
∞ otherwise (20)

Fig. 5 shows some typical scenarios that can be modeled under the previous hypotheses. Scenario (A)
corresponds to a deterministic process where all packets are successfully delivered to the estimator with
a constant delay. This scenario is typical of wired systems. Scenario (B) models a DCN that guarantees
delivery of all packets within a finite time window τmax, but the delay is not deterministic. This is a
common scenario in drive-by-wire systems. Scenario (C) represents a DCN which drops packets that
are older than τmax and consequently a fraction λloss > 0 of observations is lost. This scenario is often
encountered in wireless sensor networks. Scenario (D) corresponds to a DCN with no packet loss but with
unbounded random packet delay. One example of such a scenario is a DCN that continues to retransmit
a packet till it is not delivered.

(A) (B)

(C) (D)

Fig. 5. Probability function of arrival process λh = P[τk ≤ h] for different scenarios: deterministic packet arrival with fixed delay (A);
bounded random packet delay with no packet loss (B); bounded random packet delay with packet loss (C); unbounded random packet delay
with no packet loss (D).

In the rest of the paper we will use the following definition of stability for an estimator.
Definition: Let x̃t|t = f(ỹt,γt) be a generic estimator, where f is a measurable function, and ẽt|t = xt−x̃t|t
and P̃t|t = E[ẽt|tẽT

t|t|ỹt,γt] its error and error covariance, respectively. We say that the estimator is mean-
square stable stable and unbiased if and only if limt→∞ E[ẽt|t] = 0 and E[P̃t|t] ≤ M for some M > 0 and
for all t ≥ 1.

The previous definition can be rephrased in terms of the moments of the estimator error. In fact the
conditions above are equivalent to limt→∞ E[||ẽt|t||] = 0 and E[ ||ẽt|t||2] ≤ trace(M).

Let us consider the following constant-gain estimator x̃t|t = x̃t
t|t with finite-buffer of dimension N ,

where x̃t
t|t is computed as follows:

x̃t
t−k|t−k = Ax̃t

t−k−1|t−k−1 + γt
t−kKk(ỹ

t
t−k − CAx̃t

t−k−1|t−k−1), k = N−1, . . . , 0 (21)

x̃t
t−N |t−N = x̃t−1

t−N |t−N (22)

x̃t
−k|−k = x̄0, γt

−k = 0, ỹt
−k = 0 (23)

where the last line includes some dummy variables necessary to initialize the estimator for t = 1, . . . , N .
Note that constant-gain estimator structure is very similar to the optimal estimator structure given by
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Equation (12) as the estimate is corrected only if the observation has arrived, i.e. γt
t−k = 1, otherwise

only the open loop prediction is considered. However, differently from Equation (12), the gains Kk, k =
0, . . . , N−1 are constant and independent of t, and the computation of the estimate x̃t|t does not require
any on-line matrix inversion differently from the estimator in the previous section.

We also define the following variables that will be useful to analyze the performance of the estimator:

x̃t
k+1|k = Ax̃t

k|k (24)

ẽt
k+1|k = xk+1 − x̃t

k+1|k (25)

P̃ t
k+1|k = E[ẽt

k+1|kẽ
tT

k+1|k | ỹt,γt] (26)

P
t

k+1|k = E[ẽt
k+1|kẽ

tT

k+1|k] = E[P̃ t
k+1|k] (27)

where t ≥ k ≥ 1. From these definitions we get:

ẽt
k+1|k = Axk + wk − A

(
x̃k|k−1 + γt

kKt−k(γ
t
kCxk + vk − Cx̃k|k−1)

)

= A(I − γt
kKt−kC)ẽt

k|k−1 + wk − γt
kAKt−kvk (28)

P̃ t
k+1|k = A(I − γt

kKt−kC)P̃ t
k|k−1(I − γt

kKt−kC)T AT + Q + γt
kAKt−kRKT

t−kA
T (29)

P
t

k+1|k = λt−kA(I−Kt−kC)P
t

k|k−1(I−Kt−kC)TAT+(1−λt−k)AP
t

k|k−1A
T+Q+λt−kA

TKt−kRKT
t−kA

T(30)

where I ∈ Rn×n is the identity matrix. To obtain the previous equations we employed independence of
γt

k, vk, wk, and ẽt
k|k−1, and the fact that vk and wk are zero mean. For ease of notation let us define the

following operator:

Lλ(K, P ) = λA(I−KC)P (I−KC)T AT +(1−λ)APAT +Q+λAKRKT AT (31)

If we substitute k = t − N into Equation (30), and noting that from Equation (22) follows that
P̃ t

t−N+1|t−N = P̃ t−1
t−N+1|t−N and P

t

t−N+1|t−N = P
t−1

t−N+1|t−N , we obtain:

P
t

t−N+2|t−N+1 = LλN−1
(KN−1, P

t−1

t−N+1|t−N) (32)

