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ABSTRACT
Topic variance has a greater effect on performances than
system variance but it cannot be controlled by system devel-
opers who can only try to cope with it. On the other hand,
system variance is important on its own, since it is what
system developers may affect directly by changing system
components and it determines the differences among sys-
tems. In this paper, we face the problem of studying system
variance in order to better understand how much system
components contribute to overall performances. To this end,
we propose a methodology based on General Linear Mixed
Model (GLMM) to develop statistical models able to isolate
system variance, component effects as well as their interac-
tion by relying on a Grid of Points (GoP) containing all the
combinations of analysed components. We apply the pro-
posed methodology to the analysis of TREC Ad-hoc data
in order to show how it works and discuss some interesting
outcomes of this new kind of analysis. Finally, we extend
the analysis to different evaluation measures, showing how
they impact on the sources of variance.

1. INTRODUCTION
The experimental results analysis is a core activity in In-

formation Retrieval (IR) aimed at, firstly, understanding
and improving system performances and, secondly, assess-
ing our own experimental methods, such as robustness of
experimental collection or properties of the evaluation mea-
sures. When it comes to explaining system performances
and differences between algorithms, it is commonly under-
stood [10, 17, 23] that system performances can be broken
down to a reasonable approximation as

system performances = topic effect + system effect+

topic/system interaction effect

even though it is not always possible to estimate these
effects separately, especially the interaction one.

It is well-known that topic variability is greater than sys-
tem variability [23, 26]. Therefore, a lot of effort has been
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put in better understanding this source of variance [17] as
well as in making IR systems more robust to it, e.g. [25,28],
basically trying to improve on the interaction effect. Nev-
ertheless, with respect to an IR system, topic variance is a
kind of “external source” of variation, which cannot be con-
trolled by developers, but can only be taken into account to
better deal with it.

On the other hand, system variance is a kind of “internal
source”of variation, since it is originated by the choice of sys-
tem components, may be directly affected by developers by
working on them, and represents the intrinsic differences be-
tween algorithms. Its importance is witnessed by the wealth
of research on how to compare systems performances in a re-
liable and robust way [1,2, 4, 9, 20–23,27].

However, a limitation of the current experimental method-
ology is that it allows us to evaluate IR systems only as a
kind of“black-boxes”, without an understanding of how their
different components interact with each other and contribute
to the overall performances. In other terms, we consider sys-
tem variance as a single monolithic contribution and we can-
not break it down into the smaller pieces (the components)
constituting an IR system.

In order to estimate the effects of the different compo-
nents of an IR system, we develop a methodology, based
on General Linear Mixed Model (GLMM) and ANalysis Of
VAriance (ANOVA) [13, 18], which makes us of a Grid of
Points (GoP) containing all the possible combinations of in-
spected components. The proposed methodology allows us
to break down the system effect into the contributions of
stops lists, stemmers or n-grams and IR models, as well as
to study their interaction.

We experimented on standard Text REtrieval Conference
(TREC) Ad-hoc collections and produced a GoP by using
the Terrier1 open source IR system [12]. This gave us a very
controlled experimental setting, which allowed us to system-
atically fit our General Linear Model (GLM) and break down
the system variance. Note that such a controlled experimen-
tal setting is typically not available in evaluation campaigns,
such as TREC, where participating systems do not consti-
tute a systematic sampling of all the possible combinations
of components and often are not even described in such a
detail to know exactly what components have been used.

We applied the proposed methodology to TREC 5, 6, 7,
and 8 Ad-hoc collections and we employed different mea-
sures – AP, Precision at 10, RBP, nDCG@20, and ERR@20.
This setup allows us not only to highlight how components
contribute to the overall system variance but also to gain

1
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insights on how different evaluation measures impact on sys-
tem and component variances.

The paper is organized as follows: Section 2 presents
related work; Section 3 introduces our methodology; Sec-
tion 4 experiments the proposed methodology; and, Sec-
tion 5 draws conclusions and discusses future work.

2. RELATED WORKS
The impossibility of testing a single component by set-

ting it aside from the complete IR system is a long-standing
and well-known problem in IR experimentation, as early re-
marked by [16]. Component-based evaluation methodolo-
gies [6–8] have tried to tackle this issue by providing tech-
nical solutions for mixing different components without the
need of building a whole IR system. However, even if these
approaches allowed researchers to focus on the components
of their own interest, they have not delivered yet estimates
of the performance figures of each component.

The decomposition of performances into system and topic
effects has been exploited by [1, 23] to analyze TREC data;
[4] proposed model-based inference, using linear models and
ANOVA, as an approach to multiple comparisons; [10] used
multivariate linear models to compare non-deterministic IR
systems among them and with deterministic ones. In all
these cases, the goal is a more accurate comparison among
systems rather than an analysis and breakdown of system
variance per se. [17] applied GLMM to the study of per-topic
variance by using simulated data to generate more replicates
for each (topic, system) pair in order to estimate also the
topic/system interaction effect; however, they did not use
real data nor did focus on breaking down the system effect.

The idea of creating all the possible combinations of com-
ponents has been proposed by [7], who noted that a sys-
tematic series of experiments on standard collections would
have created a GoP, where (ideally) all the combinations of
retrieval methods and components are represented, allowing
us to gain more insights about the effectiveness of the differ-
ent components and their interaction; this would have called
also for the identification of suitable baselines with respect to
which all the comparisons have to be made. Even though [7]
introduced the idea of a GoP and how it could have been
central to the decomposition of system component perfor-
mances, they did not come up with an full-fledged method-
ology for analyzing such data and breaking down component
performances, which is the contribution of the present work
instead.

More recently, the proliferation of open source IR sys-
tems [24] has greatly ameliorated the situation, allowing re-
searchers to run systematic experiments more easily. This
led the community to further investigate what reproducible
baselines are [5, 11] and the “Open-Source Information Re-
trieval Reproducibility Challenge” provided several of these
baselines, putting some points in the ideal GoP mentioned
above. We move a step forward with respect to [11] since
we propose an actual methodology for exploiting such GoPs
to decompose system performances and we rely on a much
finer-grained grid, in terms of number of components and
IR models experimented.

