
Descendants, Ancestors, Children and Parent:
A Set-Based Approach to Efficiently Address XPath Primitives

Nicola Ferro and Gianmaria Silvello

Department of Information Engineering, University of Padua.
Via Gradenigo 6/B, 35131, Padova, Italy.

Abstract

XML is a pervasive technology for representing and accessing semi-structured data. XPath is the
standard language for navigational queries on XML documents and there is a growing demand for
its efficient processing.

In order to increase the efficiency in executing four navigational XML query primitives, namely
descendants, ancestors, children and parent, we introduce a new paradigm where traditional ap-
proaches based on the efficient traversing of nodes and edges to reconstruct the requested subtrees
are replaced by a brand new one based on basic set operations which allow us to directly return
the desired subtree, avoiding to create it passing through nodes and edges.

Our solution stems from the NEsted SeTs for Object hieRarchies (NESTOR) formal model,
which makes use of set-inclusion relations for representing and providing access to hierarchical
data. We define in-memory efficient data structures to implement NESTOR, we develop algorithms
to perform the descendants, ancestors, children and parent query primitives and we study their
computational complexity.

We conduct an extensive experimental evaluation by using several datasets: digital archives
(EAD collections), INEX 2009 Wikipedia collection, and two widely-used synthetic datasets (XMark
and XGen). We show that NESTOR-based data structures and query primitives consistently out-
perform state-of-the-art solutions for XPath processing at execution time and they are competitive
in terms of both memory occupation and pre-processing time.
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1. Introduction

The eXtensible Markup Language (XML) [59, 60] is the standard technology for semi-structured
data representation, processing, and exchange and it has been widely used and studied in several
fields of computer science, such as databases, information retrieval, digital libraries, and the Web.

An XML document is a hierarchy which contains elements nested one inside another and it is
naturally modeled as a tree, where elements are nodes and parent-child relations are edges among
them. When it comes to process and access XML, fundamental operations rely on the retrieval of
a subset of the XML nodes or the data contained in them by satisfying path constraints which are
typically expressed in the XML Path Language (XPath) [56, 61].

Given the performance demands of XML processing and the complexity of XPath [42], efficient
path queries which involve navigation and subtree reconstruction – i.e., the backbone of XPath –
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are required in order to speed-up the access to XML data and to develop efficient end-services.
Several solutions have been proposed over time to improve efficiency in processing XML path
queries and all of them resort to focus on navigational aspects in some sense: use of secondary
indexes to speed-up tree navigation and node selection [11, 41, 64]; node labeling techniques to
avoid expensive joins and recursion arising from navigation in the tree representation produced
by shredding XML into relation tables [2, 15, 45]; and, alternative methods to parse and navigate
in-memory DOM trees [63].

In this paper we propose a paradigm shift for XPath querying by departing from the above
mentioned navigational-like approaches and introducing a brand new one, relying on basic set op-
erations. Instead of using edges between nodes or adjacency matrices for representing a tree, we
represent a hierarchy as a family of nested sets where the inclusion relationship among sets allows
us to express parent/child relations and each set contains the elements belonging to a specific
sub-hierarchy. In this way, rather than navigating in a tree and reconstructing sub-hierarchies
by traversing nodes and edges, we answer queries by serving the correct subset(s) which already
contain all the requested elements (sub-hierarchy) just in one shot or may request minimal inter-
section/union operations to obtain the desired elements, thus avoiding the need to collect them
one-by-one as it happens in the other approaches. This method provides a sizeable improvement
in the time requested for answering a navigational query and it is competitive in terms of space
occupation and pre-processing time.

More in detail, the proposed solution is based on the NEsted SeTs for Object hieRarchies
(NESTOR) formal model [21] which is an alternative way, based on the notion of set-inclusion,
for representing and dealing with hierarchical data, as XML is. Since XPath supports a number
of powerful modalities and many applications do not need to use the full language but exploit
only some fragments [5, 6, 27, 28], we focused this work only on those XPath fragments which,
according to [5]: (i) support both downward and upward navigation; (ii) are recursive, thus allowing
navigation also along the ancestor and descendant axes and not only parent and child axes; and
(iii) are non-qualified, i.e. without predicates testing properties of another expression. Therefore,
we focus on efficient in-memory execution of four kinds of navigational queries over hierarchical
data – descendants, ancestors, children, and parent of a given element – which represent a basic
means for accessing and retrieving data from XML.

The original contributions of the paper consist of the in-memory data structures and algorithms
needed to instantiate the NESTOR formal model and perform the navigational queries listed above
as well as a thorough experimentation against state-of-the-art solutions.

We present three alternative in-memory dictionary-based data structures instantiating the
NESTOR model: Direct Data Structure (DDS), Inverse Data Structure (IDS), and Hybrid Data
Structure (HDS). For each query primitive we have two different modalities: the set-wise modality
where we access the structure of the XML tree and the element-wise modality where we access
the content of the XML tree. These data structures are defined with no assumption on document
characteristics and underlying physical storage and they could be employed by any existing solu-
tions for speeding-up XPath primitives execution. For each data structure and modality, we define
algorithms for performing the descendants, ancestors, children, and parent operations and we study
their computational complexity.

We compare the four target query primitives against state-of-the-art in-memory implementa-
tions of XPath – three java-based solutions (i.e., Xalan, Jaxen and JXPath) based on in-memory
DOM navigation and a highly-efficient native XML database management system based on node
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labeling (i.e., BaseX)– in order to assess the benefits in terms of faster execution times. For exper-
imentation, we used three different datasets adopted in the digital libraries, information retrieval
and database fields respectively:

• digital archives: the main characteristic of archives lies in their hierarchical structure used
to retain the context of the archival records. Encoded Archival Description (EAD) [48] is
an XML-based representation of archives used to provide access to archival data. We have
chosen digital archives since they are a challenging domain within digital libraries, which
requires the use of all the four target query primitives and consist of deeply nested XML
files.

• collaborative knowledge: Wikipedia is a mass collaboration effort for the creation and
spreading of knowledge [19]. The INitiative for the Evaluation of XML Retrieval (INEX) [3,
22] prepared in 2009 the INEX Wikipedia Collection [50], an XML-ified and semantically-
enriched version of the English Wikipedia. The 2009 INEX Wikipedia collection has been con-
siderably exploited to investigate several aspects of XML retrieval, including mixing content-
oriented and structure-oriented queries as well as focusing on efficiency [4, 23, 51]. This
domain only focuses on the descendants query primitive.

• synthetic data: since we have a focus on efficiency, synthetic data allow us to investigate
how the proposed data structures and query primitives behave when accessing XML files
several orders of magnitude larger than those typically found in the two previous cases and
XML trees with increasing complexity in terms of depth and the average and maximum
number of children of a node, i.e. the node fan-out. We use two synthetic datasets widely
adopted in the database field: XMark and XGen.

The experimental findings show that the NESTOR-based data structures and query primitives
consistently outperform state-of-the-art XPath solutions at query time and are competitive also
from the pre-processing time and main memory occupation viewpoints. From the results achieved
the set-based approach proves to be highly efficient and can represent a valid alternative to tree
navigation for fast XML querying.

NESTOR data structures and query primitives, as well as the code for conducting the experi-
ments, have been implemented in Java and, to ease reproducibility of the results, they are available
as open source at the following address: http://nestor.dei.unipd.it/.

The rest of the paper is organized as follows: Section 2 provides relevant background informa-
tion; Section 3 describes the NESTOR data structures and the realization of the set-based query
primitives; Section 4 discusses the experimental setup while Sections 5 and 6 present the exper-
imental outcomes. Finally, Section 7 draws some conclusions and provides an outlook for future
work.

2. Background

2.1. XPath Processing

XPath is a language for addressing parts of an XML document; it provides basic facilities for
manipulation of several data types (e.g. strings, numbers and booleans) and adopts a path notation
for navigating through the hierarchical structure of an XML document [56]. XPath forms an
essential part of XPointer [58], XQuery [62] and XSL Transformations (XSLT) [57]. Consequently,
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as an XQuery or an XSLT stylesheet usually contains several XPath queries, “XPath queries are
also probably the most common form of queries on XML” [28].

XPath models an XML document as a tree of nodes and its primary construct is the expression
which is evaluated by an “XPath engine” to yield an object that can be a node-set, a boolean, a
number or a string. One of the main kinds of expressions is the so-called “location path” which
selects a set of nodes relative to a given node (i.e. context node); the output of evaluating such
an expression is the node-set containing the nodes selected by the location path. Each part of an
XPath expression (i.e. location step) can be composed of three parts: (i) an axis, which specifies
the tree relationship between the nodes selected by the location step and the context node; (ii) a
node test, which specifies the node type and expanded-name of the nodes selected by the location
step; and (iii) zero or more predicates that can further refine the set of nodes selected by the
location step.

2.1.1. Secondary Memory XPath Processing

There are four main approaches to XPath processing in secondary memory: (i) mapping to the
relational model also known as XML shredding [18, 43, 49]; (ii) node labeling [2, 15, 45]; (iii) XML
summary-based techniques [1, 52]; (iv) mapping from XPath/XQuery to relational queries.

The mapping to the relational model approach flattens out the hierarchical structure by shred-
ding XML elements and attributes into relational tables and columns. This approach has some
disadvantages due to the number of columns and tables which rapidly increases as the complexity
of the XML files increases. Moreover, the fragmentation of the XML files may require complex and
inefficient relational joins to reconstruct the needed information [44].

Node labeling techniques require the XML to be shred into a relational database, but they
improve on the previous case by pre-computing encodings that exploit the arithmetic properties
of the encodings themselves in order to avoid complex relational joins and recursion. However,
this increase in performance comes at the cost of a not negligible time to compute the encodings
and an additional amount of memory to store them. A relevant example of a commercial native
XML database adopting this solution is eXist-db1 which adopts a variation of the encoding schema
by [39].

XML summary-based techniques, for each keyword and path expression of interest, pre-compute
and score path information, called summaries, and store it. Examples of this approach are TReX [1]
and TopX [52, 53].

Mapping from XPath/XQuery to relational queries methods rely on XML shredding as above
and map XPath/XQuery requests into relational queries. Pathfinder2 is a notable solution [31,
32, 35], which was integrated in MonetDB3 under the name MonetDB/XQuery until 2011. Mon-
etDB/XQuery implemented the XPath accelerator [8, 30, 33], which exploits pre/post order en-
coding techniques [36, 40] to provide efficient access to XML.

All these approaches are not directly comparable to NESTOR, since they do not work in main
memory.

1http://exist-db.org/
2http://db.inf.uni-tuebingen.de/projects/Pathfinder.html
3http://www.monetdb.org/XQuery/
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2.1.2. Main Memory XPath Processing

Xalan4, Jaxen5 and JXpath6 are three state-of-the-art libraries which parse an XML file, create
an in-memory Document Object Model (DOM) tree [55], and evaluate XPath expressions over it.

