

Statistical Stemmers: A Reproducibility Study

Gianmaria Silvello, Riccardo Bucco, Giulio Busato, Giacomo Fornari, Andrea Langeli, Alberto Purpura, Giacomo Rocco, Alessandro Tezza, and Maristella Agosti

> Department of Information Engineering, University of Padua, Italy <u>{name.surname}@unipd.it</u>

> > ECIR 2018

Statistical stemmers

Goal and organisation of the work

The reproducibility study

Statistical Stemmers

Language-independent (good for low-resources languages)

- Not readily available in off-the-shelf IR systems

- Not usually taken into account in longitudinal studies in IR

- New stemmers proposed in the last 5-10 years

- Realise statistical stemmers
- Ready to use stemmers in an off-the-shelf IR system

Goal of the work

(Terrier IR system)

- Focus on core stemmers aggregated by time (2011) and context (authors and target languages)

@giansilv

- Paik, J.H., Parui, S.K.: (FCB) A Fast Corpus-Based
 Stemmer. ACM Trans. Asian Lang. Inf. Process. 10(2), 1-16 (2011)
- Paik, J.H., Pal, D., Parui, S.K.: (**SNS**) A Novel Corpusbased Stemming Algorithm Using Co-occurrence Statistics. In: SIGIR 2011. pp. 863-872. ACM Press (2011)
- Paik, J.H., Mitra, M., Parui, S.K., Jarvelin, K. **GRAS**: An effective and efficient stemming algorithm for information retrieval. ACM Trans. Inf. Syst. 29(4), 19 (2011)

Goal and Organization

- 2017-2018 master course in Information Retrieval @ University of Padua

- 16 groups of students (1-4 people each)

- 10 statistical stemmers to be realised

- FCB: Paik, J. H. and Parui, S. K. (2011). A Fast Corpus-Based Stemmer. ACM Trans. Asian Lang. Inf. Process., 10(2):8.
- **GRAS**: Paik, J. H., Mitra, M., Parui, S. K., and Jarvelin, K. (2011). GRAS: An effective and efficient stemming algorithm for information retrieval. ACM Trans. Inf. Syst., 29(4):19.
- HPS: Brychcin, T. and Konopik, M. (2015). HPS: High precision stemmer. Inf. Process. Manage., 51(1):68–91.
- OARD: Oard, D. W., Levow, G., and Cabezas, C. I. (2000). CLEF Experiments at Maryland: Statistical Stemming and Backoff Translation. In Peters, C., editor, Cross-Language Information Retrieval and Evaluation: Workshop of Cross-Language Evaluation Forum (CLEF 2000), pages 176–187. Lecture Notes in Computer Science (LNCS) 2069, Springer, Heidelberg, Germany.
- SNS: Paik, J. H., Pal, D., and Parui, S. K. (2011). A Novel Corpus- based Stemming Algorithm Using Co-occurrence Statistics. In Ma, W.-Y., Nie, J.-Y., Baeza-Yaetes, R., Chua, T.-S., and Croft, W. B., editors, Proc. 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2011), pages 863–872. ACM Press, New York, USA.
- SPLIT: Bacchin, M., Ferro, N., and Melucci, M. (2005). A Probabilistic Model for Stemmer Generation. Information Processing & Management, 41(1):121–137.
- STON: Melucci, M. and Orio, N. (2003). A Novel Method for Stemmer Generation Based on Hidden Markov Models. In Kraft, D., Frieder, O., Hammer, J., Qureshi, S., and Seligman, L., editors, Proc. 12th International Conference on Information and Knowledge Management (CIKM 2003), pages 131–138. ACM Press, New York, USA.
- YASS: Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P., and Datta, K. (2007). YASS: Yet Another Suffix Stripper. ACM Transactions on Information Systems (TOIS), 25(4):18:1–3:20.
- XU: Xu, J. and Croft, W. B. (1998). Corpus-Based Stemming Using Cooccurrence of Word Variants. ACM Trans. Inf. Syst., 16(1): 61–81.