3. METHODOLOGY
The goal of the proposed methodology is to decompose the

effects of different components on the overall system perfor-

mances. In particular, we are interested in investigating the
effects of the following components: stop lists; Lexical Unit
Generator (LUG), namely stemmers or n-grams; IR models,
such as the vector space or the probabilistic model.

We create a Grid of Points (GoP) on a standard exper-
imental collection by running all the IR systems resulting
from all the possible combinations of the considered com-
ponents (stop list, LUG, IR model); we consider stemmers
and n-grams as alternative LUG components, thus we do
not consider IR systems using both stemmer and n-grams.

Given a performance measure, such as Average Precision
(AP), we produce a matrix Y , as the one shown in Figure
1, where each cell Yij represents a measurement on topic ti
of the system sj . Note that the column average – i.e., µ·j –
is the performance mean over all topics for a given system,
e.g. Mean Average Precision (MAP); the row average – i.e.,
µi· – is the performance mean over all systems for a given
topic.

A GLMM explains the variation of a dependent variable
Y (“Data”) in terms of a controlled variation of independent
variables (“Model”) in addition to a residual uncontrolled
variation (“Error”).

Data = Model + Error

The term “General” refers to the ability to accommodate
distinctions on quantitative variables representing continu-
ous measures (as in regression analysis) and categorical dis-
tinctions representing groups or experimental conditions (as
in ANOVA). In our case, we deal with categorical indepen-
dent variables, as for example different types of stemmers,
which constitute the levels of such categorical variable. The
term “Linear” indicates that the “Model” is expressed as a
linear combination of factors, where the factors can be single
independent variables or their combinations. In our case, we
are interested both in single independent variables, i.e. the
main effects of the different components alone, and their
combinations, i.e. the interaction effects between compo-
nents. The term “Mixed” refers to the fact that some in-
dependent variables are considered fixed effects – i.e. they
have precisely defined levels, and inferences about its effect
apply only to those levels – and some others are considered
random effects – i.e. they describe a randomly and inde-
pendently drawn set of levels that represent variation in a
clearly defined wider population; a random factor is indi-
cated by adding a single quote as superscript to the variable
name. In our case, the different kinds of systems and com-
ponents are fixed effects while topics are random effects.

The experimental design determines how you compute the
model and how you estimate its parameters. In particular,
it is possible to have independent measures designs where
different subjects participate to different experimental con-
ditions (factors) or repeated measures designs, where each
subject participates to all the experimental conditions (fac-
tors). In our case systems and their components are the
experimental conditions (factors) while topics are the sub-
jects and, since each topic is processed by each system, we
have a repeated measure design.

One advantage of repeated measures designs is a reduction
in error variance due to the greater similarity of the scores
provided by the same subjects; in this way, variability in
individual differences between subjects is removed from the
error. Basically, a repeated measure design increases the
statistical power for a fixed number of subjects or, in other



terms, it allows us to reach a desired level of power with less
subjects than those required in the independent measures
design.

A final distinction is between crossed/factorial designs,
where every level of one factor is measured in combination
with every level of the other factors, and nested designs,
where levels of a factor are grouped within each level of an-
other nesting factor. In our case, we have a crossed/factorial
design because in the generated GoP we experiment each
possible combination of components.

3.1 Single Factor Repeated Measures Design
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Figure 1: Single factor repeated measures design.

This design is the one typically used when ANOVA is ap-
plied to the analysis of the system performances in a track
of an evaluation campaign, as in [1, 23], where the subjects
are the topics and the factors are the system runs. Basically,
in this context ANOVA is used to determine which experi-
mental condition dependent variable score means differ, i.e.
which systems are significantly different from others.

In our case, we are interested also in a second aspect,
i.e. to determine what proportion of variation in the depen-
dent variable can be attributed to differences between spe-
cific experimental groups or conditions, as defined by the
independent variables. This turns into determining which
proportion of variation is due to the topics and which one
to the systems.

3.1.1 Model
The full GLMM model for the one-way ANOVA with re-

peated measures is:

Yij = µ·· + τi + αj︸ ︷︷ ︸
Model

+ εij︸︷︷︸
Error

(3.1)

where: Yij is the score of the i-th subject (topic) in the
j-th factor (system); µ·· is the grand mean; τi is the effect
of the i-th subject τi = µi·−µ·· where µi· is the mean of the
i-th subject; αj is the effect of the j-th factor αj = µ·j −µ··
where µ·j is the mean of the j-th factor; εij is the error
committed by the model in predicting the score of the i-
th subject in the j-th factor. It consists of a term (τα)ij
which is the interaction between the i-th subject and the
j-th factor2; and, a term εij which is any additional error
due to uncontrolled sources of variance.

2
In order to calculate interaction effects, you need to have several scores (repli-

cates) for each cell. The mean of the cell scores is taken as the best estimate of

3.1.2 Estimators
We have the following estimators for the parameters of

the model above:

• grand mean: µ̂·· = 1
pn

∑p
j=1

∑n
i=1 Yij

• mean of the i-th subject µ̂i· = 1
p

∑p
j=1 Yij and its effect

τ̂i = µ̂i· − µ̂··

• mean of the j-th factor µ̂·j = 1
n

∑n
i=1 Yij and its effect

α̂j = µ̂·j − µ̂··

• score of the i-th subject in the j-th factor Ŷij = µ̂·· +
τ̂i + α̂j = µ̂i· + µ̂·j − µ̂··

• prediction error of the i-th subject in the j-th experi-
mental condition ε̂ij = Yij − Ŷij = Yij − µ̂··− τ̂i− α̂j =
Yij − (µ̂i· + µ̂·j − µ̂··)