BaseX7 is a state-of-the-art Java-based native XML database, which offers both in-memory
and secondary-memory storage. Its main characteristic is the adoption of an ad-hoc indexing
schema inherited from the pre/post order encoding proposed by [30] and implemented also in the
MonetDB/XQuery database [8, 33]. The main difference between BaseX and MonetDB/XQuery
resides in the optimization introduced by BaseX for the parent and ancestor axes, which grants
a constant execution time access for them. Furthermore, BaseX uses compact memory structures
and performs compression based on dynamic recognition of data types which, for instance, allows
it to determine if a text node is a string or an integer to enable compact storage of the element.
[29] compared BaseX against MonetDB/XQuery and eXist-db and found that in most cases BaseX
was outperforming them in terms of both indexing and query evaluation time.

For all these reasons, Xalan, Jaxen, JXpath, and BaseX are very well-suited as a comparison
for the NESTOR-based data structures we present in this work.

2.2. The NESTOR Model

The NESTOR model is defined by two set-based data models: The Nested Set Model (NS-M)
and the Inverse Set Data Model (INS-M). These models are defined in the context of set theory
as a collection of subsets, their properties are formally proved as well as their equivalence to the
tree in terms of expressive power [20, 21].

The most intuitive way to understand how these models work is to relate them to the tree.
In Figure 1b we can see how a sample XML snippet can be represented through a tree and how
this tree can be mapped into the NS-M and the INS-M. The XML elements are represented by
nodes in the tree and by sets in the NS-M and the INS-M; the text data within each XML node
are represented as lists of elements within each tree node and as elements belonging to sets in the
NS-M and the INS-M.

In the NS-M each node of the tree is mapped into a set, where child nodes become proper
subsets of the set created from the parent node. Every set is subset of at least of one set; the set
corresponding to the tree root is the only set without any supersets and every set in the hierarchy
is subset of the root set. The external nodes are sets with no subsets. The tree structure is
maintained thanks to the nested organization and the relationships between the sets are expressed
by the set inclusion order. Even the disjunction between two sets brings information; indeed, the
disjunction of two sets means that these belong to two different branches of the same tree.

The second data model is the INS-M and we can see that each node of the tree is mapped
into a set, where each parent node becomes a subset of the sets created from its children. The set
created from the tree’s root is the only set with no subsets and the root set is a proper subset of all
the sets in the hierarchy. The leaves are the sets with no supersets and they are sets containing all
the sets created from the nodes composing tree path from a leaf to the root. An important aspect
of INS-M is that the intersection of every couple of sets obtained from two nodes is always a set
representing a node in the tree. The intersection of all the sets in the INS-M is the set mapped
from the root of the tree.

4http://xml.apache.org/xalan-j/
5http://jaxen.codehaus.org/
6http://commons.apache.org/proper/commons-jxpath/
7http://www.basex.org/
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Figure 1: (a) A sample XML representation; (b) Tree representation of the XML; (c) NS-M representation; (d)
INS-M representation.

There are some apparent similarities between the nested sets approach taken by NESTOR and
some encodings used by relational databases. Indeed, the nested sets graphical representation we
use for the Nested Set Model (NS-M) in Figure 1a has been used also by [10] as an intuitive means
to explain how integer interval encodings work. However, while for integer interval encodings this
is just a way of “teaching” them, in the case of NESTOR the inclusion relationship among sets is
a constituent element of the model.

3. Data Structures and Primitives for Fast XML Access

In this section we propose three general-purpose in-memory data structures for putting NESTOR
into action by providing general implementations of the set-based data models.

3.1. Data Structures

Let us consider a collection of subsets C which can be defined according to the NS-M as well
as the INS-M – refer to Figure 1 for a graphical example. The data structures for producing
C have to take into account the structural and the content components of such a collection of
subsets. From the structural point-of-view, the information that has to be stored regards the
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Figure 2: NESTOR data structure instances of the tree shown in Figure 1.

inclusion dependencies between the sets; whereas, from the content point-of-view, we need to store
the materialization of the sets (i.e. the elements belonging to each set).

In the following, without any loss of generality we assume that: (i) every element and set in C
is identified by a unique handle, which is a label allowing us to identify and facilitate referencing
them. Each set is associated with a capital letter and each element is associated with an integer
number; (ii) the materialized sets are stored as sorted arrays of integers; (iii) for each set H in C
we store two arrays of values, one containing the information about the supersets of H, and the
other for the direct subsets8 of H. These arrays are ordered by decreasing length; (iv) the arrays
are grouped together in three different dictionaries.

With this approach every element in an array can be accessed in constant time (i.e. O(1)).
The dictionaries are implemented by means of hash tables which guarantees O(1) worst-case time

8A direct subset of a set A ∈ C is defined as B ∈ C such that B ⊂ A and @C ∈ C | B ⊂ C ⊂ A.
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Table 1: Space occupation of the data structures in a worst-case scenario where we have m sets structured as a chain
and n elements.

DDS IDS HDS

Space O(m2 + n2) O(m2 + n2) O(m + n)

for lookup [26].
For a collection of subsets C we consider the following three main dictionaries:

• Materialized Dictionary (MD), containing the materialization of the sets in C.

• Direct-Subsets Dictionary (DD), containing the direct subsets of each set in C.

• Supersets Dictionary (SD), containing the supersets of each set in C.

These three dictionaries are employed in all the three proposed data structures – i.e. Direct
Data Structure (DDS), Inverse Data Structure (IDS) and Hybrid Data Structure (HDS). DDS is a
structure built around the constraints defined by the NS-M as depicted in Figure 2a. If we consider
the tree shown in Figure 1a and modeled with the NS-M reported in Figure 1b, we can see that
the materialized sets (MD) report the integer values corresponding to all the elements belonging
to each set; we know that in the NS-M the set corresponding to the root of the tree contains all
the elements of the tree. Indeed, we can see in Figure 2a that A contains all the elements in the
collection. Furthermore, for each set, DD contains all its direct subsets – e.g. set C contains the sets
D, E, F which are its direct subsets as shown in Figure 1b. SD contains the supersets of each set –
e.g. D contains the sets C, A.

IDS is a structure built around the constraints of INS-M as reported in Figure 2b. In this case
we can see that the materialized sets MD contain the elements belonging to the sets. As we can see
in the DDS the set cardinality in MD decreases while going from the top – i.e. set A – to the bottom
– i.e. sets G, H, I, L – whereas in IDS the cardinality increases. Furthermore, for each entry in DD

there is just one set; indeed, in the INS-M each set has at most one direct subset with the sole
exception of the set representing the root of the tree which has no subsets. SD reports for each set
all its supersets – e.g. F contains G, H, I, L which are its supersets as shown in Figure 1c.

HDS can be seen as a mixture between DDS and IDS; indeed, its DD corresponds to the DD

dictionary of DDS and its SD corresponds to the DD of IDS. Each set in MD is the result of the set
difference between a set and its direct superset in the MD of IDS – e.g. in the MD of IDS the set
A = [1] is the direct superset of C = [1, 2, 3], thus in the MD of HDS it is C = [2, 3]. This is the major
difference between HDS and the other two data structures and its aim is to reduce the number of
set intersections in the element-wise primitives as explained below. HDS has the positive effect of
reducing the space required by MD because for each set it stores only the elements that exclusively
belongs to that set; by contrast, DDS stores all the elements belonging to a set and all its subsets
and IDS stores all the elements belonging to a set and its supersets. HDS represents a trade-off
between the in-memory space occupied by the structure and the time required for executing the
primitives. From the set-wise point-of-view HDS takes the DD from the DDS and its SD is the
DD taken from the IDS; in both cases these are the dictionaries occupying less memory space.
Furthermore, for DDS and IDS, some information stored in DD and SD can be also derived from
those in MD, whereas this cannot be done for the HDS which, in this respect, is less redundant than
DDS and IDS.
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Now we can determine the worst-case space occupation of these data structures reported in
in Table 1 for the worst-case scenario. If we consider a collection of subsets composed of m sets
and n elements, the worst-case scenario – for all the structures we presented – happens when the
collection is structured as a chain where m = n.

Therefore, let us consider a DDS composed by n elements belonging to m sets with a chain
structure say, {A1, . . . , Am} such that Am ⊂ Am−1 ⊂ . . . ⊂ A1 and |Am| < |Am−1| < . . . < |A1|.
In this case, |A1| = n, |A2| = n− 1, . . . , |Am| = 1, thus we need to store n(n+ 1)/2 elements – i.e.
O(n2) size – for the materialized sets in the MD dictionary.

Furthermore, we need to store 2m arrays of sets, where m sets contain the information about
the direct subsets and m contains the information about the supersets. The arrays of direct
subsets occupy O(m) size because every set has at most one direct set when we are considering a
chain structure; the arrays of supersets occupy O(m2) size because Am has zero supersets, Am−1
has one superset, so on and so forth until A1 which has m supersets. Thus, we need to store
O(m(m+ 1)/2) = O(m2) sets. This means that in the worst-case scenario we need to store O(n2)
elements and O(m+m2) = O(m2) sets.

The space occupation analysis for the IDS is equal to the DDS one, since in the worst-case
scenario these two structures are equivalent. HDS inherits the DS dictionary from DDS which
stores O(m) sets in the worst-case and DD dictionary from IDS which stores O(m) sets in the
worst-case, thus it needs to store O(m+m) = O(m) sets. Finally, each array in the MD dictionary
contains only the elements that belong to a given sets, thus it needs to store O(n) elements.

However, by means of the experimental analysis we will show how both real-world and synthetic
datasets are far to be structured as chains and that the space required by the dictionary-based
data structure is linear in the number of sets and elements.

3.2. NESTOR Primitives

When we deal with a collection of sets defined by the NESTOR model, we can distinguish
between set-wise and element-wise primitives. As above, let us consider a general collection of
sets C with a total number of m ∈ N sets, n ∈ N elements and where H is a set in the collection;
then in the NESTOR model we define five set-wise primitives, and six element-wise primitives.
A formal proof of the complexity of the different primitives is reported in Appendix A, along
with their pseudo-code. In the following we add the suffix DDS, IDS or HDS to the name of the
primitives when we refer to a specific data structure implementation of that primitive – e.g. the
descendant primitive is indicated as Descendants-DDS when we refer to its DDS implementation,
as Descendants-IDS when we refer to its IDS implementation and as Descendants-HDS when
we refer to its HDS implementation.

Set-Wise Primitives

In Table 2 we present the references to the algorithms implementing the set-wise primitives in
the three data structures, along with their computational complexities.