P
t

t−k+1|t−k = Lλk
(Kk, P

t

t−k|t−k−1), k = N−2, . . . , 0 (33)

Observe that Equations (32) and (33) define a set of linear deterministic equations for fixed λk and Kk.
In particular, if we define St = P t−1

t−N+1|t−N , then Equations (32) can be written as

St+1 = LλN−1
(KN−1, St) (34)

Since all matrices P
t

t−k+1|t−k, k = 0, . . . , N − 1 can be obtained from St it follows that stability of
estimator can be inferred from the properties of the operator Lλ(K,P ). The following lemma provides
these properties:

Lemma 1: Consider the operator Lλ(K, P ) as defined in Equation (31). Assume also that P ≥ 0,
(A,C) is observable, (A,Q1/2) is reachable, R > 0, and 0 ≤ λ ≤ 1. Also consider the following operator:

Φλ(P ) = APAT + Q− λAPCT (CPCT + R)−1CPAT (35)

and the gain KP = PCT (CPCT + R)−1.
Then the following statements are true:
(a) Lλ(K,P ) = Φλ(P ) + λA(K −KP )(CPCT + R)(K −KP )T AT .
(b) Lλ(K,P ) ≥ Φλ(P ) = Lλ(KP , P ), ∀K
(c) (P1 ≥ P2) =⇒ (

Φλ(P1) ≥ Φλ(P2)
)
.

(d) (λ1 ≥ λ2) =⇒ (
Φλ1(P ) ≤ Φλ2(P )

)
, ∀P .

(e) If there exists P ∗ such that P ∗ = Lλ(K, P ∗), then P ∗ > 0 and it is unique. Consequently this is
true also for K = KP ∗ , where P ∗ = Φλ(P

∗).
(f) If (λ1 ≥ λ2) and there exist P ∗

1 , P ∗
2 such that P ∗

1 = Φλ1(P
∗
1 ) and P ∗

2 = Φλ2(P
∗
2 ), then P ∗

1 ≤ P ∗
2 .
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(g) Let St+1 = Lλ(K, St) and S0 ≥ 0. If S∗ = Lλ(K,S∗) has a solution, then limt→∞ St = S∗,
otherwise the sequence St is unbounded.

(h) If there exists S∗, K such that S∗ = Lλ(K,S∗), then also P ∗ = Φλ(P
∗) exists and P ∗ ≤ S∗.

(i) If A is strictly stable, then P ∗ = Φλ(P
∗) has always a solution. Otherwise, there exist λc such that

P ∗ = Φλ(P
∗) has a solution if and only if λ > λc. Also λmin ≤ λc ≤ λmax, where λmax = 1− 1∏

i |σu
i |2 ,

λmin = 1 − 1
maxi |σu

i |2 , and |σu
i | ≥ 1 are the unstable eigenvalues of A. In particular λc = λmax if

rank(C) = 1, and λc = λmin if C is square and invertible.
(j) The critical probability λc and the fixed point P ∗ = Φλ(P

∗) for λ > λc can be obtained as the
solutions of the following semi-definite programming (SDP) problems: λc = inf{λ |Ψλ(Y, Z) >
0, 0 ≤ Y ≤ I, for some Z, Y ∈ Rn×n}, and P ∗ = argmax{trace(P ) |Θλ(P ) ≥ 0, P ≥ 0} where:

Ψλ(Y, Z) =




Y Y
√

λZR
1
2

√
λ(Y A + ZC)

√
1− λY A

Y Q† 0 0 0√
λR

1
2 Z ′ 0 I 0 0√

λ(A′Y + C ′Z ′) 0 0 Y 0√
1− λA′Y 0 0 0 Y




(36)

Θλ(P ) =

[
APA′ − P

√
λAPC ′√

λCPA′ CPC ′ + R

]
(37)

(k) If there exist P ∗ > 0 and K such that P ∗ = Lλ(K, P ∗), then the matrix Ac = A(I − λKC) is
strictly stable.
Proof: See Appendix.

The previous lemma provides all tools necessary to analyze and design the optimal estimator with
constant gains. In particular, fact (g) indicates that the constant gain K∗ that minimizes the steady state
error covariance P ∗ can be derived from the unique fixed point of the nonlinear operator P ∗ = Φλ(P

∗),
where K∗ = KP ∗ . If the optimal gain K∗ is used, then the expected error covariance converges to P ∗

regardless of the initial conditions (P0, x̄0), as follows from fact (f). Fact (i) shows that if the system A
is unstable the arrival probability λ needs to be sufficiently large to ensure stability, and that the critical
value λc is a function of the unstable eigenvalues of A. Finally, although λc and the the fixed point
P ∗ = Φλ(P

∗) cannot be computed in closed form, from fact (j) follows that they can be efficiently
computed using numerical optimization tools. Finally, fact (k) will be used to show that if the error
covariance is bounded then the estimator is also unbiased.