3.1.3 Assessment
We can write the model of equation (3.1) introducing the

estimated parameters as

Yij = µ̂·· + τ̂i + α̂j + ε̂ij

= µ̂·· + (µ̂i· − µ̂··) + (µ̂·j − µ̂··) + (Yij − (µ̂i· + µ̂·j − µ̂··))

which leads to the following decomposition of the effects

Yij − µ̂··︸ ︷︷ ︸
Total Effects

= µ̂i· − µ̂··︸ ︷︷ ︸
Subject Effects

+ µ̂·j − µ̂··︸ ︷︷ ︸
Factor Effects

+Yij − (µ̂i· + µ̂·j − µ̂··)︸ ︷︷ ︸
Error Effects

(3.2)
From equation (3.2), we can compute the sum of squares

(SS), degrees of freedom (DF), and mean squares (MS) as
follows:

• total effects SStot =
∑p

j=1

∑n
i=1 (Yij − µ̂··)

2 with mean

squares MStot = SStot
dftot

where dftot = pn − 1 where
dftot comes from the fact that we are summing up pn
scores and one degree of freedom is lost because of the
grand mean µ̂··;

• subject effects

SSsubj =

p∑
j=1

n∑
i=1

(µ̂i· − µ̂··)
2 =

n∑
i=1

p (µ̂i· − µ̂··)
2

with mean squares MSsubj =
SSsubj
dfsubj

where dfsubj =

n−1 where SSsubj considers that the quantity µ̂i·−µ̂··
is the same for all the p factors which the i-th sub-
ject experiences; dfsubj is calculated by summing up n
times the subject mean µ̂i· where one degree of free-
dom is lost because of the grand mean µ̂··;

• factor effects

SSfact =

p∑
j=1

n∑
i=1

(µ̂·j − µ̂··)
2 =

p∑
j=1

n (µ̂·j − µ̂··)
2

with mean squares MSfact =
SSfact
dffact

where dffact =

p−1 where SSfact considers that the quantity µ̂·j− µ̂··
the cell score and is used to calculate interaction effects, with the discrepancy
between the mean and the actual score providing the estimates of experimental
error. If there is only one score per subject per factor, then a mean and its er-
ror cannot be calculated per subject per factor and without these estimates, the
factor εij cannot be separated from the interaction effect (τα)ij .



is the same for all the n subjects which experience the
j-th factor; dffact is calculated by summing up p times
the factor mean µ̂·j where one degree of freedom is lost
because of the grand mean µ̂··;

• error effects

SSerr =

p∑
j=1

n∑
i=1

(Yij − (µ̂i· + µ̂·j − µ̂··))
2

with mean squares MSerr = SSerr
dferr

where dferr =

(p− 1) (n−1) where dferr is calculated by summing up
n times the scores where one degree of freedom is lost
in the subject scores because of the subject mean µ̂i·
and one degree of freedom is lost in the factor scores
because of the factor mean µ̂·j .

Note that SStot = SSsubj + SSfact + SSerr.
In order to determine if the factor effect is statistically

significant, we compute the F statistics defined as:

Ffact =
MSfact

MSerr
(3.3)

and compare it with the distribution F(dffact,dferr) under

the null hypothesis H0 that there are not significant dif-
ferences in order to estimate the probability (p-value) that
Ffact has been observed by chance. We can set a significance
level α (typically α = 0.05) and, if p-value < α, the factor
effect is considered statistically significant.

As introduced above, we are not only interested in de-
termining whether the factor effect is significant but also
which proportion of the variance is due to it, that is we
need to estimate its effect-size measure or Strength of As-
sociation (SOA). The SOA is a “standardized index and es-
timates a parameter that is independent of sample size and
quantifies the magnitude of the difference between popula-
tions or the relationship between explanatory and response
variables” [15]. We use the ω̂2

〈fact〉 SOA:

ω̂2
〈fact〉 =

dffact(Ffact − 1)

dffact(Ffact − 1) + pn
(3.4)

which is an unbiased estimator of the variance components
associated with the sources of variation in the design.

The common rule of thumb [14] when classifying ω̂2
〈fact〉

effect size is: 0.14 and above is a large effect, 0.06–0.14 is
a medium effect, and 0.01–0.06 is a small effect. ω̂2

〈fact〉
values could happen to be negative and in such cases they
are considered as zero.

When you conduct experiments, two types of error may
happen. A Type 1 error occurs when a true null hypothesis
is rejected and the significance level α is the probability of
committing a Type 1 error. A Type 2 error occurs when
a false null hypothesis is accepted and it is concerned with
the capability of the conducted experiment to actually de-
tect the effect under examination. Type 2 errors are often
overlooked because if they occur, although a real effect is
missed, no misdirection occurs and further experimentation
is very likely to reveal the effect.

The power is the probability of correctly rejecting a false
null hypothesis when an experimental hypothesis is true

Power = 1 − β

where β (typically β = 0.2) is the Type 2 error rate.

To determine the power of an experiment, we compute the
effect size parameter:

φ =

√√√√n ·
ω̂2
〈fact〉

1 − ω̂2
〈fact〉

(3.5)

and we compare it with its tabulated values for a given Type
1 error rate α to determine β.

3.2 Factorial Repeated Measures Design
While single factor designs manipulate a single variable,

factorial designs take into account two or more factors as
well as their interaction. As an example a two factors re-
peated measure design can be defined extending the design
described above, where we manipulated one factor (A), by
adding an additional factor (B) and the interaction between
them (AB).

We can therefore define a three factors design where we
manipulate factors A, B and C which correspond to the stop
lists, the LUG and the IR models respectively; with this
design we can also study the interaction between component
pairs as well as the third order interaction between them.