The worst-case scenario for all the set-wise primitives is represented by a collection of sets
structured as a chain – i.e. an XML file where each node has one and only one child. Let us
consider the DDS first. For the Descendants-DDS(H) primitive the worst-case input set H is
the set corresponding to the root of the XML file because the operation has to return all the sets
in the given collection. The algorithm starts by asking for the children of H and then it iterates
over all the children of the children of H and so on and so forth until the last set in the collection
is processed.
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Table 2: Set-wise primitives and their computational complexities where m is the total number of sets in the collection
of subsets.

Set-wise Primitive Algorithms

DDS IDS HDS

Reference Cost Reference Cost Reference Cost

Descendants(H) Alg. 6 O(m) Alg. 8 O(1) Alg. 6 O(m)
Ancestors(H) Alg. 4 O(1) Alg. 10 O(m) Alg. 13 O(m)
Children(H) Alg. 5 O(1) Alg. 11 O(m) Alg. 5 O(1)
Parent(H) Alg. 7 O(1) Alg. 9 O(1) Alg. 12 O(1)

All other set-wise primitives are implemented to run in constant time for any collection of
subsets and input set. Indeed, the Ancestors-DDS(H) has to access the supersets dictionary
and to return the entry corresponding to set H. As anticipated in the Section 1, while with
traditional navigational approaches this operation calls for recursive algorithms, the DDS carries
out this operation avoiding any recursion and is a clear example of the paradigm shift realized by
NESTOR.

Similarly, Children-DDS(H) has to return the entry for set H in the direct-subset dictionary.
The Parent-DDS primitive can be implemented in O(1) time by exploiting the fact that every
set in a collection implemented by the DDS has at most one direct superset, and that the arrays
in the superset dictionary are ordered by decreasing cardinality.

The Descendants-IDS(H) primitive is implemented to run in constant time because it returns
the entry relative to set H in the supersets dictionary; similarly the Parent-IDS(H) has to return
the entry of set H in the direct-subsets dictionary.

The Ancestors-IDS algorithm exploits the fact that each set in the IDS has at most one
direct subset [21]. In the worst-case scenario, where the input set H is the lowest set of a chain
and all the sets in the given collection are its supersets, we need to iterate over all the sets; despite
the linear computational complexity, in the experimental section we will see that in practice this
algorithm scales very well because all real-world datasets have a structure which is very different
from a chain. The Children-IDS computational complexity depends on the number of supersets
of the input set H which in the worst-case scenario corresponds to the cardinality of the input
collection.

The HDS inherits the dictionary DD from the DDS and for this reason the algorithms imple-
menting Descendants-HDS(H) and Children-HDS(H) are exactly the same as we described
for DDS. By contrast, the algorithms implementing Parent-HDS(H) and Ancestors-HDS(H)
share worst-case and computational time with the ones described for the IDS. Parent-HDS(H)
only has to return the entry for set H in the SD dictionary (note that with IDS we had to re-
turn the entry in DD); Ancestors-HDS(H) works exactly as Ancestors-IDS(H), although to
determine all the ancestors of a set it iterates over the Parent-HDS(H) primitive and not over
Parent-IDS(H) (cfr. Algorithm 13).

Element-Wise Primitives

In Table 3 we present the references to the algorithms implementing the element-wise primitives
in the DDS, IDS and HDS along with their computational complexities.

The Elements(H) primitive is implemented with the same algorithm for the three data struc-
tures. It runs in constant time because it returns the entry corresponding to set H in the mate-
rialized dictionary. The Descendant(H) primitive is implemented to run in O(1) for the DDS
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Table 3: Element-wise primitives and their computational complexities where m is the total number of sets and n is
the total number of elements in the collection of subsets.

Element-wise Primitive Algorithms

DDS IDS HDS

Reference Cost Reference Cost Reference Cost

Elements(H) Alg. 3 O(1) Alg. 3 O(1) Alg. 3 O(1)
Descendants(H) Alg. 14 O(1) Alg. 18 O(m + n) Alg. 23 O(m + n)
Ancestors(H) Alg. 15 O(m + n) Alg. 19 O(1) Alg. 25 O(m + n)
Childrens(H) Alg. 16 O(n) Alg. 20 O(m + n) Alg. 22 O(n)
Parent(H) Alg. 17 O(n) Alg. 21 O(n) Alg. 24 O(1)

because it returns the entry of set H in the materialized dictionary. Indeed, the DDS is built in
such a way that each set contains all the elements of its descendants; therefore, it is possible to
answer this primitive without browsing the collection of sets (without browsing the hierarchy) or
without passing through any set-wise primitive. As above, this is another example of the depar-
ture of NESTOR from traditional navigational approaches, since it avoids the recursion needed to
collect element by element and returns all the requested elements in one-shot instead.

The same idea is exploited for realizing the Ancestor(H) element-wise primitive in the IDS.
Indeed, in the IDS, each set contains all the elements of its ancestors; therefore, it is possible to
answer this element-wise primitive with a single operation. We can see how these two primitives are
independent with respect to their correspondent set-wise primitives. HDS cannot answer either
of these two element-wise primitives with a single operation, because for the Descendant(H)
primitive it has to iterate over all the subsets of H in the MD dictionary and return the elements
for each set; for the Ancestor(H) primitive HDS has to do the same, but it iterates on all the
ancestors of H rather than the descendants. The worst-case computational complexity for both
these primitives is O(n+m).

On the other hand, the Ancestor(H) primitive runs in O(n+m) time for the DDS. It returns
all the elements which belong to the sets which are ancestors of H. From the content point-of-view
this is the most expensive primitive for the DDS because it has to make several unions between
the supersets of H and then subtract from the result set the elements belonging to the subsets
of H. The performances of this algorithm are improved by the possibility of exploiting the DDS
characteristics to speed up the union and the difference operations.

A similar behavior is found in the Descendant(H) primitive for the IDS, where the algorithm
has to join all the subsets of the input set H by removing common elements. From the definition of
IDS we know that every couple of sets in IDS shares at least one element; therefore, unions in the
IDS are quite expensive and in the worst-case scenario there are many of them. We find the same
behavior for the Children-IDS element-wise primitive that indeed has the same computational
complexity.

HDS behaves like IDS for the Descendant(H) primitive and like DDS for the Ancestor(H)
primitive. This data structure is well-suited for answering the Parent(H) primitive, because it
only has to return the entry of set H in the MD dictionary and thus it requires constant time also in
the worst-case scenario; this is an improvement over both DDS and IDS and it is mainly due to the
fact that HDS, in this case, does not require all the sets differences required for DDS and IDS. For
the Children(H) primitive HDS requires a computational time linear in the number of elements
that the children sets of H contain; we can see that it performs as well as DDS and better than
IDS. As we can see HDS is a good trade-off solution between DDS and IDS that are nonetheless
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optimized for getting the descendants of a set in the former case and the ancestors in the latter.
All the remaining element-wise primitives have a computational complexity which depends

only on the number of elements in the collection of subsets. This fact stresses the low correlation
between structure and content in the NESTOR model. These algorithms exploit the set-wise
primitives which run in constant time and then perform some set-theoretical unions and differences
to return the desired set of elements; the complexity of these algorithms is dominated by these set-
theoretical operations. It is worthwhile highlighting that the number of set-theoretical operations
to be performed is very low when compared to the number of sets in the considered experimental
collections of sets.

4. Experimental Setup

NESTOR query primitives on the three proposed in-memory data structures have been imple-
mented in the Java programming language9. As anticipated in Section 2, we compare NESTOR
against the Xalan 2.7.1, Jaxen 1.1.6, and JXpath 1.3 libraries and the BaseX 7.9 in-memory XML
database.

Note that the nodes of an XML file are mapped into sets in NESTOR and the text elements and
attributes into elements; for this reason set-wise primitives in NESTOR correspond to node-wise
operations in XPath and element-wise primitives to text-wise operations.

We use the following evaluation measures for comparing the different solutions:

• evaluation time: XPath query processing is composed by compilation and evaluation. We
consider only the time for evaluating the query and not the compilation time;

• building time: is the time required for parsing the XML files and creating the corresponding
in-memory data structures;

• space occupation: is the amount of main memory needed for the created data structures.

Our primary measure is the evaluation time, since the focus of the paper is on efficient process-
ing, but the building time and space occupation are needed to understand the trade-off between
performances and resource consumption. We repeat each experiment 100 times and we report
average values for the above evaluation measures.

The analysis was conducted by choosing the worst possible input set for each primitive, thus
if a query performs well in this case it is guaranteed that it performs in the same way or better
in the other cases. As an example the worst input set for the structural descendant query for the
DDS is the one corresponding to the root of the XML tree, because in this case the primitive has
to return all the sets (nodes) in the given dataset.

We used a six-processor 3.33GHz Intel(R) Xeon(R) machine with 96GB of RAM running Java
1.6. We adopted the Java System.nanoTime() method to measure the execution times; its resolu-
tion depends on the operating system which in our case is Linux Kernel 2.6.35. We measured the
resolution of System.nanoTime() by means of the method proposed in [17] with 100 iterations,
determining a time resolution of 1.5 µsec. This timer resolution affects the measure of the execution
times in the range of [10−4, 10−3] msec.

Appendix B reports all the details and statistics about how the test queries have been defined
for the considered datasets.

9http://nestor.dei.unipd.it
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4.1. Datasets

4.1.1. Digital Archives

Archival documents are strongly interlinked and their relationships have to be retained to pre-
serve their informative content and provide understandable and useful information over time [25].
According to the International Standard for Archival Description (General) (ISAD(G)) [34], archival
description proceeds from general to specific as a consequence of the provenance principle and has
to show, for every unit of description (i.e. a record), its relationships and links with other units
and to the general fonds10, taking the form of a tree.

The digital encoding of ISAD(G) is the Encoded Archival Description (EAD) [48], which is an
XML description of a whole archive, reflects the archival structure, holds relations between entities,
retains context and provides the archival content.

XPath processing is central for accessing digital archival descriptions, indeed it is successfully
used for searching and selecting portions of EAD files. For example, the Retrieving EADs More
Efficiently (README) system [65] exploits XPath and XML retrieval techniques within EAD files
and the Cheshire311 open source XML search engine [38], adopted by the UK Archives Hub, uses
XPath expressions in the indexing phase for extracting data from EAD files.

We selected five EAD collections that provide us with real-world archival data:

• Archive Hub (AH 2005)12: a 2005 snapshot of the archival hub which is a gateway to many
of the UK’s richest historical archives.

• International Institute of Social History (IISG 2005)13: a 2005 snapshot of the EAD
archive of the social history institute of the Royal Netherlands Academy of Arts and Sciences.

• Nationaal Archief (NA 2008)14: a 2008 snapshot of the EAD files of the National Archives
of the Netherlands.

