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ABSTRACT
In this paper, we discuss how a promising word vector representa-
tion based on Probabilistic Word Embeddings (PWE) can be applied
to Neural Information Retrieval (NeuIR). We illustrate PWE pros
for text retrieval, and identify the core issues which prevent a
full exploitation of their potential. In particular, we focus on the
application of elliptical probabilistic embeddings, a type of PWE,
to a NeuIR system (i.e., MatchPyramid). The main contributions
of this paper are: (i) an analysis of the pros and cons of PWE in
NeuIR; (ii) an in-depth comparison of PWE against pre-trained
Word2Vec, FastText and WordNet word embeddings; (iii) an exten-
sion of the MatchPyramid model to take advantage of broader word
relations information fromWordNet; (iv) a topic-level evaluation of
the MatchPyramid ranking models employing the considered word
embeddings. Finally, we discuss some lessons learned and outline
some open research problems to employ PWE in NeuIR systems
more effectively.
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•Mathematics of computing→Probabilistic representations;
• Information systems → Document representation; • Com-
puting methodologies→ Natural language processing.
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1 INTRODUCTION
Neural Information Retrieval (NeuIR) models have gained increas-
ing attention in the past few years thanks to their ability to auto-
matically extract relevance patterns from raw text [16, 19]. These
methods, differently from traditional lexical approaches for IR, that
rely mainly on exact matching signals between query and document
terms, can retrieve relevant documents which do not contain any
query term. The development of Word Embeddings (WE) played a
crucial role in this methodological advancement. Indeed, WE have
been widely used in NeuIR [16] for the generation of matching sig-
nals, which can be further interpreted by a neural model to return
query-document relevance scores.

Much work has been done in the past few years in the IR com-
munity on the study and development of new neural architectures
to interpret these semantic matching signals [16], but less attention
has been devoted to the representation of words being used. Several
approaches rely on WE trained with Word2Vec [15] or GloVe [22],
or learn their own model-specific word representations like Neural
Vector Space Model (NVSM) [26] and Deep Structured Semantic
Model (DSSM) [10]. Some other works considered the possibility
of learning WE specific for relevance matching in IR [33, 34].

In this paper, we analyze the application of Elliptical Probabilistic
Embeddings [17], a form of WE that we believe can have a sizeable
impact on NeuIR approaches. These embeddings are a recent
development of Probabilistic Word Embeddings (PWE) [28] that
model complex word patterns in text by introducing “uncertainty”
in the embeddings. Their aim is to generate semantically richer
matching signals to be used for similarity matching. Indeed,
point embeddings, such as those obtained with Word2Vec, can
be regarded as a particular (and degenerate) case of PWE where
“the uncertainty is infinitely concentrated on a single point” [17].
Probability similarity measures based on PWE are broader and
provide an opportunity for additional flexibility in the definition of
similarity between words. The main advantage of PWE is the ability
to encode more complex word relations such as hypernymy [17].
This ability however, comes at the cost of a complex training process
given that the number of parameters of each word embedding
increases exponentially. In this work, we describe and evaluate an
effective training procedure for the selected type of PWE, and we
adapt an existing NeuIR architecture – i.e. MatchPyramid [19] – to
use this new representation of words. In order to better evaluate
the advantage of encoding broader relations between terms in
WE, we also compare the trained PWE to a similar type of word
vectors, WordNet Embeddings (WNE) [25]. This representation is
not obtained from raw text data likeWord2Vec embeddings or PWE,
but from a graph reproducing the relations between a selection of
words such asWordNet. These relations are therefore encoded in the
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WE, obtaining a set of vectors with similar properties to PWE. These
embeddings, however, do not performwell in the retrieval task since
the set of words and relations which can be encoded is limited by
the size of the ontology adopted – this leads to a marked Out-
Of-Vocabulary (OOV) problem. To address this issue, we propose
an extension of the MatchPyramid architecture that combines
WNE matching signals with those obtained from character n-grams
embeddings pre-trained with FastText [6]. The overall purpose of
this work is to understand the potential contribution of complex
and flexible WE in Information Retrieval (IR). Hence, we consider
MatchPyramid trained on traditional Word2Vec embeddings as our
baseline and we compare our extended architectures against it. We
show that PWE are promising for NeuIR and can lead to overall
improvements in text retrieval, even though core limitations need
to be overcome to be competitive with state-of-the-art approaches.
By digging into PWE drawbacks, we analyze where they fail to
provide the improvements we expect, explain why this happens
and propose research directions to address the identified issues.
The rest of the paper is organized as follows. In Section 2, we
present some background information on WE with a focus NeuIR;
in Sections 3 and 4, we introduce PWE and WNE; in Section 5 we
present our experimental setup; in Section 6, a comparison between
PWE, FastText Embeddings (FTE) and WNE, and their evaluation
on the retrieval task; in Section 7 we draw our conclusions and
discuss future work.