🔰 @giansilv

Steps of the work

- Work for the course (semi-supervised learning)
 - Choose a stemmer, implement the stemmer, evaluate it on a shared test collection (i.e. CLEF-IT-2003)
- Work for the reproducibility study (supervised learning)
 - 1.Select best groups and restrict to volunteers
 - 2.Re-implement the stemmers

The Reproducibility Study

- Identify all suffixes and define sets of words sharing the same suffix \rightarrow set with cardinality α is called potential suffix
- Defines k-equivalence classes of words with the same prefix \rightarrow iterative process starting with length 5 and going down to 2
- Evaluation of the prefix as stem for each class
 - determine the size of the subsets of elements in the class that contains only terms whose suffixes all belong to the potential suffixes set
 - determine the ratio between these sets and the potential classes
 - if ratio $>\delta$ then the longest prefix is a stem for all the terms in the class

- No description of the suffixes extraction process:
 - we extracted all suffixes without considering the inclusion relations between them
- <u>Underspecified choice</u>: A potential-class is defined as the largest subset of words with a common prefix R ending with frequent suffixes:
 - FCB v.1: considers the strings composed of all the characters that follow the common prefix R as suffixes of the terms in a class
 - FCB v.2: considers the whole terms in a k -equivalence class and qualifies them as ending with a frequent suffix if they end with any of the frequent suffixes mentioned before (we allow chars between prefix and suffix)

- No description of the suffixes extraction process:
 - we extracted all suffixes without considering the inclusion relations between them

No description about how to deal with singleton classes; singleton classes have as longest common prefix the whole term that belongs to the class, therefore, the induced suffix is always empty. **This implies that the terms with a unique prefix, but ending with a frequent suffix are not stemmed.**

follow the common prefix R as suffixes of the terms in a class

- FCB v.2: considers the whole terms in a k -equivalence class and qualifies them as ending with a frequent suffix if they end with any of the frequent suffixes mentioned before (we allow chars between prefix and suffix)

- Experimental collections:
 - Hungarian: CLEF 2006-2007 with 98 topics
 - English: TIPSTER Wall Street Journal sub-corpus (topics 1-200)
- Topics: two sets, 1 only T and 1 T+D
- Retrieval model: IFB2
- We tested FCB v.1 and v.2 on several values of δ ratio and we selected the closest performing one

- Closest results with δ =0.5 and FCB v.2

		Origin	Original			Reproduced			Difference		
		MAP	RPrec	P@10	MAP	RPrec	P@10	MAP	RPrec	P@10	
	No Stem	0.185	0.199	0.258	0.1830	0.1956	0.2547	-0.0020	-0.0034	-0.0033	
Т	FCB	0.293	0.315	0.353	0.2863	0.2942	0.3284	-0.0067	-0.0208	-0.0246	
	RB	0.267	0.280	0.343	0.2610	0.2737	0.3245	-0.0060	-0.0063	-0.0185	
	No Stem	0.239	0.252	0.314	0.2375	0.2528	0.3133	-0.0015	+0.0008	-0.0007	
TD	FCB	0.341	0.352	0.390	0.3355	0.3263	0.3949	-0.0055	-0.0257	+0.0049	
	RB	0.335	0.340	0.389	0.3347	0.3358	0.4102	-0.0020	-0.0532	+0.0212	

- Closest results with δ =0.5 and FCB v.2

		Origin	nal		Reproc	luced		Difference		
		MAP	RPrec	P@10	MAP	RPrec	P@10	MAP	RPrec	P@10
Т	No Stem	0.185	0.199	0.258	0.1830	0.1956	0.2547	-0.0020	-0.0034	-0.0033
	FCB	0.293	0.315	0.353	0.2863	0.2942	0.3284	-0.0067	-0.0208	-0.0246
	RB	0.267	0.280	0.343	0.2610	0.2737	0.3245	-0.0060	-0.0063	-0.0185
	No Stem	0.239	0.252	0.314	0.2375	0.2528	0.3133	-0.0015	+0.0008	-0.0007
TD	FCB	0.341	0.352	0.390	0.3355	0.3263	0.3949	-0.0055	-0.0257	+0.0049
	RB	0.335	0.340	0.389	0.3347	0.3358	0.4102	-0.0020	-0.0532	+0.0212

1. There are minor differences also when no stem or a "standard" rule-based stemmer is applied (differences due to Terrier versions?)