• Library of Congress (LoC 2014)15: a 2014 snapshot of the EAD finding aids of the Library
of Congress.

• University of Maryland (UniMa 2014)16: a 2014 snapshot of the EAD finding aids of
manuscript and archival collections at the University of Maryland Libraries.

These collections of archival data come from relevant institutions which are also typically ahead
in the adoption and promotion of new standards and shared technologies. The archives have also
been selected on the basis of their size and heterogeneity, in order to test NESTOR in a wide range
of settings; we have also resorted to general hubs (AH2005) capable of aggregating archives from
smaller institutions, in order to extend the spectrum of our investigations.

Table 4 reports the total number of EAD files, the max and median number of nodes, the depth,
the size and the max fan out for each collection.

10A fonds is viewed primarily as the conceptual whole that reflects the organic process in which a records creator
produces or accumulates series of records.

11http://cheshire3.org/
12http://archiveshub.ac.uk/
13http://socialhistory.org/nl
14http://www.nationaalarchief.nl/
15http://findingaids.loc.gov/
16http://digital.lib.umd.edu/
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Table 4: Statistics of the EAD archival collections for files bigger than 10kB.

Collection Files
Nodes Depth Size (KB) Max Fan Out

max median max median max median max median

AH 2005 233 14,648 158 21 6 760 15 1,332 23
IISG 2005 798 52,213 513 17 9 2,290 34 2,601 21
NA 2008 1681 160,061 880.5 18 9 9,750 58 10,271 34
LoC 2014 2083 188,862 685 18 10 15,510 58 5,000 32
UniMa 2014 662 69,766 711 10 8 2,960 40 6,861 43

The experiments conducted on collections that are so diverse in size and characteristics will show
how the advantages in terms of allowed operations and performances of NESTOR over commonly
adopted XPath-based solutions are substantial when we deal with large, deep and complex archives
as well as with small and shallow ones.

4.2. Collaborative Knowledge

INEX adopts the traditional Cranfield paradigm [14] which make use of experimental collections
composed of a corpus of documents (i.e. XML files in the INEX case), a set of topics and a set of
relevance judgments stating whether or not a document is relevant to a given topic.

A topic is the expression of a user information need and consists of two parts: the first is
focused only on content and best match retrieval, where Content-Only (CO) queries are used and
effectiveness is the primary concern; the second is focused also on the structure and exact-match
retrieval, where Content-And-Structure (CAS) queries are used and efficiency is also a concern.
CAS queries are expressed in the Narrowed Extended XPath I (NEXI) language, which is very
similar to XPath but restricted to the exclusive use of the descendant axis and extended for best-
match retrieval [54].

The INEX 2009 Wikipedia Collection [23, 50] is particularly challenging from the efficiency
point-of-view since “the collection has an irregular structure with many deeply nested paths, which
turned out to be challenging for most systems” [4].

An example of an INEX CAS query is the following (i.e. topic 20 of INEX 2009):

//article[about(.,IBM)]//sec[about(., computer)]

From this topic we can derive the structure query which is: //article//sec asking for all the
descendants of “sec” elements which are also “article” descendants related to IBM and computers.

We identify three query types that can be derived from INEX topics. All the structural parts
of the 115 INEX 2009 topics can be answered by using different combinations of the NESTOR
element-wise descendants primitive.

The first query type is called descendant query, an example taken from IXEX XPath queries
is //article. This query asks for all the descendants of the XML element “article”. The second
query type is called union descendants query, an example taken from IXEX XPath queries is
//(sec|header); this query introduces the boolean operator “or” indicated with the pipe, asking
for all the text elements which belong to either sec or header and to their descendants. The third
query type is called intersection descendants query, an example taken from IXEX XPath queries
is //sec//p which asks for all the elements belonging to the p elements and its descendants with
the constraint that the p elements considered must be descendants of a sec element.

The INEX Wikipedia collection is composed of about 3 million files for a total space occupation
on disk of 50.1 GB. In addition, there are more than 700 million text elements of which about 102
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Table 5: Statistics of the INEX 2009 Wikipedia collection.

Files
Nodes Depth Size (KB) Max Fan Out

max median max median max median max median

2,666,190 69,560 136 85 18 4,384 8.15 5,401 14

Table 6: Statistics of the twelve selected XMark synthetic files.

Size max average

(MB) # nodes depth fan-out fan-out

XMark-01 0.581 8,518 12 127 3.69
XMark-02 1.182 17,132 12 255 3.70
XMark-03 2.385 33,140 12 510 3.60
XMark-04 4.840 67,902 12 1,020 3.65
XMark-05 9.595 134,831 12 2,040 3.65
XMark-06 18.855 265,975 12 4,080 3.66
XMark-07 38.145 533,750 12 8,160 3.66
XMark-08 76.016 1,066,768 12 16,320 3.66
XMark-08 152.350 2,140,644 12 32,640 3.66
XMark-10 305.191 4,276,108 12 65,280 3.67
XMark-11 610.043 8,554,409 12 130,560 3.67
XMark-12 1,221.750 17,107,471 12 261,120 3.66

million with at least 50 characters as summarized in Table 5. The biggest XML file counts 69, 560
nodes, whereas the median is 136 meaning that there is considerable heterogeneity among the files
in the collection. This can also be seen by looking at the size of the files: the maximum size is
about 4MB, but the median is about 8KB; therefore, the Wikipedia collection is composed of many
small XML files. Despite this fact, there are some very deep files – up to depth 85 with median 18
– with a very large maximum fan out – about 5 thousands nodes, but the median is only 8.15.

4.3. Synthetic Data

Tables 6 and 7 report the statistics about the two synthetic datasets we selected for the scala-
bility evaluation of NESTOR. The first dataset – XMark – is composed of 12 XML files generated
with a public library available at the following URL: http://www.xml-benchmark.org/; the sec-
ond one (XGen) is composed of ten XML files generated by means of a Java library we share along
with the implementation of NESTOR data structure and primitives.

The XMark dataset contains balanced XML documents with a growing size and number of
elements modeling an auction website, a typical e-commerce application; the XGen dataset instead
contains XML documents with roughly the same number of elements but very different structures
– i.e. different depths, number of max and average fan outs. The XML documents in the XMark
dataset contain long strings of text, whereas the documents in the XGen dataset contain short ran-
domly generated strings. The 12 XMark files described in Table VI are balanced XML documents;
indeed, they all have the same depth and the same average fan-out. They range from 0.5MB to
1.2GB in size and from 8 thousand to 17 million nodes, with a max fan-out ranging from 100 to
261 thousand. With this dataset we can analyze NESTOR data structures and primitives with
progressively bigger XML files; in particular, we can see if the ancestor primitives are influenced
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Table 7: Statistics of the ten selected XGen synthetic files.

Size max average

(MB) # nodes depth fan-out fan-out

XGen-01 945.106 10,000,043 27 100 50.40
XGen-02 995.277 10,000,025 29 200 100.50
XGen-03 830.503 10,000,184 26 500 250.54
XGen-04 896.776 10,000,509 24 1,000 500.60
XGen-05 719.455 10,000,155 22 2,000 1,002.32
XGen-06 866.558 10,003,624 24 5,000 2,490.94
XGen-07 717.845 10,000,776 18 9,994 4,880.81
XGen-08 599.369 10,011,516 14 19,983 10,195.03
XGen-09 639.106 10,004,482 13 49,866 24,581.04
XGen-10 642.200 10,017,259 13 99,010 49,346.10

more by the depth of the XML document or by its size. At the same time, we analyze the impact
of the max and average fan-out on the children primitives and the impact of the number of nodes
on the descendants ones. Vice versa the XGen dataset presents XML documents with the same
number of nodes (10 million) but a heterogeneously structure; indeed, XML depth ranges from 27
to 13, max fan out from 100 to 100 thousand and the average fan-out from 50 to 50 thousand.
Another characteristic of the XGen dataset is that its files have roughly the same number of nodes
but a progressively smaller size ranging from about 1GB to 600MB; thanks to this peculiarity we
can analyze the impact of file size and of node number on the query operations.

As we can see, both these datasets present much bigger and more complex XML documents
than those we found in the two previous domains and they allow us to push NESTOR, XPath-based
libraries and BaseX to their limits and to assess their future proof.

5. Building Time and Space Occupation

Figure 3 and Figure 4 show the building time and space occupation for the different datasets
under examination.

As general trends for the building time, we see that DOM requires the smallest time and
BaseX the largest time in almost all cases while the NESTOR data structures fall in-between.
This is somehow expected since DOM simply parses the XML files and represents them in main
memory but without any additional structure for improving access to them. By contrast, BaseX,
requires the parsing time as DOM does, as well as the time needed to compute the node labels and
apply dynamic compression. Similarly, NESTOR requires some additional time to build its data
structures on top of the time needed for parsing.

As far as space occupation is concerned, DOM is typically demanding, while NESTOR data
structures behave effectively. The picture is more varied in the case of BaseX, since its occupied
space basically depends on the size of the node labels which, in turn, is influenced by the depth
of the tree and the number of descendants. Furthermore, BaseX applies dynamic compression and
so it gains more in the case of large textual elements, e.g. XMark, with respect to small textual
elements, e.g. XGen.

In particular, when it comes to the NESTOR data structures, DDS requires more time and
space than the others since its dictionaries contain more elements the closer we are to the root
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Figure 3: Average building time.

and they progressively reduce the number of elements in each dictionary going downwards. As a
consequence, the DDS dictionaries contain on average more elements. Similar considerations can
be made for IDS but it is able to better optimize the trade-off between depth and max-fan out
of the tree than DDS. By contrast, as pointed out in Section 3, the HDS requires less time and
space to be built because it basically stores “local” information about the direct super and sub
sets, which corresponds to less elements on average.

6. Evaluation Time

This section discusses and compares NESTOR-based query primitives with respect to the other
state-of-the-art solutions, in terms of time needed for actually evaluating a query, which is the main
focus of our paper.

As a summary of what we discuss more in details below, as general trends we see that NESTOR
data structures always outperform the other solutions, even if the specific data structure – DDS,
IDS, HDS – may change from case to case. The second best approach is almost always BaseX
followed by either Jaxen or JXPath, depending on the cases.
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Figure 4: Average space occupation.

In the following, there is a subsection for each of the considered primitives – descendants,
ancestors, children, and parent – where more detailed information is reported.

6.1. Descendants

Figure 5 shows the evaluation time for descendants primitives on the different datasets under
examination.