2 BACKGROUND
Neural models have been employed in IR to automatically detect
regularities in matching patterns and exploit them for document
retrieval. These models usually rely on WE that can be pre-trained
or learned from scratch to enable best matching between query and
document terms and consequently improve retrieval [16].

Point word embeddings. Word2Vec [15] or GloVe [22] WE
have been widely used in NeuIR systems because they incorporate
a mixture of topical and typical notions of relatedness between
terms, leveraging on their co-occurrences in large collections of
documents. FastText [6] is an extension of Word2Vec to compute
word representations based on character n-grams. Using subword-
level information is particularly interesting to build vectors for
unknown words. This is done by summing the character n-grams
in the unknown term. For instance, the tri-grams in the word
“apple” are “app”, “ppl”, and “ple” (ignoring the starting and ending
of boundaries of words). Hence, the word embedding for “apple”
will be the sum of these n-gram vectors. However, since these
models are trained to encode only co-occurrence relations, they
have some drawbacks when used in NeuIR. In co-occurrence based
models, word embeddings of terms which are often used in the
same contexts have a high similarity score despite having different
meanings (e.g. the terms “dangerous” and “safe”) [33] and this could
lead to misleading matching signals for NeuIR models. BERT [3] or
XLNET [32] are novel approaches to train WE which achieve state-
of-the-art performance on lots of Natural Language Processing
(NLP) tasks. However, they are extremely complex to train and,
despite some differences in the architecture of the model and the
training process, obtain word representations which have a similar
structure to the previous models.

WordNet embeddings. WordNet [4] 1 is a large lexical database
of English. Nouns, verbs, adjectives and adverbs are grouped into
sets of cognitive synonyms (synsets), each expressing a distinct
concept. Synsets are interlinked by means of conceptual-semantic
and lexical relations. WordNet has been widely used in IR, but was
never competitive with state-of-the-art approaches [1, 5, 18, 27].
The main issues that need to be faced when WordNet is employed
by an IR system – e.g., for query or document expansion [12, 14, 29]
– are the lack of collection-specific terms in the database, the
need to design a customized similarity measure among terms [31]
or the difficulty of extracting the correct word sense from the
ontology. With the diffusion of word embeddings, new approaches
were also developed to employ this representation also for lexical
resources such as WordNet, Wiktionary 2 or Wikidata 3 [24, 25].
A vector representation of words has the advantage of making
the computation of the similarity between terms much faster than
when using a graph-based distance metric such as Wu and Palmer
similarity [31]. In this work, we employ WordNet to create word
representations which do not present the same drawbacks in NeuIR
of co-occurrence basedmodels such asWord2Vec, and encode richer
relations between words such as hypernymy.

Probabilistic word embeddings. Typically, WE are obtained
by embedding each word into a point/vector in the Euclidean
space Rd , where a distance-based similarity measure (e.g., cosine
similarity) reflects the semantic similarity [15]. While this approach
has been proven effective in many NLP and IR applications, recent
trends started to generalize point embeddings using probability
measures spaces. In this case, each word is represented by a mean
vector and covariance matrix pair introducing uncertainty in the
representations. The main advantage of such approach is the
ability to encode the different senses of a word or complex word
relations such as hypernymy through a covariance matrix [17, 28].
In the literature, various methods to train probabilistic embeddings
have been proposed, starting from [28] which pioneered the
method introducing Gaussian Embeddings where each word is
represented by a Multivariate Gaussian distribution. The similarity
metrics employed are the Probability Product Kernel or Kullback-
Leibler Divergence (KLD). Nevertheless, these metrics have some
drawbacks since they diverge for degenerate covariance matrices
and assume high values when the variance is very small. These
problems can be settled by working on the space of elliptical
distributions (i.e., probability measures with elliptical level sets)
endowed with the Wasserstein-Bures product [17]. Indeed, the
Wasserstein-Bures product handles degenerate cases and has better
numerical stability than the metrics employed in [28]. Moreover,
elliptical embeddings are flexible since they can be transformed
into Gaussian Embeddings or point embeddings by assuming the
probability measures to be a Gaussian or a Dirac delta, respectively.
Finally, elliptical embeddings are stable and provide interesting
numerical properties that guarantee smooth training and easy
employment with neural architectures; for these reasons, we prefer
them to other recent developments in probabilistic embeddings,
such as box embeddings [11].