In Figure 2 we can see a table which extends to three
factors the design presented in Figure 1 for a single fac-
tor. We can see that the systems are now decomposed into
three main constituents: (i) factor A (stop lists) with p levels
where, for instance, A1 corresponds to the absence of a stop
list, A2 to the indri stop list, A3 to the terrier stop list and so
on; (ii) factor B (LUG) with q levels where B1 corresponds
to the absence of a LUG, B2 to the Porter stemmer, B3 to
the Krovetz stemmer and so on; (iii) factor C (IR models)
with r levels where C1 corresponds to BM25, C2 to TF*IDF
and so on. We call this design a p × q × r factorial design.
Each cell of the table in Figure 2, say Ynpqr, reports the mea-

surement (e.g., AP) on topic T
′
n, for the system composed

by the stop list Ap, the LUG Bq and IR model Cr.
The full GLMM model for the described factorial ANOVA

for repeated measures with three fixed factors (A, B, C) and

a random factor (T
′
) is:

Yijkl =µ···· + τi + αj + βk + γl︸ ︷︷ ︸
Main Effects

+

αβjk + αγjl + βγkl + αβγjkl︸ ︷︷ ︸
Interaction Effects

+ εijkl︸︷︷︸
Error

(3.6)

where: Yijkl is the score of the i-th subject in the j-th,
k-th, and l-th factors; µ···· is the grand mean; τi is the ef-
fect of the i-th subject τi = µi··· − µ···· where µi··· is the
mean of the i-th subject; αj = µ·j·· − µ···· is the effect of
the j-th factor, where µ·j·· is the mean of the j-th factor;
βk = µ··k· − µ···· is the effect of the k-th factor, where µ··k·
is the mean of the k-th factor; and, γl = µ···l − µ···· is the
effect of the l-th factor where µ···l is the mean of the l-th
factor; εijkl is the error committed by the model in predict-
ing the score of the i-th subject in the three factors j, k, l.
It consists of all the interaction terms between the random
subjects and the fixed factors, such as (τα)ij , (τβ)ik and
so on, plus the error εijkl which is any additional error due
to uncontrolled sources of variance. As in the single factor
design to calculate interaction effects with the subjects, you
need to have replicates; when there is only one score per
subject per factor the factor εijkl cannot be separated from
the interaction effects with the random subjects.
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Figure 2: Three factors repeated measures design.

The estimators of the main effects can be derived by exten-
sion from those of the single factor design; for instance, the
grand mean is µ̂···· = 1

rqpn

∑r
l=1

∑q
k=1

∑p
j=1

∑n
i=1 Yijkl, the

mean of the k-th effect is µ̂··k· = 1
rpn

∑r
l=1

∑p
j=1

∑n
i=1 Yijkl

and its estimator is β̂k = µ̂··k· − µ̂····.
The estimators of the interaction factors are calculated as

follows, let us consider (αβ)jk:

α̂βjk = µ̂·jk· − (µ̂···· + α̂j + β̂k) (3.7)

where µ̂·jk· = 1
nr

∑n
i=1

∑r
l=1 Yijkl; α̂j = µ̂·j·· − µ̂····; and,

β̂k = µ̂··k· − µ̂····.
Similarly, we calculate the estimators for all the other in-

teraction factors – i.e. α̂γjl and β̂γkl; α̂βγjkl is calculated
by extending equation (3.7):

α̂βγjkl = µ̂·jkl − (µ̂···· + α̂j + β̂k + γ̂l) (3.8)

where µ̂·jkl = 1
n

∑n
i=1 Yijkl and γ̂l = µ̂···l − µ̂····.

In this design the error εijkl = Yijkl − Ŷijkl contains the
variance not explained by the main and interaction effects
discussed above and it is composed by all the interactions
of the subjects τj with the other factors in the model in
addition to the uncontrolled sources of variance.

The sum of squares, mean squares and degrees of freedom
of the main effects can be derived by extension form those of
the one factor design. As an example, the degrees of freedom
of factor A are p− 1 and its sum of squares is:

SSA =

r∑
l=1

q∑
k=1

p∑
j=1

n∑
i=1

α̂2
j = rqn

p∑
j=1

(µ̂·j·· − µ̂····)
2

As an example of the computations for the interaction
terms, we consider the term A×B whose degrees of freedom
are (p− 1)(q − 1) and whose sum of squares is:

SSA×B =

r∑
l=1

q∑
k=1

p∑
j=1

n∑
i=1

α̂β
2

jk

= rn

q∑
k=1

p∑
j=1

(µ̂·jk· − µ̂·j·· − µ̂··k· + µ̂····)
2

As in the single factor design case, the mean squares of a
factor (both main and interaction) are calculated by divid-
ing its sum of squares by its degrees of freedom, the F-test
is calculated with equation (3.3), the SOA measure with
equation (3.4), and the power with equation (3.5).

4. EXPERIMENTATION AND DISCUSSION
We considered three main components of an IR system:

stop list, LUG and IR model. We selected a set of alternative
implementations of each component and by using the Terrier
open source system we created a run for each system defined
by combining the available components in all possible ways.
The components we selected are:

stop list: nostop, indri, lucene, smart, terrier;

LUG: nolug, weak Porter, Porter, Krovetz, Lovins, 4grams,
5grams;

model: BB2, BM25, DFRBM25, DFRee, DLH, DLH13,
DPH, HiemstraLM, IFB2, InL2, InexpB2, InexpC2,
LGD, LemurTFIDF, PL2, TFIDF.

Note that the stemmers and n-grams of the LUG com-
ponent are used as alternatives, this means that we end up
with two distinct groups of runs, one using the stemmers and
one using the n-grams; the nolug component is common to
both these groups. The group using the stemmers defines a
5× 5× 16 factorial design with a grid of points consisting of
400 runs; the group using the n-grams defines a 5 × 3 × 16
factorial design with a grid of points consisting of 240 runs.



Table 1: Single factor, ANOVA table for TREC 08
(stemmer group) using AP.

Source SS DF MS F p-value
Topics′ 820.99 49 16.75 694.7235 0
Systems 36.44 399 0.09 7.4464 0
Error 88.20 19551 0.0045
Total 945.63 19999

We conducted single factor and three-factors ANOVA tests
for both the groups on TREC 05, 06, and 08 collections,
and by employing the following five measures: AP, P@10,
nDCG@20, RBP and ERR@20. All the test collections are
composed by 50 different topics and have binary relevance
judgments; the corpus of TREC 05 is the TIPSTER disk 2
and 4 counting 525K documents, the corpus of TREC 06 is
TIPSTER disk 4 and 5 counting 556K documents and the
corpus of TREC 07 and 08 is the TIPSTER disk 4 and disk
5 (minus Congressional Record) counting 528K documents.