The following theorem shows how compute the optimal estimator with constant gains.
Theorem 2: Let us consider the stochastic linear system given in Equations (1)-(2), where (A,C) is

observable, (A,Q1/2) is reachable, and R > 0. Also consider the arrival process defined by Equations (18)-
(20), and the set of estimators with constant gains {Kk}N

k=0 defined in Equations (21)-(23). If A is not
strictly stable and λloss ≥ 1− λc, where λc is defined in Lemma 1(j), then there exist no stable estimator
with constant gains. Otherwise, let N such that λN > λc and consider the optimal gains {KN

k }N
k=0 defined

as follows:

KN
k = V N

k CT (CV N
k CT + R)−1, k = 0, . . . , N (38)

V N
N−1 = ΦλN−1

(V N
N−1) (39)

V N
k = Φλk

(V N
k+1), k = N − 1, . . . , 0 (40)

Also consider P
t

k+1|k as defined in Equation (27), then limt→∞ P
t

t−k+1|t−k = V N
k , independently of initial

conditions (P0, x̄0). For any other choice of gains {Kk}N
k=0 for which the solution {Tk}N

k=0 to the following
equations exist:

TN
N = LλN

(KN , TN
N ) (41)

TN
k = Lλk

(Kk, T
N
k+1), k = N − 1, . . . , 0 (42)
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then limt→∞ P
t

t−k+1|t−k = TN
k , and V N

k ≤ TN
k for k = 0, . . . , N . Also V N+1

0 ≤ V N
0 . Finally, if τmax < ∞,

then V N
0 = V τmax

0 for all N ≥ τmax.
Proof: See Appendix.

The previous theorem shows that the optimal gains can be obtained by finding the fixed point of a
modified algebraic Ricatti Equation (39) and then iterating N time an operator with the same structure
but with different λk. The theorem also demonstrates that a stable estimator with constant gains exists if and
only if the optimal estimator with constant gains exists, therefore the optimal estimator design implicitly
solves the problem of existence of stable estimators. If the system to be estimated is unstable, then the
estimator is stable if and only if the packet loss probability λloss is sufficiently small, independently
of the packet delay τmax, thus recovering the same stability conditions derived in [33]. Moreover, the
performance of the estimator, i.e. its steady state error covariance limt→∞ Pt+1|t = limt→∞ E[et+1|teT

t+1|t] =

V N
0 , improves as the buffer length N is increased, which is to be expected since more information is

stored. However, if the maximum packet delay is finite τmax < ∞, then the performance of the estimator
does not improve for N > τmax. This is consistent with Theorem 1(b) since if a measurement packet has
not arrived within τmax time steps after it was sampled, then it will never arrive and it is useless to wait
longer.

From a practical perspective, the previous tools can be used by the designer to evaluate the tradeoff
between the estimator performance V N

0 and buffer length N which is directly related to computational
requirements.

VI. OPTIMAL ESTIMATION WITH CO-LOCATED SMART SENSORS

In this section we describe an alternative data pre-processing at the sensor location which improves
the overall performance of the estimator at the receiver side. This scheme was independently proposed
in [46] and [37] in a scenario where no delay was present but only packet loss. The authors suggested
to compute and transmit the state estimate rather than the raw measurement. As will be shown shortly,
this approach gives an estimator that has a better performance as compared to the time-varying Kalman
filter of Section IV. However, it is applicable only if some computational resources are available on the
sensor, commonly known as “smart sensor”, and if all entries of the observation vector yt are collected
from sensors which are co-located. For example, this scenario is not suitable in applications running over
sensor networks where sensors are distributed and have very limited computation resources [47]. Adding
specific coding schemes and data processing at the sensor side could further improve performance, but
this would require the modification of the lower layers of the communication protocols, differently from
the architecture proposed here. Besides, this estimator architecture proposed here is useful per se since
it provides a computable lower bound for the performance of the optimal time-varying filter proposed in
Section IV.

PLANT+
SENSOR

DECODER

ESTIMATORDigital
Communication

Network

Digital
Communication

Network

ENCODER
ESTIMATOR

Fig. 6. Smart sensor with state estimator at encoder site before transmission.

Rather than sensing the raw measurements yt over the DCN the sensor compute the optimal state
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estimate as follows:

x̂e
t = Ax̂e

t−1 + Ke
t (yt − Ax̂e

t−1) (43)
Ke

t = P e
t CT (CP e

t CT + R)−1 (44)
P e

t+1 = AP e
t AT + Q− AP e

t CT (CP e
t CT + R)−1CP e

t AT = Φ1(Pt) (45)
P e

0 = P0, x̂e
0 = x̄0 (46)

These are the equations for the standard Kalman filter, i.e. the minimum error covariance estimator x̂e
t =