1https://wordnet.princeton.edu/.
2https://www.wiktionary.org/.
3https://www.wikidata.org/.
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Figure 1: Architecture of MatchPyramid.

NeuIR Models. With the exception of [33, 34], only a few other
approaches have been studying new WE specifically tailored for
IR. A meaningful example is described in [33], where Zamani and
Croft leverage on millions of user queries from AOL logs [21] to
train a set of word embeddings specific to relevance matching.
However, the majority of neural architectures, either rely on pre-
trained Word2Vec or GloVe embeddings [7, 19], or consider word
representations as something to be learned by the NeuIRmodel [26],
without any association to their semantic meaning.

In this work, we evaluate different WE – with a focus on
PWE – and study how they impact the performance of a NeuIR
system. The NeuIR model we employ is based on the MatchPyramid
architecture [19]. We selected this architecture because, despite
being a supervised deep neural model, it does not require lots
of training data [19] and can be applied to relatively small IR
collections such as TREC Robust04 [30]. Moreover, it relies solely on
the interactions between query and document terms, and processes
these raw matching signals directly in its neural model without
performing any prior operation on them. This enables a more
accurate evaluation of the impact of the newWE, than other NeuIR
models – possibly also better performing, such as DRMM [7] –
which alter the matching signals before processing them. Finally,
MatchPyramid is a better performing approach than similar deep
neural architectures for text matching such as DeepMatch [13] or
other approaches based on Convolutional Neural Network (CNN)
such as ARC-I/ARC-II [9]. The architecture of MatchPyramid is
depicted in Figure 1. First, themodel receives as input two embedded
sequences of words, a query and a document. Second, it computes
a similarity matrix between each pair of terms from the query and
the document. In our experiments, we used cosine similarity which,
despite not being the best performing one for the model [19], is
the one used in Word2Vec and FastText for the training of the
embeddings. Cosine similarity is the best metric to evaluate the
WE characteristics since the relative positions of the embeddings
in the space have been optimized during training according to this
distance. Third, a 2D-CNN is applied to the matching matrix to
extract local matching signals, followed by a dynamic pooling layer
[20]. Finally, a shallow Feed-Forward (FF) neural network with two
layers is used to compute the matching score between the query
and the document in input. The model was trained to minimize the
loss function: L(q,d+,d−;θ ) =max(0, 1−S(q,d+)+S(q,d−)), where
θ indicates the model parameters, q represents a user query and
d+,d− are respectively a relevant and a non-relevant document for
q. To decrease retrieval time, we filtered the documents to be ranked
with MatchPyramid, computing the matching score for each query

only for the top 2K documents retrieved with the QLM model [23]
in Terrier v.4.1. 4

3 ELLIPTICAL PROBABILISTIC EMBEDDINGS
PWE generalize classical word embeddings considering each word
representation as a probability measure. In the case of elliptical
distributions, a measure µm,M is determined by its mean (m ∈ Rd )
and covariance matrix (M ∈ Rd×d ). Since the covariance matrix is
symmetric, the number of parameters required for each embedding
can be computed as d + d (d+1)

2 , where d is the size of the vector
m. Let µa,A and µb ,B be two elliptical measures, we define the
Wasserstein-Bures pseudo-dot-product [17] as:

[µa ,A : µb ,B ] = ⟨a, b ⟩ +T r
(
A

1
2 BA

1
2
) 1
2 (1)

Here ⟨·, ·⟩ is the scalar product andTr (·) is the trace operation. Such
pseudo-dot-product can be seen as an extension of the standard dot
product to the space of elliptical measures and defines a similarity
measure between them. This allows us to train the embeddings
using i.e. the Continuous Bag of Words (CBOW) [15] paradigm,
maximizing the similarity between the target word and the words
in its context window while minimizing it for words outside the
context. For a wordw , its context is defined as theN+w words located
before and after each occurrence ofw in the corpus; the rationale
behind this training strategy is that words surrounded by similar
contexts should be semantically correlated. Formally, this translates
into minimizing the following hinge loss (Eq. 2) on the training set
elements:∑

w∈W

M −
1
N +w

∑
c+∈C+w

[µc
+
: µw ] +

1
N −
w

∑
c−∈C−w

[µc
−
: µw ]