As far as the descendants set-wise primitive is concerned (Figure 5 on the left), we can see that
IDS greatly outperforms all the other approaches by running in constant time and gains, at least,
between 3 (digital archives) and 8 (XGen) orders or magnitude. The great advantage of IDS is that
it can answer to any set-wise descendant query just by performing a single lookup in the supersets
dictionary (i.e., SD) and returning the array corresponding to the requested set. On the other hand,
DDS and HDS behave similarly and increase with the number of nodes (i.e. sets in NESTOR) in
the XML files as the other solutions do. Indeed, DDS and HDS have to perform several set union
operations between the arrays of the direct subsets dictionary (DD); however, these operations can
be performed more efficiently than a tree navigation and this explains why they are more efficient
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Figure 5: Evaluation time for descendants primitives on the different datasets.
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than the other solutions. The worst performing library in this case is Xalan, followed by JXpath
and Jaxen, which performs almost equally to BaseX.

In the case of the descendants element-wise primitive (Figure 5 on the right), DDS runs better
than all the other approaches, gaining at least between 2 (XGen) and 3 (digital archives and
XMark) orders of magnitude. This query is executed very efficiently by the DDS because it can
be answered just by returning the correct array in the materialized dictionary (i.e. MD); indeed, in
this case no hierarchy navigation nor collecting of elements node from node is required to answer
this query.

The next top performing is HDS, which runs slightly slower than DDS due to its greater
computational complexity, even though it is not as slows as one would have expected from the
theoretical analysis in Table 3. Indeed, the real datasets are far from the theoretical worst-case
scenario of Table 3 and the “local” approach of HDS pays off. On the other hand, IDS is one of
the worst performing data structures, because it requires a large number of set unions between the
arrays of elements in MD.

Xalan has very slow performances and it behaves quite similarly to IDS, closely followed by
Jaxen. It is interesting to note how JXPath and BaseX, which are in-between best and worst
performers, shows almost the same evaluation time for digital archives and XGen while BaseX
gains more for the XMark dataset, where it better handles an increasing tree size but with constant
depth.

When it comes to the collaborative knowledge domain, the descendants use case confirms the
general trends discussed above with the sole exception that here JXpath behaves on a par with
Xalan and Jaxen whereas BaseX performs much better. Moreover, in the intersection descendants
use case, BaseX performs almost as well as the NESTOR data structures for most of the queries.

6.2. Ancestors

Figure 6 shows the evaluation time for ancestors primitives on the different datasets under
examination.

As far as the ancestors set-wise primitive is concerned (Figure 6 on the left), we can see that
DDS is the best solution, closely followed by IDS, HDS and BaseX. DDS and BaseX have a constant
computational complexity for this operation, whereas IDS and HDS, in the worst-case scenario,
increase linearly with the number of sets – i.e. the number of nodes. DDS answers this query just
by returning the appropriate array of sets in the SD dictionary and thus it performs the operation
as fast as BaseX which is specifically optimized for this operation. For the XMark datasets we
can see that, even though the number of nodes increases from file to file, the performances of IDS
and HDS are constant because the depth of the files is fixed and the number of ancestors is much
lower than the total number of nodes. With XGen the number of nodes is fixed and the depth
varies from file to file, but also in this case IDS and HDS run in constant time showing that in a
real world environment they are very efficient despite their theoretical running time. For digital
archives, Jaxen and JXpath perform better for small collections (i.e. AH 2005 and IISG 2005)
than for the larger ones (i.e. NA 2008, LoC 2014 and UniMa 2014) and they perform very close for
XGen and XMark being in between the best and the worst solutions. Xalan is the slowest library
for all the considered datasets.

The ancestor element-wise primitive (Figure 6 on the right) shows that IDS, HDS and BaseX
perform best among all the tested solutions. The ancestor element-wise primitive runs in constant
time for IDS and BaseX as expected; indeed, to answer this query IDS has to return the appropriate
array of elements in the MD dictionary without any navigation or collection of elements.
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On the other hand, HDS has O(n + m) worst-case running time but in the experiments it
performs as well as the IDS because real datasets differ greatly from the theoretical worst-case
situation. Furthermore, HDS returns the content of ancestors without requiring any set-based
operation (unions, intersections and differences) and this speeds up the operation. DDS has the
same theoretical computational complexity for the ancestor element-wise primitive as HDS, but it
has to perform several set differences to return the correct output and these operations explain its
overhead with respect to HDS. DDS performs as well as JXpath and better than Jaxen and Xalan
for digital archives whereas they are more efficient than DDS when dealing with large XML files
as in the case of XMark and XGen.

6.3. Children

Figure 7 shows the evaluation time for children primitives on the different datasets under
examination.

As far as the children set-wise primitive is concerned (Figure 7 on the left), we can see that
DDS and HDS are at least from 1 (digital archives) to 6 (XMark) orders of magnitude faster than
all other solutions. DDS and HDS do not depend on the number of children of the given node and
thus run in constant time. Note that DDS and HDS answer to this query in the same way given
that the DD dictionary is built in the same way for both the data structures; basically, they just
have to return the appropriate array of direct subsets. XMark and XGen datasets show that all
other solutions increase linearly with the max fan-out of the nodes. BaseX and JXpath run faster
than Jaxen and Xalan in most cases.

As far as the children element-wise primitive is concerned (Figure 7 on the right), we can see
that all the solutions depend on the max fan-out of the nodes, but HDS runs at least one order
of magnitude faster than BaseX and JXpath; also DDS is quite efficient for this operation. IDS
is the least efficient NESTOR-based solution in this case. The main difference between DDS and
IDS is due to the fact that the evaluation time on DDS depends on the number of direct subsets of
the input set, whereas for IDS it depends on the number of all of its supersets; IDS has to perform
many set differences to get the children elements, whereas DDS has to perform a smaller number of
set unions. HDS is the best performing solution because it avoids any set-based operation between
elements.

6.4. Parent

Figure 8 shows the evaluation time for parent primitives on the different datasets under exam-
ination.

As far as the parent set-wise primitive is concerned (Figure 8 on the left), we can see that all
three NESTOR-based solutions are highly efficient running in constant time for all the datasets.
HDS answers this query just by returning the correct array from the SD dictionary and IDS by
returning the correct array from the DD dictionary; whereas DDS has to perform some simple
intersections of sets with usually small cardinality which can be performed very efficiently. BaseX
is optimized for the parent operation and it closely follows, however running one order of magnitude
slower than NESTOR. Among the Java-based libraries, Xalan is the worst solution whereas Jaxen
and JXpath behave quite well, being less than one order of magnitude slower than BaseX for digital
archives and XGen.

As far as the parent element-wise primitive is concerned (Figure 8 on the right), we can see that
HDS, as expected from Table 2, runs in constant time for all the datasets and it is the best solution
for this operation exploiting the set-wise children query efficiency to answer the element-wise one.

22



AH2005 IISG2005 NA2008 LoC2014 UniMa2014
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

m
se

c,
 lo

g 
sc

al
e

Children Element−Wise Primitive

 

 
DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

AH2005 IISG2005 NA2008 LoC2014 UniMa2014
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

m
se

c,
 lo

g 
sc

al
e

Children Set−Wise Primitive

 

 
DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

10−4

10−2

100

102

104

106

108

m
se

c,
 lo

g 
sc

al
e

Children Element−Wise Primitive

 

 

XMark
00

XMark
01

XMark
02

XMark
03

XMark
04

XMark
05

XMark
06

XMark
07

XMark
08

XMark
09

XMark
10

XMark
11

DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

10−4

10−2

100

102

104

106

108

m
se

c,
 lo

g 
sc

al
e

Children Set−Wise Primitive

 

 

XMark
00

XMark
01

XMark
02

XMark
03

XMark
04

XMark
05

XMark
06

XMark
07

XMark
08

XMark
09

XMark
10

XMark
11

DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

10−4

10−2

100

102

104

106

108

m
se

c,
 lo

g 
sc

al
e

Children Element−Wise Primitive

 

 

XGen
01

XGen
02

XGen
03

XGen
04

XGen
05

XGen
06

XGen
07

XGen
08

XGen
09

XGen
10

DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

10−4

10−2

100

102

104

106

108

m
se

c,
 lo

g 
sc

al
e

Children Set−Wise Primitive

 

 

XGen
01

XGen
02

XGen
03

XGen
04

XGen
05

XGen
06

XGen
07

XGen
08

XGen
09

XGen
10

DDS
IDS
HDS
Xalan
Jaxen
JXpath
BaseX

Children Set-Wise Primitive - Digital Archives Children Element-Wise Primitive - Digital Archives

Children Set-Wise Primitive - XMark Children Element-Wise Primitive - XMark

Children Set-Wise Primitive - XGen Children Element-Wise Primitive - XGen

Figure 7: Evaluation time for children primitives on the different datasets.

IDS is as efficient as HDS with digital archives, whereas it runs slower with larger files such as
XMark and XGen because it has to perform some set intersections to answer the query. BaseX
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Figure 8: Evaluation time for parent primitives on the different datasets.

behaves on a par with IDS for XGen and XMark, whereas it is slower for digital archives. DDS is
rather efficient even though it is the slower NESTOR data structure for this query; this is due to
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the possibly high number of set differences it has to perform to answer the query.

7. Conclusions and Future Work

In this paper we presented a brand new approach to address XML query primitives relying
on basic set operations. This represents a paradigm shift with respect to the navigational-like
approaches widely studied and employed in the past. The approach we proposed is based on the
NESTOR formal model which represents hierarchical relationships between the nodes of a tree as
inclusion dependencies between sets. We implemented the model by means of three alternative in-
memory data structures – Direct Data Structure (DDS), Inverse Data Structure (IDS), and Hybrid
Data Structure (HDS) – with the ultimate goal of enabling more efficient access to XML data. On
top of these data structures we developed the descendants, ancestors, children and parent XML
query primitives showing how they can exploit the characteristics of each data structure to limit
and, in several cases, to completely avoid tree navigation and subtree reconstruction and studying
the computational complexity.

In particular, we have experimentally shown that NESTOR data structures allow us to out-
perform state-of-the-art solutions and, on real datasets, they may even perform better than their
theoretical worst-case complexity. For example, DDS descendants element-wise and IDS ances-
tors element-wise primitives are answered in constant time without requiring navigation, recursion
or subtree reconstruction; whereas, in several other cases the operations rely on highly-efficient
lookups plus set-based operations (intersection and union) between arrays of integers. In the ma-
jority of cases – see HDS element-wise and DDS set-wise primitives – the set-based operations can
be executed very efficiently, whereas, in just very few cases – e.g. the IDS children element-wise
primitive and the IDS descendants element-wise primitive – set-theoretical operations can be quite
demanding thus leading to higher execution times.

The choice of the NESTOR data structure to be used depends on the application being consid-
ered. We have seen that in the digital archives context HDS is the best choice if all the four query
primitives are equally frequent since it is highly effective (even though not always the best) for all
the tested cases; on the other hand, if the ancestors element-wise primitive is highly used as it may
happen in an application that has to recreate the archival context of a given unit and thus has to
return all the elements from a leaf of the XML tree to the root, then IDS is the best choice by far.