E[xt | yt, . . . , y1] whose estimation error ee
t = xt+1−Ax̂e

t has covariance cov(ee
t) = E[ee

te
eT

t | yt, . . . , y1] =
P e

t . The state estimate computed by the sensor encoder is then transmitted over the DCN to the decoder
estimator. Using the same notation of Equation (5) the value stored at the buffer can be written as follows:

ỹt
k = γt

kx̂
e
k (47)

Let us define the delay of the most recent packet arrived at the decoder estimator as κt = t−max{k | γt
k = 1}

if ∃γt
k = 1, or κt = t otherwise. The estimate of current state at the decoder estimator x̂d

t is computed as
follows:

x̂d
t = Aκt ỹt

t−κt
= Aκt x̂e

t−κt
(48)

Note that the decoder estimate is equivalent to x̂d
t = E[xt | yt−κt , . . . , y1] and that the its error ed

t = xt+1 − Ax̂d
t

has covariance:

cov(ed
t ) = E[ed

t e
dT

t | yt−κt , . . . , y1] = Φt−κt
0 (E[ed

t−κt
edT

t−κt
| yt−κt , . . . , y1]) = Φt−κt

0 (P e
t−κt

) = Φt−κt
0 ◦Φκt

1 (P0),

where the superscript of Φn
λ(P ) indicates Φλ ◦ · · · ◦ Φλ(P ) composed n-times. Therefore, the decoder

estimator error at any time step t is equivalent to the optimal estimator that one would obtain if all
observations up to time t− κt were successfully delivered. This estimation architecture is superior to the
estimation architecture proposed in Section IV, in fact the estimator obtained in Theorem 1 has error
covariance cov(xt+1 − Ax̂t

t|t) = P t
t+1|t, where P t

t+1|t is given by Equations (13)-(14) and can be written
as:

P t
t+1|t = Φγt

t
◦ . . . ◦ Φγt

1
(P0)

= Φt−κt
0 ◦ Φγt

κt
◦ . . . ◦ Φγt

1
(P0)

≥ Φt−κt
0 ◦ Φγt

κt
◦ . . . ◦ Φ1(P0)

≥ Φt−κt
0 ◦ Φ1 ◦ . . . ◦ Φ1(P0)

= Φt−κt
0 ◦ Φκt

1 (P0)

= cov(ed
t )

where we used the facts γt
k = 0 for k > κt, γt

k ≤ 1 for k ≤ κt, and Lemma 1(d). Therefore, the error
covariance of the estimator proposed in this section is smaller than the error covariance of estimator
proposed in Section IV. We can summarize the previous result in the following theorem:

Theorem 3: Let us consider the stochastic linear system given in Equations (1)-(2), where R > 0. Also
consider the packet arrival process defined by Equation (3). Let x̂y

t = x̂t
t|t the optimal estimator given by

Equations (11)-(14) when raw measurements yt are transmitted over the network. Let x̂d
t the estimator

given by Equation (48) where the state estimate x̂e
t defined by Equations (43)-(46) is pre-computed by

the sensor and then transmitted over the network. Then the estimation error covariance of x̂e
t is always

smaller than the estimation error covariance of x̂t
t, i.e.

cov(xt − x̂d
t ) ≤ cov(xt − x̂y

t ), ∀t.
Besides having a better performance, the estimator proposed in this section requires very limited

computational requirements at the receiver side, in fact it suffices to store the most recent packet arrived
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at the receiver and then to compute the best state estimate at current time by pre-multiplying the packet
data with a matrix which depend on the packet delay. Moreover, as for the estimator of Section IV, also
the estimator based on co-located smart sensors does not require any statistical a-priori knowledge of the
arrival process.

However, if the packet arrival statistics are stationary and i.i.d, then it is possible to give stability criteria
and to compute the expected error covariance as shown in the following theorem:

Theorem 4: Let us consider the stochastic linear system given in Equations (1)-(2), where (A,C) is
observable, (A,Q1/2) is reachable, and R > 0. Also consider the arrival process defined by Equations (18)-
(20), and the estimator architecture given by Equations (43)-(48). Then the estimator is stable if and only if
A is stable, or λloss < 1

|σu
max(A)|2 , where σu

max(A) is the largest eigenvalue of the matrix A. If the estimator
is stable then the covariance of the estimation error defined as ed

t = xt+1−Axd
t has the following property:

lim
t→∞

E[ed
t e

dT

t ] = D∞ = lim
N→∞

DN
0 (49)

where the matrix DN
0 is computed as follows:

DN
N = (1− λN)ADN

N AT + (1− λN)Q + λNP e
∞ (50)

DN
k = (1− λk)ADN

k+1A
T + (1− λk)Q + λkP

e
∞, k = N − 1, . . . , 0 (51)

and P e
∞ is the unique positive definite solution of the Ricatti Equation P e

∞ = Φ1(P
e
∞). If τmax < ∞, then

D∞ = Dτmax
0 = DN

0 , for all N ≥ τmax.
Proof: See Appendix.