To ease reproducibility, the code for running the experi-
ments is available at: http://gridofpoints.dei.unipd.it/.

4.1 Single Factor Repeated Measures Effects
We conducted 40 single factor ANOVA tests (4 collections

× 5 measures × 2 run groups), so for space reasons we cannot
report all the result; as an example, Table 1 reports the
synthesis data of the ANOVA test for TREC 08 using the
stemmer group of runs measured with AP.

From the sum of squares (SS) and the mean squares (MS),
we can see that topics explain a large portion of the total
variance. Nonetheless, the effect of the IR systems is statis-
tically significant (p-value 0). We can also see that the sum
of squares of the error is not negligible since it contains both
the variance of the unexplained topics/systems interaction
effect and the the other uncontrolled sources of variance.
From this table we can calculate the statistical power of
the experiment, which is 1 with a Type 1 error probabil-
ity α = 0.05, indicating that we are observing effects in a
reliable way.

Table 2 reports the ω̂2
〈system〉 SOA measure and the p-

value of the ANOVA test for the single factor models on all
the test collections for all the considered evaluation mea-
sures. The “LUG” column indicates the runs group we are
considering (stemmers or n-grams). This table shows that
despite the high variance of the topics, the system effect
sizes are generally large and this is consistent across all the
collections and measures. Moreover, system effect sizes of
stemmer runs group systems are large (> 0.14) for all the
collections and measures with the solely exception of AP
for TREC 05. Whereas, for the n-grams runs group we
can see that the system effect sizes are consistently smaller
than those of the stemmer group; this, supports the obser-
vation that “for English, n-grams indexing has no strong
impact” [3].

Table 2 shows that measures impact on the amount of
variance explained by the system effect. Generally, system
effect sizes are higher when nDCG@20 is used, followed by
RBP, P@10, AP and ERR@20. This could be related to two
characteristics of the measures: their discriminative power
and their user model. Indeed, if a measure is less discrimi-
native than another one, it could be able to grasp less vari-
ance in the system effect; on the other hand, different user
models mean looking at (very) different angles of system
performances and this can change the explained variance.

To explore a bit this hypothesis, in Table 3 we report the
discriminative power of the five considered measures over the
test collections calculated by employing the paired bootstrap
test defined in [19]. We can see that there is some agree-
ment between the system effect sizes for a measure and its
discriminative power; for instance, ERR@20 explains less
system variance than the other measures and this can be
explained by its discriminative power which is the lowest
amongst all measures; similarly, RBP and nDCG@20 have
both comparable discriminative power and close system ef-
fect sizes. The main exception is AP which typically has the
highest discriminative power but the smallest system effect
size; this could be due to the user model behind AP, which is
quite different from the one of the other measures and may
counterbalance the higher discriminative power leading to a
final lower system effect size.

4.2 Three Factors Repeated Measures Effects
In Table 4 we report the ANOVA table of a three factors

test for the stemmer group of runs on TREC 08 measured
with AP.

We can see that the sum of squares of the topics is the
same as the one determined with the single factor design, as
well as the error and the total sum of squares. The main dif-
ference with the one factor design is that the variance of the
systems is now decomposed into three main effects (stop list,
stemmer and IR model) and four interaction effects. In this
case all the main effects are statistically significant meaning
that they have a role in explaining systems variance; in par-
ticular, the stop list explains more variance than the model
and the stemmer is the component with the lowest impact
in this design. Amongst the interaction effects, only the sto-
plist*model effect is significant explaining a tangible portion
of the systems variance. The statistical power for the main
effects is 0.97 for the stop list, 0.66 for the stemmer and 0.99
for the model with a Type 1 error probability α = 0.05.

Table 5 reports the estimated ω2 SoA for all the main
and interaction effects and the p-values for all the ANOVA
three-way tests we conducted; from this this table we can see
that main and interaction effect sizes are consistent across
the different collections.

Analyzing the main effect sizes reported in Table 5 we
can see that for the stemmer group of runs the stop list has
always a higher ω̂2 than the IR model and the stemmer and,
with the solely exceptions of TREC 05 for AP and ERR@20,
the stop list has a medium effect size. Whereas, n-grams
tend to reduce the stop list effect and to increase the IR
model one; this can be also seen from the n-grams*model
interaction effect which is small but statistically significant,
differently from the stemmer*model effect which is never
significant.

These observations cast a light on the importance of lin-
guistic pre-processing and linguistic resources, given that the
role of the stop list is significant in an IR system as well as
choosing between stemmers or n-grams. We can further an-
alyze these aspects by looking at Figure 3; the plot on the
left reports the main effects for the TREC 08 stemmer group
case and we show the marginal means (response means) de-
scribed in Section 3.2 for the effect under investigation on
the y-axis and the various components on the x-axis.

From the first plot we see that the presence or absence of
a stop list affects the system performances because the line
connecting “no stop” and “indri” is not horizontal, whereas
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Figure 3: Main effects plots and Tukey HSD test plots for the stemmer group of runs on TREC 08 with AP.
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Figure 4: Interaction plots for the stemmer group of runs on TREC 08 with AP.