 . (2)

Here, for each occurrence of the word w ∈ W in the corpus,
we indicate with C+w the sets of terms of size N+w surrounding
it (positive context), and with C−

w , the negative samples (i.e.
randomly sampled words not belonging to the current context
of w) of cardinality N−

w . Moreover, we indicate with µw , µc
+
, µc

−

respectively the embeddings ofw, c+and c− parametrized by their
mean and covariance matrices – we do not indicate them here
in order to simplify the notation – and M is a slack variable. An
important aspect of the training procedure is that the covariance
matrices are required to be symmetric positive definite. In order to
satisfy this requirement, we factorize them asM = LLT , learning
L during the optimization. For more details on optimization and
differentiation of the loss function we invite the readers who are
interested to refer to [17]. The dot product defined in Eq. 1 is affected
by the words frequency in the training corpus; hence, it is necessary
to define its normalized counterpart to be used during the word
4The modified version of Terrier we used for our experiments is available at the url:
https://github.com/gridofpoints.
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similarity evaluation phase. Given two wordswa andwb and their
elliptical measures µa,A and µb ,B , we define the normalized dot
product as:

C [µa ,A : µb ,B ] =
⟨a, b ⟩

| |a | | · | |b | |
+
T r

(
A

1
2 BA

1
2
) 1
2

√
T rA · T rB

(3)

C [µa,A : µb ,B ] has its maximum value 2 when µa,A = µb ,B and
defines the similarity betweenwa andwb in an elliptical space.

Wewere able to employ PWE in the NeuIRMatchPyramidmodel,
by changing the way the matching matrix between query and
document terms is created. In this case, instead of cosine similarity,
we employed the Wasserstein-Bures normalized dot product as a
similarity measure between two terms.

4 WORDNET EMBEDDINGS
Classical word embedding models such as Word2Vec, GloVe or
FastText, employ large collections of documents to train word
representations. These approaches leverage on co-occurrence
relations between words in order to encode semantic information
in their vector representation. On the other hand, the goal of
WordNet embeddings is to employ semantic networks (i.e.WordNet)
to infer word representations. In this case, WE encode the same
information of the semantic graph used to create them, but in amore
compact way. This information is then used in neural systems with
more efficiency and little modifications to existing architectures. A
semantic network is a graph where each node represents a term
and each edge indicates a relation between two terms. The strength
of the semantic affinity of two words is proportional to the number
of paths connecting two nodes – the higher the number of paths,
the stronger the affinity – and to their length – the shorter the
paths, the stronger the affinity.

WordNet Embeddings (WNE) are computed as follows. First,
the semantic network G, is represented with an adjacency matrix
M where Mi j = 1 if words wi ,w j are connected by an edge in
G, and 0 otherwise. Second, in order to also represent weaker
relations between terms, the following operation is applied:M(n)

G =

I + αM + α2M2 + ... + αnMn , where I is the identity matrix, Mn

is the matrix where Mi j counts the number of paths of length n
between nodes i, j in G, and α < 1 is a decay factor determining
how longer paths are dominated by shorter ones. This iterative
procedure is repeated untilM(n)

G converges into matrixMG , which
is analytically obtained by an inverse matrix operation given
by MG =

∑∞
e=0(αM)e = (I − αM)−1 [25]. Third, each row of

MG is normalized using L2-norm and Positive Point-wise Mutual
Information transformation is applied to reduce the eventual bias
introduced by the conversion towards words with more senses.
Finally, Principal Component Analysis (PCA) is used to reduce the
size of the matrix and achieve WE of size 850. The obtained WNE
are evaluated under the task of determining the semantic similarity
between pairs of lexical units and obtained results around 15%
superior to the ones of Word2Vec with the same evaluation data set
SimLex-999 [8]. The main drawback of WNE is that the number of
terms in the embeddings model is limited by the size of the semantic
graph used to create them. In fact, the model we considered for
our retrieval experiments contains only 60K terms: this represents
a well-known limit for a NeuIR system. Hence, we developed an

extension of the MatchPyramid architecture, which integrates the
missing words with FTE. We call this model MP FTE WNE and
its architecture is reported in Figure 2. We employ WNE in this
model to generate one of the cosine similarity-based matching
matrices in Figure 2. In particular, we compute the cosine similarity
between each pair of terms in a query and a document, according
to this WE model. If one of the terms is missing in the model, we
consider the similarity of the pair as 0. Then, we sum this matrix as
shown in Figure 2, to the one obtained analogously with pre-trained
FTE, parametrizing the sum with a scalar coefficient learned by the
model.