The previous theorem shows that performance of the smart optimal estimator under the assumption of
i.i.d. packet arrival process, can be obtained by solving the Lyapunov Equation (50) and then iterating
N = τmax linear equations (51), if τmax is finite. Otherwise if τmax = ∞, then D∞ can be computed to
any arbitrary precision through the sequence DN

0 .

VII. NUMERICAL EXAMPLES

Here we illustrate the use of the tools developed in the previous sections with the aid of some numerical
examples.

Let us consider the following probability function of packet delay:

λh =

{
0.05 h, h = 0, . . . , 15
0.75, h > 15

(52)

which is depicted in Fig. 7.
Let us consider the following discrete time system:

A =

[
1.001 0.05
0.05 1.001

]
, C = [ 1 0 ], R = 0.01, Q =

[
0 0
0 0.01

]
(53)

which corresponds to the discretization with sampling period T = 0.05 of the continuous time sys-
tem ẍ − x = 0. This system has one stable pole and one unstable pole, and it is the model for
the discrete time dynamics of an inverted pendulum. The discrete time eigenvalues of the matrix A
are eig(A) = (1.05, 0.95), which give the critical probability λc = 1 − 1/1.052 = 0.095, as stated
in Lemma 1(i). According to Theorem 2 and Theorem 4 both estimators presented in Section V and
Section VI are stable if and only if N ≥ 2, in fact λ1 = 0.05 < λc and λ2 = 0.01 > λc.

The trace of the covariance of the estimator error with constant gains, V N
0 , and the estimator error for

smart sensors, DN
0 are shown in Fig. 8. As mentioned in Section IV, the error covariance for time-varying

optimal estimator of Theorem 1 cannot be computed explicitly but it is upperbounded and lowerbounded
by V N

0 and by DN
0 , respectively. It is interesting to compare the performance of these estimators with the

error covariance P e
∞ = Φ1(P

e
∞), shown in the same figure, corresponding to the ideal case when there

is no packet loss and no delay. In fact, P e
∞ gives an idea of the degradation due to the communication
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Fig. 7. Probability function of packet delay for different scenarios and critical probability λ for dynamical systems (53).

network. It is also relevant to evaluate the performance of an estimator with constant gains designed
without exploiting the prior knowledge about the packet arrival statistics. A natural choice is to use the
standard Kalman gain Ke

∞ = P e
∞CT (CP e

∞CT + R)−1, i.e. Kk = Ke
∞, k = 0, . . . , N rather than the

optimal constant gains KN
k defined in Theorem 2. The corresponding expected error covariance TN

0 can
be obtained by Equations (41)-(42) and it is shown in Fig. 8. From this example it is clear that the tools
developed in this paper can help to substantially reduce the degradation of performance when statistics
of packet arrival are available.

As a second example, we show empirical computation of the expected error covariance for the different
estimator designs presented in this paper. We consider the same dynamical system above given by
Equations (53) and we assume that packet delay is generated according to the following arrival statistics:

λ1 = (λ1
0, λ

1
1, λ

1
2, λ

1
3) = (0.2, 0.4, 0.7, 1), 0 ≤ t ≤ 50 (54)

λ2 = (λ2
0, λ

2
1, λ

2
2, λ

2
3) = (0, 0.3, 0.5, 0.7), t > 50 (55)

which models an increase in packet delay due, for example, to network traffic congestion. We consider
four different estimators: the time-varying filter of Section IV, the filter with smart sensor of Section VI,
and two filters with constant gains optimized for the two different arrival statistics, λ1 and λ2. Fig. 9 shows
the trace of the empirical expected estimator error covariance, i.e. P emp(t) = 1

N

∑N
i=1 Pt|t, averaged over

N = 1000 Monte Carlo runs. The performance of the time-varying filter seems to be closer to the optimal
filter with static gains then the filter with the smart sensor, although a non negligible gap is visible,
thus suggesting that none of the two bounds are tight. Moreover, this example clearly shows that the
time-varying filter and the filter with smart sensor are optimal regardless the underlaying packet arrival
statistics. Differently, the filters with static gain can achieve good performance only if the underlying
arrival statistics is well known. In fact, filter optimized for λ1 (thick solid line) performs better than the
filter optimized for λ2 (thick dashed line) within the first 50 time steps, but then this situation reverses
when the arrival statistics change. Therefore, besides giving better performance of any static gain filter,
the time-varying filter optimally cope with time-varying packet arrival statistics.