Table 2: Summary of single factor models on TREC collections. Each cell reports the ω̂2 for the System
effects and, within parentheses, the p-value for those effects. Large effect sizes (ω̂2

〈Systems〉 > 0.14) are in bold.
Collection LUG Effects AP P@10 RBP nDCG@20 ERR@20

TREC 05
Stemmers ω̂2

〈Systems〉 0.1223 (0.00) 0.2023 (0.00) 0.1970 (0.00) 0.1879 (0.00) 0.1406 (0.00)

n-grams ω̂2
〈Systems〉 0.0794 (0.00) 0.1178 (0.00) 0.1349 (0.00) 0.1200 (0.00) 0.1063 (0.00)

TREC 06
Stemmers ω̂2

〈Systems〉 0.2108 (0.00) 0.2458 (0.00) 0.2716 (0.00) 0.2742 (0.00) 0.2377 (0.00)

n-grams ω̂2
〈Systems〉 0.1350 (0.00) 0.1496 (0.00) 0.1597 (0.00) 0.1725 (0.00) 0.1469 (0.00)

TREC 07
Stemmers ω̂2

〈Systems〉 0.2155 (0.00) 0.2568 (0.00) 0.2894 (0.00) 0.2977 (0.00) 0.2445 (0.00)

n-grams ω̂2
〈Systems〉 0.1502 (0.00) 0.1658 (0.00) 0.1920 (0.00) 0.1898 (0.00) 0.1480 (0.00)

TREC 08
Stemmers ω̂2

〈Systems〉 0.2774 (0.00) 0.2780 (0.00) 0.3025 (0.00) 0.3118 (0.00) 0.2484 (0.00)

n-grams ω̂2
〈Systems〉 0.1758 (0.00) 0.1907 (0.00) 0.2006 (0.00) 0.2135 (0.00) 0.1530 (0.00)

Table 3: Discriminative power of the evaluation
measures on TREC 05, TREC 06, TREC 07 and
TREC 08 for the stemmers and n-grams groups.

Group TREC 05 TREC 06 TREC 07 TREC 08

stemmer

AP 3011 .2748 .3591 .4743
P@10 .3774 .2687 .3222 .3171
RBP .3152 .2589 .3302 .3422
nDCG@20 .3448 .2698 .3169 .3834
ERR@20 .2014 .2235 .2096 .2388

n-grams

AP .3180 .3553 .5184 .3498
P@10 .3025 .2656 .3660 .2977
RBP .3852 .2539 .4193 .2797
nDCG@20 .3260 .3130 .4292 .2938
ERR@20 .2832 .1978 .2549 .2416

Table 4: Three factor, ANOVA table for TREC 08
(stemmer group) using AP.

Source SS DF MS F p

Topics′ 820.99 49 16.75 3713.90 0.00

Stop list 9.89 4 2.47 548.06 0.00

Stemmer 4.16 4 1.04 230.76 0.00

Model 5.16 15 0.3443 76.32 0.00

Stop list*Stemmer 0.05 16 0.03 0.67 0.83

Stop list*Model 17.01 60 0.28 62.84 0.00

Stemmer*Model 0.07 60 0.001 0.26 1.00

Stop list*Stemmer*Model 0.09 240 0.00 0.08 1.00

Error 88.20 19551 0.005

Total 945.63 19999

the lines connecting the different stop lists have much lower
slope. In particular, we see that the choice of the stop list
does not make a big difference with respect to use or not
use a stop list; this can be further explored looking at the
Tukey HSD test plot on the upper-right corner of the figure
(in blue the selected component; in grey the components in
the same group, i.e. not significantly different; in red the
components in a different group, i.e. significantly different),
where we can see that there are no significant differences
between the “indri”, “smart” and “terrier” stop lists, whereas
the “lucene” stop list (which is composed by 15 words) is
significantly different from the other three.

The main effect of the stemmer is always significant even
though its size is quite small; nevertheless, the central plot
of Figure 3 shows that there is a tangible difference between
systems using or not using a stemmer. This can be seen also
from the Tukey HSD test plot on the right; in particular, we
can observe that there is no significant difference between
the Porter and the Krovetz stemmer which are the stemmers
with the highest impact on variance followed by the weak
Porter and the Lovins ones.

Lastly, the plot on the right of Figure 3 reports the main
effects of the IR models: they behave differently, as shown by
several lines with high slopes, but the corresponding Tukey
HSD shows that a many models are not significantly differ-
ent one from the other. This can explain why the IR models
effects are statistically significant but their effect sizes are
not large.

For all the collections, consistently across the measures
and both for the stemmer and the n-grams group, the higher

effect size is reported by the stop list*model interaction effect
which is always of medium or large size. This effect shows us
that the variance of the systems is explained for the bigger
part by the stop list and the model components. For the
stemmer group of TREC 08, this can be seen in the plots on
the upper-right and lower-left corners of Figure 4 where the
lines of the interaction between the stop lists and the models
intersect quite often. Indeed, the interaction plots show how
the relationship between one factor and a response depends
on the value of the second factor. These plots display means
for the levels of one factor on the x-axis and a separate line
for each level of another factor; if two lines (or segments)
are parallel then no interaction occurs, if the lines are not
parallel then an interaction occurs and the more nonparallel
the lines are, the greater the strength of the interaction.

The stop list*stemmer interaction effects are always not
significant as we can see from the p-values of Table 5 and
the interaction plots in the upper-left part of Figure 4 where
the line segments are parallel. A very similar trend can be
observed for the stemmer*model interaction effect.

It is interesting to note that the second order interactions
for the n-grams group are all statistically significant and
that, in particular, we can see that n-grams, differently than
the stemmers, have a bigger effect on the stop list than on
the IR model.

We observe that different measures see the stop lists in a
comparable way in terms of effect size and this is consistent
with what we have seen in the one factor analysis. This is
valid also for the stemmer, with the exception of ERR@20
for which it has an almost negligible effect size even though
it is statistically significant. In Table 5 we can see that
AP and ERR@20 weight the effects in a similar way as it
happened in the single factor analysis reported in Table 2.
For the n-grams group all the measures are comparable and
ERR@20 is not as low as it happens for the stemmers.

Lastly, we can see that the third order interaction are
never significant.

5. CONCLUSIONS AND FUTURE WORK
In this paper we faced the issue of how system variance

contributes to the overall performances and how to break
it down into some of the main components constituting an
IR system. To this end, we developed an analysis method-
ology consisting of two elements: a Grid of Points (GoP)
created on standard experimental collections, where all the
combinations of system components under examination are
considered; and, a GLMM model to decompose the contri-
bution of these components to the overall system variance,
paired with some graphical tools for easily assessing the main
and interaction effects.