The collaborative knowledge domain based on the Wikipedia INEX collection presents us with
a specific context where all the XML queries are based on the descendants element-wise primitive.
In this context, DDS is the best choice being optimized for returning all the descendant elements
of a node in constant time without requiring any additional operations. Some of the INEX topics
require to execute set-operations (i.e. unions and intersections) between the result sets of several
descendants element-wise primitive operations and also in these cases we have seen that DDS is
the most effective solution given that set-theoretical operations can be performed quite efficiently.

The evaluation conducted on synthetic datasets allows us to pinpoint that NESTOR primitives
scale up well when the size, the depth, the max fan-out and the total number of nodes of an XML
document grow. Indeed, for all the considered XML documents and for all the four query primitives
at least one of the NESTOR data structures performs better that any other alternative solution.

Therefore, the experimental results confirm that for XPath primitives NESTOR-based data
structures outperform consolidated and state-of-the-art solutions, such as BaseX or the best per-
forming Java XPath libraries. From the pre-processing time point-of-view NESTOR data structure
are highly competitive with the other solutions and in particular HDS proves to be the fastest one
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for the collaborative knowledge. From the space occupation perspective, HDS is the best solution
for the digital archive and the collaborative knowledge domains while for big XML files with many
nodes and fixed depth (i.e. XMark files) BaseX is the best solution optimizing the storage for XML
documents with many nodes containing few data.

Many interesting extensions can be explored as future work, some of which are briefly discussed
in the following.

Set-theoretical operations (unions and intersections) are particularly well-suited for being op-
timized by graphical processors [13, 46] and thus they could be executed very efficiently without
requiring any significant change in the NESTOR data structures. NESTOR data structures have
not been optimized for space occupation as, for example, BaseX is. Therefore, an interesting future
work is to investigate the adoption of some compression techniques to improve on space occupation
and to understand their impact on and trade-off with execution time. In this line of reasoning we
plan to explore the use of minimal hash functions [9, 12] in place of hash tables, since they are
used for efficient storage and fast retrieval. Indeed, these functions can be used within the data
structures we presented here without requiring any changes in their specification.

The application of efficient algorithms developed in the context of formal concept mining [37]
to the NESTOR operations represents another viable research direction that may lead to an im-
provement of average performances of the presented algorithms.

We plan to explore the efficiency of NESTOR data structures with respect to the full set of
XPath operations, such as XPath predicates, in order to address the whole classification of XPath
fragments of [5]. This work should then be complemented with the formal definition of creation,
deletion and update operations on XML via NESTOR, the study of their properties and their
experimental evaluation in order to have a fully-fledged management suite for XML based on the
NESTOR approach that can efficiently deal also with dynamic and incremental XML.

We plan to investigate secondary memory representations of NESTOR in order to develop new
query primitives and to compare with ready-to-use secondary memory-based solutions.

Finally, when it comes to further possible application domains of NESTOR, it would be in-
teresting to explore how keyword-based access to (semi-)structured data [7] can benefit from the
performance improvements and the efficiency gains provided by NESTOR in order to deal with
the massive and heterogeneous amount of data these systems are faced with.
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Appendix A: Pseudo-Code and Complexity Analysis of NESTOR Primitives

The dictionary-based data structure is composed of three dictionaries which are MD for the
materialized sets, DD for the direct subsets of each set, and SD for the supersets of each set.
Without loss of generality we can assume that the dictionaries are composed by 〈ki, Li〉 pairs,
where ki is the key represented by an integer value and Li is a list of integers. This choice allows
us to describe the pseudo-code of the algorithms without caring about the dimension of the arrays
we manipulate. The theoretical complexity of the algorithms is the same but the pseudo-code is
more readable by working with lists in place of arrays.

In order to work with a list L we need to point out some basic methods (please refer to [26] for
details on the computational complexities of these methods). Let us consider a generic list, say L,
and a natural number, say i ∈ N, then L.get(i) returns the ith element in L, L.size() returns the
number of elements in L and it runs in O(1) time, L.add(x) adds the element x to the end of L and
it runs in O(1) time, L.remove(x) removes the element x from L (if x is present in L, otherwise it
does nothing) and it runs in O(1) time. The method L.remove removes the last element in L and
it runs in O(1) time. L.add(i,x) adds the element x at the position i of list L and it runs in O(1)
time, L.addAll(W) adds all the elements of list W to list L (duplicates are not eliminated) and it
runs in O(W.size()) time. L.removeAll(W) removes all the elements in list W from list L and it
runs in O(W.size()) time; L.isEmpty() returns true if the list is empty or false otherwise, and it
runs in O(1) time. Lastly, we point out the method BinarySearch(H, x) which returns the index
of the elements x in H if x ∈ H or a negative integer otherwise; the complexity of this operation
is O(log |H|) [26].

By considering these dictionary-based data structures we can also point out the computational
complexities of some primitives we need to support working with sets. Let us consider a collection
of sets C composed of m ∈ N sets and n ∈ N elements, two sets H,K ∈ C such that |H| = n1 ∈ N
and |K| = n2 ∈ N, and an element x ∈ C. Without loss of generality, we assume that |H| ≤ |K|
which means that n1 ≤ n2.

The Member(H) operation over a set (H) with n1 elements stored as a sorted array of integers
can be implemented in O(log n1) time by using binary search [26]. The Size(H) operation can
be implemented in O(1) time by returning the length of the array representing the materialized
set given as input. In the following we present the algorithms UnionDDS(H,K) and Differ-
enceDDS(H,K) algorithm specifically implemented for the DDS; these algorithms exploit the
DDS peculiarities to speed-up the union and difference set operations. For the IDS and HDS data
structures, the Intersect(H,K) and the Difference(H,K) operations are implemented following
the algorithm proposed in [16] which runs in O(n1 + n1log(n2/n1)) time.

ALGORITHM 1: UnionDDS
Input: The sets H,K ∈ C.
Output: The list of elements representing H ∪K.

1 Without loss of generality we assume that |H| > |K|.
2 if BinarySearch

(
MD.get(H), MD.get(K).get(0)

)
< 0 then

3 return MD.get(H)
4 else
5 H.addAll(K)
6 return H

7 end

This algorithm can be applied only to the DDS and the sets defined accordingly to that struc-
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ture. It checks if the first element of K is in H with binary search in O(log |H|); note that the
statement MD.get(K).get(0) returns the first element in the array containing the elements of set
K and get(0) retrieves the first element of the array, which is the desired one. Then if this element
is in H, it returns H otherwise it returns the concatenation of H and K and this operation requires
O(|K|). In the following we also extensively use the difference operation between two sets in the
DDS, and for this reason we define the DifferenceDDS algorithm.

ALGORITHM 2: DifferenceDDS
Input: The sets H,K ∈ C.
Output: The list of elements representing H \K.

1 Without loss of generality we assume that |H| > |K|.
2 index←BinarySearch(MD.get(H), MD.get(K).get(0))
3 R← ∅
4 if index > −1 then
5 for i← 0 to index do
6 R.add(H.get(i))
7 end
8 return R

9 else
10 return H

11 end

In the worst-case scenario this algorithm requires O(|H|) time, whereas in the best scenario in
which H and K are disjoint it runs in O(log |H|).

The Elements(H) primitive returns the elements belonging to a set, say H, and it is imple-
mented in the same way both for the DDS and the IDS.

ALGORITHM 3: Elements
Input: The set H ∈ C.
Output: The list of elements belonging to H ∈ C.

1 return MD.get(H)

This algorithm simply returns the values in MD corresponding to the input set H. The compu-
tational complexity of this algorithm is O(1).

DDS Set-Wise Primitives

The algorithms implementing Ancestors-DDS(H) and Children-DDS(H) are immediate
because they only require access to the proper dictionary in the data structure and so we present
them first.
ALGORITHM 4: Ancestors-DDS

Input: The set H ∈ C.
Output: The list containing the ancestors of H ∈ C.

1 return SD.get(H)

This algorithm simply returns the list of supersets of the input set H by accessing the appro-
priate list in the dictionary SD. The ancestors of a set H in a collection of sets C are the supersets
of H. The computational complexity of this algorithm is O(1).
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ALGORITHM 5: Children-DDS
Input: The set H ∈ C.
Output: The list containing the children of H ∈ C.

1 return DD.get(H)

This algorithm simply returns the list of direct-subsets of the input set H by accessing a list in
DD. The children of H in C are the direct-subsets of H. The complexity of this algorithm is O(1).

Let us see the Descendants-DDS algorithm where we use a queue [26], say Q, which we can
see as a list equipped with two additional methods: Q.element() which returns the last element in
Q without removing it, and Q.remove() which returns the last element in Q and removes it from the
queue. These methods are implemented to run in O(1) time [26].

ALGORITHM 6: Descendants-DDS
Input: The set H ∈ C.
Output: The list S+ containing the subsets of H ∈ C.

1 Q.add(H)
2 while !Q.isEmpty() do
3 S+.addAll(Children-DDS(Q.element()))
4 Q.addAll(Children-DDS(Q.remove()))

5 end
6 S+.add(H)
7 return S+

We named a list as S+ by using a superscript even though this notation is not usual in pseudo-
code, but we think it can help the reader to understand the semantic of the list under consideration.

In Algorithm 6 we can see that the reference to set H is added to the queue Q (line 1), then,
while the queue is not empty we add the direct subsets of the last element in the queue to the list
S+ (line 3) and to the queue Q (line 4); afterwards, the algorithm removes this element from Q.
The algorithm processes all the direct subsets of H and all of their subsets iteratively.

The worst-case scenario is represented by a collection of sets C structured as a chain (|C| = m),
– i.e. each set in the collection has no more than one subset [21]. Furthermore, in the worst-case
scenario we choose the top set as input set. This means that the while cycle at line 2 iterates on
all the m sets in C. Each operation inside the while cycle (line 3 and line 4) runs in constant time,
so this algorithm runs in O(m) time.

In the algorithm implementing parent operation for the DDS we exploit the fact that in the
DDS every set has at most one direct superset.

ALGORITHM 7: Parent-DDS
Input: The set H ∈ C.
Output: The set representing the parent of H ∈ C.

1 S− ← Ancestors-DDS(H)
2 if S−.isEmpty() then
3 return ∅
4 else
5 without loss of generality we assume that S−.size() = n where n ∈ N such that

Size
(
S−.get(0)

)
≤ Size

(
S−.get(1)

)
≤ . . . ≤ Size

(
S−.get(n)

)
6 return S−.get(0)

7 end

At line 1 the algorithm checks the list of all the supersets of H, if it is empty this means that
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H is the top set of C and thus it has no supersets; otherwise, we assume that the sets in list S−

are increasingly ordered by their cardinality and thus, the first set in the list is the one with higher
cardinality and it must be the direct superset of H. In the worst-case scenario the computational
complexity of this algorithm is O(1).