5 EXPERIMENTAL SETUP
Our experiments are based on the TREC Robust04 collection [30].
The Robust04 corpus is composed of 528,155 documents (news) from
TIPSTER Disk 4&5 minus the CR, 249 topics and graded relevance
judgments. We perform the retrieval experiments on this collection
to reproduce the results obtained with the original MatchPyramid
model [19], and also because it is a widely used collection to evaluate
NeuIR systems for ad-hoc retrieval, i.e. DRMM [7] and NVSM [26].
Furthermore, since many NeuIR models do not scale well either
during training or retrieval, it is therefore necessary to evaluate
them on small/medium collections. We are aware that, being our
evaluation based only on one experimental collection, all our results
might not apply to any ad-hoc retrieval collection. However, also
we believe that, with our in-depth embedding-based, statistical and
topic-by-topic analyses, we are able to overcome the limitations
of our experimental setup, and make more general claims. As in
the original MatchPyramid paper, we consider only the topic title
and the first 500 tokens for each document. We also stemmed all of
the terms in the collection using Krovetz Stemmer 5 and removed
stopwords using the INQUERY stoplist [2]. The MatchPyramid
model used has a total of 4 layers: a convolutional and a pooling
layer, followed by a two layer feed-forward neural network. The
convolutional kernel has a size of 3 × 3, while the pooling size is
1 × 10. The MatchPyramid architecture we adopt to evaluate PWE
(MP PWE) and FTE (MP FTE) is shown in Figure 1. In MP PWE,
we compute the matching matrices using the Wasserstein-Bures
dot product described in Section 3. The architecture we use for the
evaluation of WNE (MP FTE WNE), is depicted in Figure 2. Here, as
in MP FTE, we employ the standard cosine similarity to compute
the matching matrices and keep the same configuration described
above for the convolutional, pooling and feed forward layers.

To evaluate retrieval, we consider the P@5, nDCG@5 and MAP
measures. This is done to ensure a comprehensive overview of the
systems performance, especially in the top part of the rankings
which is the most important for the end-user. In particular, P@5
gives us a set-based binary measure of the number of relevant
documents in the first positions of our runs; nDCG@5 provides a
refinement of this measure weighing the order of the documents
and graded relevance. The MAP yields an overall evaluation of the
rankings, that also takes into account the recall of the systems. We
also perform a qualitative evaluation of different WE models: PWE,

5In order to use pre-trained word embeddings models with stemming, we stemmed all
of the terms in the term dictionary of the model and if one stemmed term could be
assigned to more than one embedding we computed its embedding as their average.
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Figure 2: Architecture of MatchPyramid with WNE.

Model Training corpus Number of elems. Emb. size
W2V Wikipedia 190K 50
FTE Wikipedia 2.5M 300
WNE WordNet v.3 [4] 60K 850
PWE Robust04 76K 1325

Table 1: Characteristics of the word embeddings models we
employed for our experiments.

FTE 6, WNE 7, and Word2Vec Embeddings 8. The characteristics
of these models are reported in Table 1. For the PWE training,
we consider context windows of size 5 – i.e., we consider the
two terms before and after each occurrence of a word as its
context. In [17], the PWE were trained on ukWaC, with 2 billion
words, and WaCkypedia_EN which is a dump of Wikipedia 2009 9.
However, we could not train PWE on this large corpora due
to the limited computational resources available. Indeed, as we
described in Section 3, each elliptical probabilistic embedding has
1325 trainable parameters if we consider an embedding space with
d = 50 dimensions. For this reason, we decided to use the Robust04
collection for the training of the PWE. Despite the limited training
data, we were still able to achieve better retrieval results with PWE
than with the pre-trained WE on Wikipedia with Word2Vec used
in [19]. For reproducibility purposes, we share the code and the
WE to perform all our experiments in a public repository. 10