Collection LUG Effects AP P@10 RBP nDCG@20 ERR@20

TREC 05

Stemmers

ω̂2
〈Stop Lists〉 0.0432 (0.00) 0.0632 (0.00) 0.0638 (0.00) 0.0605 (0.00) 0.0476 (0.00)

ω̂2
〈Stemmers〉 0.0178 (0.00) 0.0217 (0.00) 0.0116 (0.00) 0.0188 (0.00) 0.0000 (0.00)

ω̂2
〈IR Models〉 0.0219 (0.00) 0.0458 (0.00) 0.0452 (0.00) 0.0409 (0.00) 0.0311 (0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0005 (0.98) -0.00 (0.46) -0.0004 (0.97) -0.0004 (0.94) -0.0005 (0.99)

ω̂2
〈Stop Lists×IR Models〉 0.0632 (0.00) 0.1118 (0.00) 0.1145 (0.00) 0.1047 (0.00) 0.0826 (0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0019 (1.00) -0.00 (0.49) -0.00 (0.48) -0.0008 (0.95) 0.0009 (0.05)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0115 (1.00) -0.0099 (1.00) -0.0109 (1.00) -0.0107 (1.00) -0.0102 (1.00)

n-grams

ω̂2
〈Stop Lists〉 0.0165 (0.00) 0.0272 (0.00) 0.0288 (0.00) 0.0256 (0.00) 0.0225 (0.00)

ω̂2
〈n-grams〉 0.0170 (0.00) 0.0105 (0.00) 0.0211 (0.00) 0.0288 (0.00) 0.0188 (0.00)

ω̂2
〈IR Models〉 0.0208 (0.00) 0.0341 (0.00) 0.0391 (0.00) 0.0275 (0.00) 0.0308 (0.00)

ω̂2
〈Stop Lists×n-grams〉 0.0016 (0.00) 0.0015 (0.00) 0.0020 (0.00) 0.0019 (0.00) 0.0015 (0.00)

ω̂2
〈Stop Lists×IR Models〉 0.0296 (0.00) 0.0544 (0.00) 0.0571 (0.00) 0.0483 (0.00) 0.0424 (0.00)

ω̂2
〈n-grams×IR Models〉 0.0050 (0.00) 0.0047 (0.00) 0.0049 (0.00) 0.0050 (0.00) 0.0040 (0.00)

ω̂2
〈Stop Lists×n-grams×IR Models〉 -0.0063 (1.00) -0.0040 (0.99) -0.0034 (0.99) -0.0056 (1.00) -0.0048 (1.00)

TREC 06

Stemmers

ω̂2
〈Stop Lists〉 0.0750 (0.00) 0.0852 (0.00) 0.0904 (0.00) 0.0932 (0.00) 0.0673 (0.00)

ω̂2
〈Stemmers〉 0.0112 (0.00) 0.0082 (0.00) 0.0068 (0.00) 0.0126 (0.00) 0.0015 (0.00)

ω̂2
〈IR Models〉 0.0557 (0.00) 0.0596 (0.00) 0.0692 (0.00) 0.0696 (0.00) 0.0638 (0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0007 (1.00) -0.0007 (0.99) -0.0007 (0.99) -0.0004 (0.94) -0.0001 (0.64)

ω̂2
〈Stop Lists×IR Models〉 0.1153 (0.00) 0.1483 (0.00) 0.1709 (0.00) 0.1671 (0.00) 0.1539 (0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0020 (1.00) -0.0016 (0.99) -0.0017 (1.00) -0.0017 (1.00) -0.0013 (0.99)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0119 (1.00) -0.0109 (1.00) -0.0116 (1.00) -0.0112 (1.00) -0.0107 (1.00)

n-grams

ω̂2
〈Stop Lists〉 0.0241 (0.00) 0.0282 (0.00) 0.0305 (0.00) 0.0306 (0.00) 0.0296 (0.00)

ω̂2
〈n-grams〉 0.0340 (0.00) 0.0144 (0.00) 0.0126 (0.00) 0.0249 (0.00) 0.0104 (0.00)

ω̂2
〈IR Models〉 0.0404 (0.00) 0.0516 (0.00) 0.0563 (0.00) 0.0545 (0.00) 0.0494 (0.00)

ω̂2
〈Stop Lists×n-grams〉 0.0026 (0.00) 0.0034 (0.00) 0.0036 (0.00) 0.0033 (0.00) 0.0032 (0.00)

ω̂2
〈Stop Lists×IR Models〉 0.0465 (0.00) 0.0628 (0.00) 0.0673 (0.00) 0.0746 (0.00) 0.0646 (0.00)

ω̂2
〈n-grams×IR Models〉 0.0058 (0.00) 0.0091 (0.00) 0.0111 (0.00) 0.0093 (0.00) 0.0080 (0.00)

ω̂2
〈Stop Lists×n-grams×IR Models〉 -0.0033 (0.99) -0.0019 (0.94) -0.0008 (0.72) 0.0004 (0.36) -0.0010 (0.78)

TREC 07

Stemmers

ω̂2
〈Stop Lists〉 0.0747 (0.00) 0.0830 (0.00) 0.0997 (0.00) 0.1023 (0.00) 0.0802 (0.00)

ω̂2
〈Stemmers〉 0.0227 (0.00) 0.0157 (0.00) 0.0163 (0.00) 0.0146 (0.00) 0.0056 (0.00)

ω̂2
〈IR Models〉 0.0441 (0.00) 0.0525 (0.00) 0.0601 (0.00) 0.0653 (0.00) 0.0513 (0.00)

ω̂2
〈Stop Lists×Stemmers〉 0.0001 (0.36) 0.0009 (0.00) 0.0004 (0.09) 0.0004 (0.08) 0.0002 (0.21)

ω̂2
〈Stop Lists×IR Models〉 0.1209 (0.00) 0.1624 (0.00) 0.1856 (0.00) 0.1919 (0.00) 0.1571 (0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0018 (1.00) -0.0009 (0.95) -0.0014 (0.99) -0.0018 (1.00) 0.0007 (0.12)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0113 (1.00) -0.0103 (1.00) -0.0111 (1.00) -0.0110 (1.00) -0.0107 (1.00)

n-grams

ω̂2
〈Stop Lists〉 0.0237 (0.00) 0.0344 (0.00) 0.0395 (0.00) 0.0362 (0.00) 0.0290 (0.00)