IDS Set-Wise Query Operations

Let us consider a collection of sets C where H ∈ C is a set.

ALGORITHM 8: Descendants-IDS
Input: The set H ∈ C.
Output: The list containing the descendants of H ∈ C.

1 return SD.get(H)

This algorithm returns the list of supersets of the input set H by accessing the appropriate list
in SD. The descendants of H in C are the supersets of H. The computational complexity of this
algorithm is O(1).

The following algorithm simply returns the list of direct-subsets of H by accessing the appro-
priate list in DD; in the IDS the lists of direct-supersts of each set are composed by at most one
set representing its parent. The parent of H in C is the direct-subset of H. The computational
complexity of this algorithm is O(1).

ALGORITHM 9: Parent-IDS
Input: The set H ∈ C.
Output: The set representing the parent of H ∈ C.

1 return DD.get(H)

The ancestor operation for the IDS is realized by the Ancestors-IDS algorithm; here we
exploit the fact that each set in a collection of sets has at most one direct subset.

ALGORITHM 10: Ancestors-IDS
Input: The set H ∈ C.
Output: The list S+ containing the set representing the parent of H ∈ C.

1 S+ ← Parent(H)
2 if S+.isEmpty() then
3 return ∅
4 else
5 D+ ← Parent(H)

6 while
(
!Parent

(
D+.get(0)

)
.isEmpty()

)
do

7 S+.addAll(Parent(D+.get(0)))
8 D+ ← Parent(D+.get(0))

9 end

10 end
11 S+.add(H)
12 return S+

The worst-case scenario is represented by C structured as a chain (|C| = m) and by H such
that the number of direct supersets of H is 0. This means that |S+(H)| = m− 1. The while cycle
at line 6 is repeated until the list D+ is empty which means that the current set has no subsets.
We know that at every iteration D+ contains at most one element and when H is the input set
the cycle is repeated m times. The operations at lines 7 and 8 run in constant time, so in the
worst-case scenario the algorithm runs in O(m) time.
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For the IDS we implement the Children-IDS algorithm. The operation at line 1 runs in O(1)
time. So the computational complexity is dominated by the while cycle at line 6 which is executed
O(|S−|) times; in the worst-case the input set H is the set with no subsets. In this scenario the
while cycle is executed m times. The operations inside the cycle run in constant time and thus the
overall computational complexity of the algorithm is O(m).

ALGORITHM 11: Children-IDS
Input: The set H ∈ C.
Output: The list of set D− representing the children of H ∈ C.

1 S− ← Descendants-IDS(H)
2 i← 0

3 if S−.size() < 0 then
4 return ∅
5 else
6 while i < S−.size() do
7 if Parent-IDS

(
C.get(i)

)
== H then

8 D−.add
(
C.get(i)

)
9 end

10 i← i + 1

11 end

12 end
13 return D−

HDS Set-Wise Primitives

The HDS inherits some algorithms from the DDS illustrated above; indeed, Children-HDS
and Descendants-HDS work exactly as Children-DDS andDescendants-DDS sharing the
same worst-cases and computational complexities.

ALGORITHM 12: Parent-HDS
Input: The set H ∈ C.
Output: The parent of H ∈ C.

1 return SD.get(H)

This algorithm simply returns the list of supersets of the input set H by accessing the appropri-
ate list in the dictionary SD which in the HDS contains only the parent of H. The computational
complexity of this algorithm is O(1).

ALGORITHM 13: Ancestors-HDS
Input: The set H ∈ C.
Output: The list of sets D− representing the ancestors of H ∈ C.

1 S− ← Parent-HDS(H)
2 if S−.isEmpty() then
3 return ∅
4 else
5 while !Parent-HDS(S−.get(S−.size()− 1)).isEmpty() do
6 S−.add(PARENT-HDS(S−.get(S−.size()− 1)))

7 end

8 end
9 return S−

The worst case scenario for this algorithm is represented by a collection of sets C structured
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as a chain, where H ∈ C is the last set (i.e. the only one without subsets). In this case the while
cycle at line 5 takes O(m), which is the computational complexity of this algorithm given that the
operations at line 1 and at line 6 run in O(1).

DDS Element-Wise Primitives

Just like the structural queries, the content queries are also declined into three versions, the first
for the DDS, the second for the IDS and the third for the HDS. Firstly, we present the algorithms
implementing the DDS element-wise primitives starting from the DescendantElements-DDS
algorithm.

ALGORITHM 14: Descendant-DDS
Input: The set H ∈ C.
Output: The list E+ containing the descendant elements of H.

1 return Elements(H)

The computational complexity of this algorithm is O(1) in all possible scenarios because it has
only to return the elements belonging to the input sets; indeed a set in a collection of subsets
contains all the elements of its subsets by definition. The following algorithm shows the implemen-
tation of the AncestorElements-DDS primitive.

ALGORITHM 15: Ancestor-DDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the ancestors of H.

1 D+ ←∅
2 S− ← Ancestors-DDS(H)
3 for i← S−.size()− 1 to 1 do

4 D+.addAll
(
Children-DDS

(
S−.get(i)

)
.remove

(
S−.get(i + 1)

))
5 end

6 D+.addAll
(
Children-DDS

(
S−.get(0

))
7 E← Elements

(
D+.get(0)

)
8 for i← 1 to D+.size()− 1 do

9 E← UnionDDS
(
E,Elements

(
D+.get(i)

))
10 end

11 return DifferenceDDS
(
Elements(0), E

)
The worst-case scenario for this algorithm is represented by a NS-C structured as a chain with

m ∈ N sets and n ∈ N elements. The operation at line 2 is executed in O(1) time, whereas the one
at line 6 runs in O(|Children-DDS

(
S−.get(i)

)
|) time, where i ∈ [0,m− 1], but in our worst-case

scenario for all i ∈ [0,m− 1] we have that |Children-DDS
(
S−.get(i)

)
| = 1. We assume that the

input set H is the bottom set of the chain which has m ancestors (supersets), so the for cycle at line
3 is executed m times; the operation inside this cycle requires O(|Children-DDS

(
S−.get(i)

)
|)

time, but |Children-DDS
(
S−.get(i)

)
| = 1 for all possible i ∈ [0,m], so this operation runs in

O(1) time. This means that the list D+ after this cycle has size one and that the for cycle at line
8 is executed only once. The UnionDDS operation inside the cycle requires O(|E|) = O(n) time.
Lastly, in the worst case the DifferenceDDS operation at line 11 is executed in O(n) time. It
is worthwhile to note that the use of the UnionDDS and DifferenceDDS algorithms in place
of the general ones produces no change on the computational complexity of the Ancestor-DDS
algorithm, but it will have a tangible effect in the experimental results.
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The following pseudo-code describes how the Children-DDS algorithm is implemented. In
the worst-case scenario represented by a NS-C, say C, structured as a chain, every set H ∈ C
has at most one direct subset, that means at most one child. Therefore, both the for cycles at
line 3 and line 6 are executed at most once. The complexity is dominated by the Difference
operation at line 7. The computational complexity of this operation depends on the cardinality of
the sets Ce and Elements

(
C.get(j)

)
. In the worst-case scenario it can happen that |Ce| = n and

|Elements
(
C.get(j)

)
| = n − ε, where 0 < ε � n; in this case the computational complexity of

the algorithm is O(n).

ALGORITHM 16: Children-DDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the children of H.

1 E←∅
2 D+ ← Children-DDS(H)
3 for i← 0 to D+.size()− 1 do
4 Ce ← Elements

(
D+.get(i)

)
5 C← Children-DDS

(
D+.get(i)

)
6 for j← 0 to C.size()− 1 do

7 Ce ← Difference
(
Ce,Elements

(
C.get(j)

))
8 end
9 E.addAll(Ce)

10 end
11 return E

The following pseudo-code describes the Parent-DDS algorithm.

ALGORITHM 17: Parent-DDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the parent of H.

1 P← Parent-DDS(H)
2 Pe ← Elements(P )
3 D+ ← Children-DDS(P )
4 He ← Elements(H)
5 for i← 0 to D+.size()− 1 do
6 He.addAll(Elements

(
D+.get(i)

)
7 end
8 return DifferenceDDS(Pe, He)

As well as for the Children-DDS in the Parent-DDS worst-case scenario, represented by a
NS-C structured as a chain, every set has at most one direct subset and so the for cycle at line 5

is executed exactly once. The operation at line 6 requires O
(
|Elements

(
D+.get(i)

)
|
)

= O(n) in

the worst-case scenario. It is important to notice that we do not perform a Union between sets
but a concatenation of their elements. This can be done because all the direct subsets of a set are
disjoint in the DDS. Lastly, the DifferenceDDS operation at line 8 requires O(n). Therefore,
the computational complexity for the Parent-DDS algorithm is O(n).

IDS Element-Wise Primitives

In this subsection we describe the algorithms implementing the element-wise primitives for the
IDS.
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ALGORITHM 18: Descendant-IDS
Input: A collection of sets C and the set H ∈ C.
Output: The list E− containing the elements belonging to the descendants of H.

1 S− ← Descendants-IDS(H)
2 E←∅
3 for i← 0 to S−.size()− 1 do
4 if (Descendants-IDS(S−.get(i)).isEmpty() then
5 E← Union (E,Elements (S−.get(i)))

6 end

7 end
8 return E

This algorithm does the set-theoretical union of the elements belonging to the supersets of the
input set H which do not have any supersets. The worst-case scenario is represented by a collection
of sets C with m sets and n elements, structured as a chain where the input set H is the bottom
set. This means that the list of supersets of H contains all the m sets in C, thus the for cycle at
line 3 is executed m times; the only operation executed in the cycle is the if statement at line 4
which runs in constant time (O(1)). The union operation at line 5 is executed just once because
in a chain there is only one set with no supersets; furthermore, when the union is performed
the list E− is empty, whereas the set (S−.get(i)) (refer to line 5) contains all the n elements in
C. The computational complexity of the union at line 5 is O(|E−| + n) = O(n). Therefore, the
computational complexity of the algorithm in the worst-case scenario is O(m+ n).

ALGORITHM 19: Ancestor-IDS
Input: The set H ∈ C.
Output: The list E+ containing the ancestor elements of H.

1 return Elements(H)

The computational complexity of this algorithm is O(1) in all possible scenarios because it has
only to return the elements belonging to the input sets; indeed a set in a collection of subsets
contains all the elements of its subsets by definition. The following pseudo-code describes the
implementation of the Children-IDS algorithm.