As a final example, we illustrate how these tools can be also used to compare two different communi-
cation protocols. Let us consider a protocol giving rise to arrival statistics of Equation (52) and a protocol
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Fig. 8. Trace of the steady state error covariance for the optimal estimator with constant gains (V N
0 ), for the optimal estimator with a smart

sensor (DN
0 ). The horizontal line P e

∞ corresponds to the trace of the error covariance in the ideal scenario with no delay and no packet
loss, i.e. λh = 1 for all h, while T N

0 is the actual steady state error when using the Kalman gain Ke
∞. The error covariances V N

0 , DN
0 are

unbounded for N < 2, while the covariance P e
∞ is unbounded for N < 4, and they are all cosnstant constant for N ≥ τmax = 15.

giving rise to the following arrival statistics:

λh =

{
( h

10
)3, h = 0, . . . , 10

1, h > 10
(56)

for which τmax = 10, and it is graphically shown in Fig. 7. These two protocols are substantially different:
the first protocol has larger packet delivery with small delay, but also larger overall packet loss than the first
protocol, therefore it is difficult to evaluate which one is better suited for a real-time control application.
In Fig. 10 it is shown the trace of the error covariance V N

0 for the two protocols with respect to the
system dynamics of Equation (53). For a buffer with a short memory the first protocol performs better,
but for a buffer of length N = 10 the second protocol starts performing better as the larger packet delivery
can compensate for a larger delay of arrived packets. If buffer length is further increased, then the first
protocol returns to perform better. This example clearly shows how optimal estimation design can be used
to evaluate and compare the performance of different communication protocols with respect to a specific
real-time application, which is otherwise very difficult if based on intuition or empirical rule-of-thumbs.

VIII. CONCLUSIONS

In this work we proposed a framework to optimally design and analyze the performance of estimators
in networked control system subject to simultaneous random packet delay and packet dropped. We showed
that the optimal estimator is time-varying, stochastic, and does not depend on the specific communication
protocol adopted as long as measurements are time-stamped and can be re-ordered at the estimator site.
Also two alternative optimal estimator designs based on finite memory buffers and constant gains were
described and it was shown that if packet arrival is i.i.d., then the estimators are mean square stable if
and only if the packet loss probability is below a critical value. Therefore, implicitly we also provided
necessary and sufficient conditions about existence of stable estimators. Finally, we presented numerical
algorithms for the computation of the expected estimator error covariance of all the proposed estimators.
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Fig. 9. Time series of trace of trace of empirical error covariance P emp(t) ∼= E[Pt|t] averaged over 1000 Monte Carlo runs for four
different estimators under the same conditions. The packet delay arrival probability distribution changes from λ1 to λ2 at time t = 50. The
filters with static gains are optimized for λ1 and λ2.

The tools developed in this paper are useful both from a control system design perspective and from
a communication design perspective. In fact, from a control perspective they can help to evaluate the
tradeoffs between performance (error covariance), memory requirements (buffer length), and the hardware
resources (“smart” sensor and fast matrix inversion). In particular, the knowledge of the packet arrival
statistics can be used to find the optimal constant gains {KN

k }N
k=0 and thus improving performance. From

a communication perspective, these tools can be used to aid communication protocol design for real-time
applications. In fact, as mentioned in Section I, when designing communication protocols, in particular for
wireless systems, there is tradeoff between packet loss and packet delay. At the moment, the choice between
favoring reduction of overall packet delay or reduction of packet loss is based on heuristics and experience,
and it is not tailored to the specific real-time applications. Therefore, being able to quantitatively measure
performance of different protocols can improve cross-layer design of complex networked control systems.

A possible future avenue of research is the extension of this work to the design of optimal LQG-like
controller design. This is not a trivial step as many important assumptions in standard LQG control, like the
separation principle, do not always hold for NCSs [36]. Another research direction is the implementation
and testing of these tools in real-time control applications for wireless sensor networks. A preliminary
attempt has already been successfully applied to multiple target tracking [48], but extensive experimental
work is still needed.

IX. APPENDIX

Proof of Lemma 1. Some of these statements can be found in [33] or can be derived along similar lines,
therefore only a brief sketch is reported here.

(a) This fact can be verified by direct substitution
(b) This statement follows from previous fact and λA(K −KP )(CPCT + R)(K −KP )T AT ≥ 0.
(c) From previous fact Φλ(P1) = Lλ(KP1 , P1) ≥ Lλ(KP1 , P2) ≥ Lλ(KP2 , P2) = Φλ(P2).
(d) From Equation (35) we have Φλ1(P )− Φλ2(P ) = −(λ1 − λ2)APCT (CPCT + R)−1CPAT ≤ 0.
(e) Uniqueness and strictly positive definiteness of P ∗ follows from the assumption that (A, Q1/2) is

reachable [33].
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Fig. 10. Trace of the steady state error covariance for the optimal estimator with constant gains (V N
0 ) for two different communication

protocols whose packet arrival statistics is given by Equations (52) and (56).