ω̂2
〈n-grams〉 0.0208 (0.00) 0.0059 (0.00) 0.0132 (0.00) 0.0154 (0.00) 0.0112 (0.00)

ω̂2
〈IR Models〉 0.0563 (0.00) 0.0552 (0.00) 0.0623 (0.00) 0.0663 (0.00) 0.0382 (0.00)

ω̂2
〈Stop Lists×n-grams〉 0.00 (0.0001) 0.0014 (0.00) 0.0023 (0.00) 0.0025 (0.00) 0.0017 (0.00)

ω̂2
〈Stop Lists×IR Models〉 0.0517 (0.00) 0.0818 (0.00) 0.0958 (0.00) 0.0874 (0.00) 0.0793 (0.00)

ω̂2
〈n-grams×IR Models〉 0.0200 (0.00) 0.0126 (0.00) 0.0116 (0.00) 0.0145 (0.00) 0.0082 (0.00)

ω̂2
〈Stop Lists×n-grams×IR Models〉 -0.0055 (1.00) -0.0044 (1.00) -0.0031 (0.99) -0.0030 (0.99) -0.0034 (0.99)

TREC 08

Stemmers

ω̂2
〈Stop Lists〉 0.0986 (0.00) 0.0913 (0.00) 0.1000 (0.00) 0.1006 (0.00) 0.0799 (0.00)

ω̂2
〈Stemmers〉 0.0439 (0.00) 0.0165 (0.00) 0.0190 (0.00) 0.0268 (0.00) 0.0071 (0.00)

ω̂2
〈IR Models〉 0.0535 (0.00) 0.0615 (0.00) 0.0666 (0.00) 0.0707 (0.00) 0.0521 (0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0003 (0.83) -0.0005 (0.98) -0.0005 (0.98) -0.0006 (0.99) -0.0004 (0.95)

ω̂2
〈Stop Lists×IR Models〉 0.1565 (0.00) 0.1765 (0.00) 0.1969 (0.00) 0.2006 (0.00) 0.1622 (0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0022 (1.00) -0.0014 (0.99) -0.0020 (1.00) -0.0018 (1.00) -0.0016 (0.99)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0111 (1.00) -0.0105 (1.00) -0.0110 (1.00) -0.0110 (1.00) -0.0102 (1.00)

n-grams

ω̂2
〈Stop Lists〉 0.0396 (0.00) 0.0423 (0.00) 0.0445 (0.00) 0.0479 (0.00) 0.0304 (0.00)

ω̂2
〈n-grams〉 0.0037 (0.00) 0.0031 (0.00) 0.0008 (0.00) 0.0023 (0.00) 0.0093 (0.00)

ω̂2
〈IR Models〉 0.0550 (0.00) 0.0545 (0.00) 0.0548 (0.00) 0.0637 (0.00) 0.0307 (0.00)

ω̂2
〈Stop Lists×n-grams〉 0.0035 (0.00) 0.0023 (0.00) 0.0024 (0.00) 0.0029 (0.00) 0.0032 (0.00)

ω̂2
〈Stop Lists×IR Models〉 0.0928 (0.00) 0.1129 (0.00) 0.1231 (0.00) 0.1277 (0.00) 0.0940 (0.00)

ω̂2
〈n-grams×IR Models〉 0.0080 (0.00) 0.0050 (0.00) 0.0059 (0.00) 0.0050 (0.00) 0.0040 (0.00)

ω̂2
〈Stop Lists×n-grams×IR Models〉 -0.0038 (0.99) -0.0040 (0.99) -0.0032 (0.99) -0.0034 (0.99) -0.0028 (0.99)

Table 5: Summary of three factor models on the TREC Ad-hoc collections. Each cell reports the estimated
ω2 SoA for the specified effects and, within parentheses, the p-value for those effects. Medium and large
effect sizes are in bold; not significant effects are highlighted.



We conducted a thorough experimentation on TREC col-
lections and used different evaluation measures to show how
the proposed approach works and to gain insights on the con-
sidered components, i.e. stop lists, stemmers and n-grams,
and IR models.

We found that the most prominent effects are those of
stop lists and IR models, as well as their interactions, while
stemmers and n-grams play a smaller role. Moreover, we
have seen that stemmers produce more variation on system
performances than n-grams. Overall, this highlights impor-
tance of linguistic resources.

Finally, measures explain system and component effects
differently one from the other and not all the measures seem
to be suitable for all the cases as it happens for ERR@20
which almost does not detect the stemmer effect. These
insights can be useful to understand where to invest effort
and resources for improving components, since they give us
an idea of the actual impact of a family of components on
the overall performances.

As far as future work is concerned, we plan to extend the
proposed methodology in order to be able to capture also
interaction between topics/systems and topics/components.
Indeed, to estimate interaction effects, more replicates would
be needed for each (topic, system) pair, as [17] simulated,
and they are not possible in the present settings, since run-
ning more than once the same system on the same topics
produces exactly the same results.

Moreover, we plan to further investigate the impact of the
measures on the determination of effect sizes. A possible
approach could be to conduct a four-factor analysis, using
measures as additional factor. However, even if the measure
scores are normalized in the range [0, 1], they do not mean
the exactly the same thing, i.e. AP = 0.20 is not exactly
the same as ERR = 0.20 because of their different user mod-
els. A possibility for smoothing these differences and make
the scores more directly comparable could be to normalize
them by the maximum value achieved on the dataset, thus
reasoning in term of ratios.

Lastly, an open challenge is how to run this kind of analy-
sis on the systems which participated to past TREC editions.
A first obstacle is that often there is no precise description
of all the components used in these systems and so their
metadata should be enriched in the way we suggested in [5].
A second obstacle is that the GoP would be very sparse and
many combinations would be missing; therefore, we would
need to rely on unbalanced GLMM and, probably, to con-
sider the components as random factors.
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