6 EVALUATION
Word Embeddings. We conduct a qualitative evaluation of

WE. To this end, we select a set of terms related to topic 403:
“Osteoporosis”, showing their 2D representation according to
different WE models. 11 To visualize the relations between elliptical
distributions, we adopt the following strategy. We begin performing
PCA on the set of mean vectors mi associated to the wordswi to
visualize. The resulting two-dimensional vectors are the centers of
the ellipses to be displayed. Then, we consider the precision matrix
Pi 12 associated to eachwi and project its two main eigenvectors to
the 2D space identified with PCA. The norms of these projections,
multiplied by the normalized corresponding eigenvalues are the
sizes of the two semi-axes of the ellipses. Finally, we compute
the angle of the ellipses considering the projection of the main
eigenvector of each Pi and the first principal component of PCA.
6https://fasttext.cc/docs/en/crawl-vectors.html.
7https://github.com/nlx-group/WordNetEmbeddings.
8https://github.com/pl8787/MatchPyramid-TensorFlow.
9Available at: http://wacky.sslmit.unibo.it/doku.php?id=corpora; the pre-trained PWE
are not publicly available.
10https://github.com/albpurpura/PE4IR.
11We use Principal Component Analysis (PCA) as a dimensionality reduction technique
to display W2V, WNE, and FTE.
12The precision matrix is by definition the inverse of the covariance matrix.

This visualization process preserves – within the limits of the
dimensionality reduction operation – themeasure of term similarity
adopted for the training of the PWE.

The plots in Figure 3, show how PWE correctly represents the
affinity between the terms selected from the topic description, e.g.
between the words “bone”, “disease” and “osteoporosis” – where
the ellipses intersections represent the concept that osteoporosis is
a bone disease – or “osteoporosis” and “diet”. This however, does
not hold for all other models if we consider the cosine similarity
between terms – which is proportional to the angle between the
words in the scatter plots and is the measure used to compute
term similarity for retrieval. For instance, in Figure 3a, we see a
correlation in theWord2Vecmodel between the terms “osteoporosis”
and “magnesium” (cosine similarity 0.11) – but not with “disease”
(cosine similarity −0.05). Conversely, in the WNE model, the terms
“osteoporosis” and “disease” are related (cosine similarity of 0.28)
because of their relation inWordNet. However, theWNEmodel also
comes with some drawbacks, since it does not capture the relation
between “osteoporosis” and “fracture”, most likely because of the
longer path that connects the terms in WordNet semantic graph.
Finally, the representations of FTE and PWE, are very close in terms
of similarity scores between the term “osteoporosis” and the other
words considered in the comparison – both models recognize a
positive correlation of all the considered terms with “osteoporosis”
– but the relative angles with this word differ greatly. In fact, if
we only considered the mean vectors of the PWE – represented
as the centers of the ellipses – we should have had a completely
different set of similarity scores. The final similarity score of PWE
is, in fact, obtained thanks to the contribution of the covariance
matrices – associated to the probability measure of each term – in
the Wasserstein-Bures product. Herein, this similarity component
is represented by the overlap between the ellipses. Indeed, the
covariance matrix associated to each PWE, allows to represent
the correlation between terms in a selective way, along certain
directions – associated to their different meanings or usage contexts
– without penalizing their representation in the rest of the space,
e.g. in the direction of the word senses/contexts which are used
less frequently in the training samples.

NeuIR Systems. First, we reproduce the original results ob-
tained on the TREC Robust04 collection by the MatchPyramid
model using a pre-trained Word2Vec model 13 (i.e. MP W2V) [19].
We obtain a P@20 of 0.275, very close to the value of 0.272 reported
in the MatchPyramid original paper; the MAP and nDCG scores we
obtain present an absolute difference with the original ones of less

13https://github.com/pl8787/MatchPyramid-TensorFlow.
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(a) W2V (b) WNE (c) FTE (d) PWE

Figure 3: Visualization of a set of terms related to the Robust04 topic 403, according to different WE models.