(f) Consider Pt+1 = Φλ1(Pt) and St+1 = Φλ2(St) where P0 = S0 = 0. From fact (c) and (e) it follows
that Pt ≤ St. Also Pt ≤ P ∗

1 and St ≤ P ∗
2 , therefore limt→∞ Pt = P̄ , limt→∞ St = S̄, and P̄ ≤ S̄. From

fact (e) it follows that P̄ = P ∗
1 and S̄ = P ∗

2 , and thus P ∗
1 ≤ P ∗

2

(g-h) Let consider Pt+1 = Φλ(Pt) and St+1 = Lλ(K, St) where P0 = S0 = 0. From fact (c) and
monotonicity of operator Lλ(K,P ) with respect to P we have Pt+1 ≥ Pt, St+1 ≥ St, and Pt ≤ St ≤
S∗ for all t. Since both sequences are monotonically increasing and bounded, then limt→∞ Pt = P̄ ,
limt→∞ St = S̄, P̄ = Φλ(P̄ ), S̄ = Lλ(K, S̄), and P̄ ≤ S̄. From fact (e) it follows that P̄ = P ∗ and
S̄ = S∗. A complete proof for convergence from any initial condition can be obtained along the lines of
Theorem 1 in [33], thus it is not reported here.

(i) The proof for existence of a critical probability λc was given in [33] and it is based on observability
of (A,C) and monotonicity of Φλ(P ) with respect to λ. The proof for λc = λmax when rank(C) = 1 can
be found in [49][32] although it was not explicitly derived for the operator Φλ. The proof for λc = λmin

when C is square and invertible was first proved in [50].
(j) The proof can be found in [33].
(k) Let us consider the linear operator F(P ) = λA(I−KC)P (I−KC)T AT +(1−λ)APAT . Clearly

Lλ(K,P ) = F(P ) + D, where D = Q+λAKRKT AT ≥ 0. Consider the sequences St+1 = Lλ(KP ∗ , St),
Tt+1 = Lλ(KP ∗ , Tt) with initial condition S0 = 0, then T0 ≥ 0. Note that St =

∑t−1
k=0Fk(D) and

Tt = F t(T0)+
∑t−1

k=0Fk(D) for t ≥ 1, where we define F0(D) = D and Fk+1(D) = F◦Fk(D). Therefore
F t(T0) = Tt − St. From fact (g) it follows limt→∞ St = limt→∞ Tt = P ∗, therefore limt→∞F t(T0) = 0,
for all T0 ≥ 0, i.e. the linear operator F() is strictly stable. Now consider the system Ac = A(I −
λKC). The system is strictly stable if and only if limt→∞ At

cx0 = 0, for all x0. This is equivalent to
limt→∞ At

cx0x
T
0 (AT

c )t = Gt(X0) = 0, where X0 = x0x
T
0 ≥ 0 and Gt(X0) = At

cX0(A
T
c )t. Note that

G(X0) = AX0A
T − 2λAX0(AKC)T + λ2AKCX0(AKC)T = F(X0) + λ(λ − 1)AKCX0(AKC)T ≤

F(X0) since λ(λ−1)AKCX0(AKC)T ≤ 0. Since we just proved that limt→∞F t(X0) = 0 for all X0 ≥ 0,
then also limt→∞ Gt(X0) ≤ F t(X0) = 0 for X0 = x0x

T
0 , i.e. the system Ac is strictly stable. ¥

Proof of Theorem 2. First we prove by contradiction that there is no stable estimator with constant gains if
A is not strictly stable and λloss ≥ 1−λc. Suppose such an estimator exists, i.e. there exist N and {Kk}N−1

k=0
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such that P
t

t|t is bounded for all t. Since P
t

t+1|t = AP
t

t|tA
T +Q also P

t

t+1|t must be bounded for all t. From
Equations (32) and (33) it follows that P

t

t+1|t is bounded if and only if P
t

t−k+1|t−k for k = 0, . . . , N−1 are
bounded for all t. Therefore, since the bounded sequence St = P

t

t−N+1|t−N needs to satisfy Equation (34),
from Lemma 1(g) follows that S∗ = LλN−1

(KN−1, S
∗) has a solution. From Lemma 1(h) follows that

also P ∗ = ΦλN−1
(P ∗) has a solution. However, by hypothesis λN−1 ≤ sup{λh |h ≥ 0} = 1− λloss ≤ λc.

Consequently, according to Lemma 1(i), P ∗ = ΦλN−1
(P ∗) cannot have a solution, which contradicts the

hypothesis that a stable estimator exists.
Consider now the case when N is such that λN > λc. From Theorem 1(h) it follows that Equations (38)-

(40) are well defined and have a solution. From Lemma 1(g) it follows that limt→∞ P
t

t−k+1|t−k = V N
k

for the optimal gains {KN
k }N−1

k=0 , and limt→∞ P
t

t−k+1|t−k = TN
k when using generic gains {Kk}N−1

k=0 .
From Lemma 1(h) it follows that V N

N−1 ≤ TN
N−1. From Lemma 1(c) we have V N

N−2 = ΦλN−2
(V N

N−1) ≤
LλN−2

(KN−2, V
N
N−1) ≤ LλN−2

(KN−2, T
N
N−1) = TN

N−2. Inductively, it is easy to show that V N
k ≤ TN

k for
all k = 0, . . . , N − 1.