ALGORITHM 20: Children-IDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the children of H.

1 D− ← Children-IDS(H)
2 if D−.size() > 0 then
3 Ce ← Elements(D−.get(0))
4 for i← 1 to D−.size()− 1 do

5 Ce ← Union
(
Ce,Elements

(
D−.get(i)

))
6 end
7 return Difference (Ce, H)

8 else
9 return ∅

10 end

The worst-case scenario is represented by collection of sets structured as a chain in which every
set has at most one superset. In this case the for cycle at line 4 is executed once and the Union
operation at line 5 runs in O(n) time as well as the Difference operation at line 7. The structural
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query Children-DDS at line 1 requires O(m), thus the overall computational complexity of this
algorithm in O(m+ n).

ALGORITHM 21: Parent-IDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the parent of H.

1 P← Parent-IDS(H)
2 Pe ← Elements(P)
3 if Parent-IDS(P).size() > 0 then

4 return Difference
(
Pe,Elements

(
Parent-IDS(P)

))
5 else
6 return Pe
7 end

The worst-case scenario is represented by a collection of sets structured as a chain and the
computational complexity is dominated by the Difference operation at line 4 which runs in
O(n) time.

HDS Element-Wise Primitives

Let us see the Children-HDS algorithm.

ALGORITHM 22: Children-HDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the children of H.

1 D+ ← Children-DDS(H)
2 if D+.size() > 0 then
3 for i← 0 to D+.size()− 1 do
4 E.addAll(MD.get(D+.get(i)))

5 end
6 return E

7 else
8 return ∅
9 end

The worst-case scenario for this algorithm is represented by a collection of sets with depth
2 where the top set has m − 1 direct subsets such that these sets contain n elements in total.
In this case, the operation at line 1 runs in constant time and the computational complexity
is given by the for cycle at line 3 which requires O(m) time. The operation at line 4 runs in

O(|MD.get(D+.get(i))|) and given that
∑D+.size()−1

i=0 (|MD.get(D+.get(i))|) = n the total running
time is O(n). Thus, Children-HDS runs in O(n) if n >> m and O(m)otherwise.
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ALGORITHM 23: Descendant-HDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the descendants of H.

1 S+ ← Descendants-DDS(H)
2 if S+.size() > 0 then
3 for i← 0 to S+.size()− 1 do
4 E.addAll(MD.get(S+.get(i)))

5 end
6 return E

7 else
8 return ∅
9 end

The worst-case scenario for this algorithm is represented by a collection of sets structured as a
chain. In this case operation at line 1 runs in O(m) and the for cycle at line 3 is dominated by the
operation at line 4 which runs in O(n) (as discussed above); the running time of the algorithm in
O(m+ n).

ALGORITHM 24: ParentElements-HDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the parent of H.

1 return MD.get(PARENT-DDS(H))

The operation PARENT-DDS(H) runs in constant time for whichever collection of sets and
thus also this algorithm runs in constant time. The worst-case scenario for this algorithm is
represented by a collection of sets structured as a chain. In this case the operation at line 1 runs
in O(m) time and the for cycle at line 3 requires O(n) time as for the Children-HDS algorithm,
thus the global running time is O(m+ n).

ALGORITHM 25: Ancestor-HDS
Input: A collection of sets C and the set H ∈ C.
Output: The list of elements belonging to the ancestors of H.

1 S− ← Ancestors-HDS(H)
2 if S−.size() > 0 then
3 for i← 0 to S−.size()− 1 do
4 E.addAll(MD.get(S−.get(i)))

5 end
6 return E

7 else
8 return MD.get(H)
9 end

Appendix B: Definition of the experimental queries

Digital Archives and Synthetic Datasets

For the digital archives and the synthetic datasets the operations used to test the different
solutions are executed by selecting the worst-case situation for each operation. The worst-case
coincides for the set-wise and the element-wise operations. For the NESTOR-based solutions the
worst-case situation yields to the definition of the input set for the query primitives; for the XPath
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libraries and the native XML database it yields to the definition of a location path relative to a
context node which coincides with the selected set for NESTOR-based solutions.

For the descendants operations the worst-case input is the root of an XML file because the
selected solution has to return all the nodes, sets or elements in the tree. For the ancestors
operations the worst-case input is the node at maximum depth in the XML file because the selected
solution has to return all the nodes, sets or elements up to the root of the tree. For the children
operations the worst-case input is the node with the max fan-out in the XML file; for the parent
operations there is no clear worst-case so we selected a node in the XML with average fan-out and
half way between the root and the leaf at maximum depth in the tree.

Collaborative Knowledge

For each topic we selected the CAS component and we excluded the content part thus obtaining
an XPath query. Once the content part is removed we obtain the structure query which is //group.
Therefore, from the 115 INEX 2009 topics it is possible to identify 25 different structure queries
that we called “templates” because a single structure query addresses a whole class of topics which
has the same structural constraints but a different content part.

We divided the templates into three classes. In Table .8 we report the following information:
the identifier of the template, the XPath of the template, the NESTOR primitive used to answer
it, the INEX topics which are addressed by the template and some statistics about the retrieval
part.

For example, the first template – i.e. //article – is the most common one and it accounts for
about 68% of INEX 2009 topics; we can see that all the files in the collection return elements for this
query because article is the tag of the root of all the XML documents in the Wikipedia collection.
Templates 2 and 3 also return many elements, indeed they ask for very common elements in the
collection – i.e. sec and p. We can see that the other templates return a smaller number of elements
because they are more specific and regard only a fraction of the XML files in the collection; for
instance, template 6 regards only the Wikipedia articles about music which is a small subset (i.e.
about 4%) of the whole collection.

In Table .9 we can see the query templates about union descendants queries. They ask for
all the descendants of several distinct XML elements; for instance, template 19 asks for elements
about person or chemist or alchemist or scientist or physicist, so the result is given by a union of
descendants elements. As we can see, template 20 returns a large number of elements because it
asks for two very common elements in the collection (sec or p), whereas in the other cases the
returned set is smaller because the required elements are more specific. In this case the logical
operator “or” in the XPath expression translates in a set-theoretical union of NESTOR element-
wise descendants primitive.

Lastly, in Table .10 we can see some statistics regarding intersect structure queries. In this case
the cardinality of returned sets of elements tends to be small because the required elements are
very specific and regard a small portion of the collection. As we can see, in these cases the role of
structure query is preponderant in filtering out information not relevant to the topic.
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Table .8: Structure query templates for descendants queries.
ID Template #ret elem # files (%) avg

1

XPath: //article

NESTOR: descendants(article)

INEX topics: 1-4, 7, 8, 10, 12-15, 18, 19, 21-27, 31-38,
42, 46-50, 52-56, 59-63, 69-71, 73-84, 87, 89-104, 107,
109, 113

744,064,683 2,666,190 (100%) 279.07

2

XPath: //sec

NESTOR: descendants(sec)

INEX topics: 20, 44, 51, 85, 88

520,221,285 2,164,231 (81%) 240.37

3

XPath: //p

NESTOR: descendants(p)

INEX topics: 64

607,708,666 2,584,699 (97%) 235.11

4

XPath: //group

NESTOR: descendants(group)

INEX topics: 39, 41, 43, 66

33,975,852 1,146,929 (43%) 29.62

5

XPath: //facility

NESTOR: descendants(facility)

INEX topics: 111

9,174,614 189,706 (7%) 48.36

6

XPath: //song

NESTOR: descendants(song)

INEX topics: 106

9,810,986 95,318 (4%) 102.93

7

XPath: //driver

NESTOR: descendants(driver)

INEX topics: 112

2,303,728 20,545 (1%) 112.13

8

XPath: //protest

NESTOR: descendants(protest)

INEX topics: 58

163,995 6,293 (0%) 26.06

9

XPath: //dog

NESTOR: descendants(dog)

INEX topics: 30

2,502,607 63,677 (2%) 39.30

10

XPath: //food

NESTOR: descendants(food)

INEX topics: 11

1,008,336 25,271 (1%) 39.90

11

XPath: //bycicle

NESTOR: descendants(bycicle)

INEX topics: 16

154,819 16,784 (1%) 9.22

12

XPath: //vehicles

NESTOR: descendants(vehicles)

INEX topics: 28

1,123 801 (0%) 1.40

13

XPath: //personality

NESTOR: descendants(personality)

INEX topics: 29

1,471,164 22,050 (1%) 66.72

14

XPath: //theory

NESTOR: descendants(theory)

INEX topics: 110

991,775 24,305 (1%) 40.81

15

XPath: //museum

NESTOR: descendants(museum)

INEX topics: 115

2,280,387 82,581 (3%) 27.61

16

XPath: //home

NESTOR: descendants(home)

INEX topics: 17

38,461 2,357 (0%) 16.32

17

XPath: //music genre

NESTOR: descendants(music genre)

INEX topics: 12, 105

1,630,346 107,506 (4%) 15.17

41



Table .9: Structure query templates for union descendants queries.
ID Template #ret elem # files (%) avg

18

XPath: //(classical music | opera | orchestra |
performer)

NESTOR: descendants(classical music) ∪
descendants(opera) ∪ descendants(orchestra)

∪ descendants(performer)

INEX topics: 6

15,554,795 331,259 (12%) 46.97

19

XPath: //(person | chemist | alchemist |
scientist | physicist)
NESTOR: descendants(person) ∪
descendants(chemist) ∪ descendants(alchemist)

∪ descendants(scientist) ∪
descendants(physicist)

INEX topics: 5

159,310,613 1,401,408 (53%) 113.68

20

XPath: //(p | sec)
NESTOR: descendants(p) ∪ descendants(sec)

INEX topics: 9

625,726,431 2,585,836 (97%) 241.98

Table .10: Structure query templates for intersection descendants queries.
ID Template #ret elem # files (%) avg

21

XPath: //painter//figure

NESTOR: descendants(painter) ∩
descendants(figure)

INEX topics: 114

18,075 12,346 (0%) 1.46

22

XPath: //aircraft//sec

NESTOR: descendants(aircraft) ∩
descendants(sec)

INEX topics: 86

2,163,601 27,339 (1%) 79.14

23

XPath: //movie//director NESTOR:
descendants(movie) ∩ descendants(director)

INEX topics: 57

621,546 71,378 (3%) 8.71

24

XPath: //(information | artifact)//p
NESTOR: [descendants(information) ∪
descendants(artifact)] ∩ descendants(p)

INEX topics: 67

44,489,868 878,435 (33%) 50.65

25

XPath: //(person | scientist)/link
NESTOR: [descendants(person) ∪
descendants(scientist)] ∩ descendants(link)

INEX topics: 72

25,830,674 1,365,840 (51%) 18.91
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