Model P@5 nDCG@5 MAP
MP W2V 0.3711 0.3617 0.1823
MP PWE 0.4130† 0.4060† 0.1840
MP FTE 0.4145†† 0.3992†† 0.1952

MP FTE WNE 0.4161†† 0.4099†† 0.1978††

Table 2: Retrieval performance of MatchPyramid with dif-
ferent word embedding models. †† and † indicate a signifi-
cant difference (paired t-test) from MP W2V with α = 0.01
and α = 0.05, respectively.

than 0.01. This is likely due to small differences in the document
parsing and tokenization processes of the collection. Second, we test
MatchPyramid employing PWE (MP PWE). The results of our re-
trieval experiments are reported in Table 2. In this case, we observe
a 0.04 increase in P@5 and nDCG@5 compared toMPW2V. This im-
provement is obtained despite the great difference in the number of
terms available in Word2Vec and PWE. In fact, there are more than
190K terms in MP W2V, while MP PWE has only 60K terms. Third,
we test MatchPyramid employing FTE (MP FTE). In this case there
are no OOV terms. We observe a small P@5 increase compared to
MP PWE, and a slightly lower nDCG@5 value. Nevertheless, the
most relevant difference with MP PWE is in terms of MAP which
shows that the words that are missing in PWE have an effect on
the number of relevant documents retrieved by the system. This
however does not significantly affect the top ranked documents.
Finally, we test the extended MatchPyramid architecture (MP FTE
WNE) employing two different WE: FTE and WNE. In this case, we
get the best results overall. We run a paired t-test between MPW2V
(our baseline) and the other described models as reported in Table
2. We see that MP FTE WNE is the only system with significant
improvements over the baseline for all the considered evaluation
measures. MP PWE and MP FTE present significant improvements
when we consider only the top ranked documents with P@5 and
nDCG@5. Nevertheless, the improvements over the baseline are
not as noticeable as we expected. PWE has an impact on NeuIR
architectures, but from a quantitative analysis of the performances,
it is not evident where and why PWE provides a gain or a loss.

To further investigate this issue, we perform a topic-by-topic
evaluation of the considered systems. In Figure 4, we compare, for
each topic, the AP of MP W2V against MP PWE and MP FTE WNE.
In the figure, if a point lies below the red bisector, it means that
the system associated to the x-axis has a higher AP than the one
on the y-axis (and viceversa). Whereas, the nDCG@5 performance
difference between MP W2V and MP PWE or MP FTE WNE is
reported in Figures 5b and 5a, respectively. The stem plots indicate
the nDCG@5 score difference between the systems appearing on

Topic ID Title Topic ID Title
312 Hydroponics 447 Stirling engine
328 Pope beatifications 630 Gulf war syndrome
348 Agoraphobia 647 Windmill electricity
353 Antartica exploration 657 School prayer banned
403 Osteoporosis 659 Cruise health safety
444 Supercritical fluids 697 Air traffic controller

Table 3: Topics considered for the topic-level qualitative
evaluation.

the y-axis. If the value is positive (green), the system associated to
the positive side of the axis performs better than the one associated
to the negative one with reference to the topics indicated on the
x-axis (and vice versa for red points). Relying on the data visualized
in Figures 4 and 5, we selected twelve topics – reported in Table
3 – where MP W2V and MP PWE show a sizeable performance
difference both in terms of AP and nDCG@5.

First of all, in Figure 4 we notice that using different WE affects
the performance on the selected topics. For instance, we observe
a considerable performance difference in Figure 4a on topic 447
where MP W2V has an AP of 0.0, while MP FTE has an AP close
to 0.65. A similar situation is true for topics 328 and 444 in Figure
4b, where the performance of MP PWE is over 0.60 and the AP
of MP W2V is below 0.05. If we consider topics 403 and 630 in
Figures 4a and 4c, we also notice the improvement obtained by
combining FTE and WNE compared to relying only on FTE. In
fact, the conjunct use of FTE and WNE improves the AP of about
0.10 with respect to employing FTE alone. Conversely, in other
topics such as 447 or 444 (see Figures 4a and 4c) we observe a
performance deterioration because MP FTE WNE cannot rely on
WordNet for additional information since the terms “supercritical”
and “stirling” are not contained in WNE. If we examine the stem
plots in Figure 5a and consider the nDCG@5 difference for each
topic of MP W2V and MP FTE WNE, we notice that there are only
three topics where the nDCG@5 of MP W2V is evidently higher
(≥ 0.5) than the nDCG@5 of MP FTE WNE. These topics are 353,
647, and 657. In these cases, the lower performance of MP FTEWNE
is likely due to the lack of the query terms “antartica”, “windmill”
and “banned” in WNE. When we compare MP W2V with MP PWE
in Figure 5b, the topics where the former system’s nDCG@5 is
over 0.5 higher than the one of the latter are: 312, 348, 659, and
697. The lower performance of MP PWE associated to topics 312
and 348, is due to the fact that all of the query terms are missing
from the WE model. On the other hand, the performance difference
on the topics 659 and 697, is likely due to the small training set
of PWE. In fact, the key terms “cruise” and “controller” of topics
659 and 697 only appear respectively 3K and 1.5K times in the
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Figure 4: Comparison of the AP of different MatchPyramid models employing FastText Embeddings (MP FTE), Probabilistic
Word Embeddings (MP PWE) and FastText + WordNet Embeddings (MP FTE+WNE), against MatchPyramid with Word2Vec
embeddings (MP W2V).
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(a) MP W2V and MP FTE WNE nDCG@5 difference by topic.
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(b) MP PWE and MPW2V nDCG@5 difference by topic.