Now we want to show that V N+1
0 ≤ V N

0 . From Lemma 1(f) and the property λN+1 ≥ λN follow also
that V N+1

N+1 = ΦλN+1
(V N+1

N+1 ) ≤ V N
N = ΦλN

(V N
N ). Therefore V N+1

N = ΦλN
(V N+1

N+1 ) ≤ ΦλN
(V N

N ) = V N
N and

inductively V N+1
k ≤ V N

k for all k = N, . . . , 0 which proves the statement.
Finally, if τmax is finite, then λk = λτmax for all k ≥ τmax. Assume N > τmax, then V N

N = ΦλN
(V N

N ) =
ΦλN−1

(V N
N ) = V N

N−1 = ΦλN−1
(V N

N−1) = ΦλN−2
(V N

N−1) = V N
N−2 = . . . = V N

τmax
= Φλτmax

(V N
τmax

). Since
V τmax

τmax
= Φλτmax

(V τmax
τmax

), then by Lemma 1(e) we have that V τmax
τmax

= V N
τmax

. According to Equation (40)
we also have V τmax

k = V N
k for k = τmax, . . . , 0, which concludes the theorem. ¥

Proof of Theorem 4. The proof follows along the same lines of Theorems 1 and 2. Let us consider the
following estimator:

x̆t
t−N |t−N = (1− γt

t−N)Ax̆t−1
t−N−1|t−N−1 + γt

t−N x̂s
t−N

x̆t
t−k|t−k = (1− γt

t−k)Ax̆t
t−k−1|t−k−1 + γt

t−kx̂
s
t−k, k = N−1, . . . , 0

x̆t
−k|−k = x̄0, γt

−k = 0, x̂s
−k = 0

It should be clear that by construction x̂d
t = x̆t

t|t if and only if N ≥ τmax. If N < τmax, then the estimator
x̂d

t cannot be optimal. Let us consider the estimator error defined as ĕt
k+1|k = xk+1 − Ax̆t

k|k that can be
written as:

ĕt
k+1|k = xk+1 − A

(
(1− γt

k)Ax̆t
k−1|k−1 + γt

kx̂
s
k

)
= (1− γt

k)(xk+1 − AAx̆t−1
k−1|k−1) + γt

k(xk+1 − Ax̂s
k)

= (1− γt
k)(A(xk − Ax̆t−1

k−1|k−1) + wk) + γt
ke

s
k = (1− γt

k)(Aĕt
k|k−1 + wk) + γt

ke
s
k

and its error covariance P̆ t
k+1|k = E[ĕt

k+1|kĕ
tT

k+1|k | γt
k, . . . , γ

t
1] is then given by:

P̆ t
t−N+1|t−N = (1− γt

t−N)(AP̆ t−1
t−N |t−N−1A

T + Q) + γt
t−NP e

t−N

P̆ t
t−k+1|t−k = (1− γt

t−k)(AP̆ t
t−k|t−k−1A

T + Q) + γt
t−kP

e
t−k, k = N−1, . . . , 0

P̆ t
−k|−k = P0, γt

−k = 0

The error covariance P̆ t
t+1|t is then stochastic and depends on the arrival sequence. However since it is

linear in the arrival sequence γt
k, it is possible to compute the expected error covariance E[P̆ t

k+1|k] = P̂ t
k+1|k

as follows:

P̂ t
t−N+1|t−N = (1− λN)AP̂ t−1

t−N |t−N−1A
T + (1− λN)Q + λNP s

t−N

P̂ t
t−k+1|t−k = (1− λk)AP̂ t

t−k|t−k−1A
T + (1− λk)Q + λkP

s
t−k, k = N−1, . . . , 0

P̂ t
−k|−k = P0, γt

−k = 0
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Since limt→∞ P e
t−k = P e

∞ where P e
∞ = Φ1(P

e
∞), then limt→∞ P̂ t

t−N+1|t−N = DN
N exists and it is finite if

and only if
√

1− λNA is stable, i.e.
√

1− λN |σu
max(A)| < 1. This is equivalent to λN > 1 − 1

|σu
max(A)|2 .

Such λN exists if and only if λloss < 1
|σu

max(A)|2 . If this condition holds then Equations (50)-(51) follow.
Also it is simple to show that {DN

0 }∞N=0 is a decreasing function of N and bounded from below,
therefore limN→∞ DN

0 = D∞. Moreover, since by construction limN→∞ x̂d
t = x̆t

t|t, then also E[ed
t e

dT

t ] =

limN→∞ P̂ t
t+1|t, and therefore it follows limt→∞ E[ed

t e
dT

t ] = D∞. Following Theorem 2, it is easy to show
that if τmax < ∞, then D∞ = Dτmax

0 = DN
0 , for all N ≥ τmax, which concludes the theorem. ¥
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