Figure 5: The stem plots indicate the nDCG@5 score difference between the systems indicated on the y-axis. If the value is
positive (green), the system associated to the positive side of the axis (MP FTEWNE in 5a and MP PWE in 5b) performs better
than the one associated to the negative one (and vice versa, red points) on the topic indicated on the x-axis.

training corpus – while the average frequency of the other terms
in these topics is 53K. Hence, the lack of training contexts for these
terms, which are the most important in both of the topics, led
to a poor training of the corresponding WE and consequently to
a low retrieval performance. The experiments performed in this
section, highlight the potential of PWE in NeuIR systems. In fact,
the qualitative evaluation of PWE in Figure 3d, underscores the role
of the covariance matrix in the WE model. This component allows
to balance the contribution of the mean vector in the similarity
function we employed – the Wasserstein-Bures normalized dot
product – adjusting it for the different contexts where a word is
used in the training corpus. The potential of PWE emerged also

when we employ this WE model for retrieval, where we obtained a
statistically significant improvement in the top part of the rankings,
compared to Word2Vec embeddings. Moreover, through the topic
level analysis we performed, we could analyze and motivate why
PWE led or did not lead to a performance improvement w.r.t. the
baseline system employing Word2Vec embeddings. The potential
of this innovative WE is also confirmed by the positive results
obtained combining FTE with WNE which have similar properties
to PWE. Indeed, the addition ofWNE leads to the best performances
overall, which is only constrained by the number of terms in the
ontology used to train them.



7 CONCLUSIONS
In this work, we analyzed – for the first time to our knowledge
– the performance in ad-hoc retrieval, of elliptical probabilistic
word embeddings (PWE). This type of WE is able to encode richer
relations among terms [17], hence to improve retrieval performance
by generating meaningful similarity matching signals between
query and document terms. In order to evaluate the generalization
power of PWE, we first performed a qualitative evaluation of the
WE, visualizing the elliptical probability distributions. Then, we
employed a NeuIR architecture, MatchPyramid [19], to evaluate
the quality of the matching signals, generated with different WE
models, for the retrieval task. We selected this architecture for its
capacity to compute the relevance score for a query-document pair,
considering only the similarity scores between each term from
the two texts, without any alteration. In this way, we eliminated
any potential bias against different WE models with distinct
characteristics, e.g. size, sparsity, or structure. We also extended
the MatchPyramid model (MP FTE WNE) to employ two types
of WE with different characteristics at the same time: FastText
[6] and WordNet embeddings [25]. The former embedding model
is based on character n-grams embeddings, which allowed us to
obtain a semantically meaningful representation of all the terms
in our experimental collection, eliminating the OOV problem. The
latter, allowed us to enrich the matching signals with broader
conceptual-semantic and lexical relations form WordNet. MP
FTE WNE achieved, whenever the query terms were present
in the WordNet embeddings models, a better performance than
Word2Vec or FTE. To conclude, although our study does not
yet lead to a sizeable improvement over traditional Word2Vec
embeddings, PWE can nonetheless be considered a promising
word vector representation of terms for NeuIR. In fact, analyzing
the similarity matrices associated to these embeddings and the
document rankings topic-by-topic, we observed that PWE can be
a competitive word representation for retrieval, outperforming in
many cases a pre-trained Word2Vec model. On the other hand, the
large number of parameters of PWE, makes them difficult to use
and train, especially on small collections. In fact, we encountered
numerous engineering challenges to optimize retrieval and training
time for this type of WE, and we could not train or use them on a
larger collection. In the future, we plan to continue our optimization
of the training and retrieval processes using these embeddings.
We also plan to conduct a further study on the characteristics of
each query to automatically identify and predict the cases where
PWE will lead to a better performance over traditional WE. This
would allow us to use PWE only when they are likely to assure
significantly better performance compared to traditional WE.
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