FCB: Hungarian

	- Closest results with δ =0.5 and FCB v.2												
	Original Reproduced Difference												
		MAP	RPrec	P@10	MAP	RPrec	P@10	MAP	RPrec	P@10			
	No Stem	0.185	0.199	0.258	0.1830	0.1956	0.2547	-0.0020	-0.0034	-0.0033			
Т	FCB	0.293	0.315	0.353	0.2863	0.2942	0.3284	-0.0067	-0.0208	-0.0246			
	RB	0.267	0.280	0.343	0.2610	0.2737	0.3245	-0.0060	-0.0063	-0.0185			
	No Stem	0.239	0.252	0.314	0.2375	0.2528	0.3133	-0.0015	+0.0008	-0.0007			
TD	FCB	0.341	0.352	0.390	0.3355	0.3263	0.3949	-0.0055	-0.0257	+0.0049			
	RB	0.335	0.340	0.389	0.3347	0.3358	0.4102	-0.0020	-0.0532	+0.0212			

2. Performance differences are consistent across different stemming approaches

INF

- Closest results with δ =0.6 and FCB v.1

						_			107	
		Origin	ıal		Reproc	luced		Differer	UCED	
		MAP	RPrec	P@10	MAP	RPrec	P@10	MAP	RPrec	P@10
	No Stem	0.225	0.267	0.399	0.2250	0.2674	0.3990	0.000	0.000	0.000
Т	FCB	0.258	0.289	0.437	0.2399	0.2791	0.4020	-0.018	-0.010	-0.035
	Porter	0.261	0.296	0.432	0.2621	0.2971	0.4362	+0.001	+0.001	+0.004
	No Stem	0.272	0.312	0.477	0.2722	0.3125	0.4765	0.000	+0.000	0.000
TD	FCB	0.295	0.331	0.493	0.2811	0.3181	0.4715	-0.014	-0.013	-0.0215
	Porter	0.294	0.325	0.477	0.2958	0.3262	0.4800	+0.002	+0.001	+0.0030

Performance differences are smaller than for the Hungarian collection but FCB version is not consistent

No stemmer and Porter stemmer approaches lead to almost perfect results \rightarrow why this does not happen for Hungarian?

- Computation of the co-occurrence strength of word pairs
 - A weighted graph is built where two words are connected if they have a common prefix of length <u>1</u>
- Re-calculation of the strengths
 - The strength assigned to a word pair (w1;w2) is proportional to the number of other words in the corpus that co-occur with both w1 and w2
- Clustering of the words

- Step 1. Extract the data from the lexicon and the inverted index and discard digits and terms shorter than 1 = 3
- Step 2. Compute the co-occurrence between two words if they have a common prefix with length greater than or equal to 11; if their strength is not zero, we check if their common prefix is greater than or equal to 12 = 5
- Step 3. Create a weighted graph where words are nodes and the edges are weighted by their co-occurrence strength
- Step 4. Update the edge strength by re-calculating the co-occurrence of terms
- Step 5. Remove the non-strong edges (clustering phase)
- Step 6. Find the connected components of the graph

Each stem is generated by

finding the longest common prefix amongst the connected words; this is an **assumption** we made since this phase is not described and the proposed algorithm stops right after the creation of word clusters.

- Experimental collections:
 - CLEF Bulgarian 2006-2007 (100 topics)
 - CLEF Hungarian 2006-2007 (98 topics)
 - CLEF Czech 2007 (49 topics)
 - TREC TIPSTER Disk 4&5 minus CR (150 topics)
- Topics: one set T+D
- Retrieval model: IFB2

		Origina	1	Ro	produc	ed	Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2381	0.3409	0.3624	0.2382	0.3405	0.3569	+0.0001	-0.0004	-0.0055	
RPrec	0.2611	0.3456	0.3441	0.2611	0.3456	0.3449	0.0000	0.0000	-0.0008	
P@10	0.2680	0.3480	0.3700	0.2680	0.3480	0.3640	0.0000	0.0000	-0.0060	

The authors claim to use the stemmer defined in [Savoy, 2009], which actually presents two rule-based stemmers, one light and one aggressive.

We tested both these stemmers and we found that the light one was used in the reference paper.

								REPROD	
	(Origina	1	Ro	eproduc	ed	D	oifference	ED
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS
MAP	0.2381	0.3409	0.3624	0.2382	0.3405	0.3569	+0.0001	-0.0004	-0.0055
RPrec	0.2611	0.3456	0.3441	0.2611	0.3456	0.3449	0.0000	0.0000	-0.0008
P@10	0.2680	0.3480	0.3700	0.2680	0.3480	0.3640	0.0000	0.0000	-0.0060

The authors claim to use the stemmer defined in [Savoy, 2009], which actually presents two rule-based stemmers, one light and one aggressive.

We tested both these stemmers and we found that the light one was used in the reference paper.

	(Origina	1	Re	eproduc	ed	Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2166	0.2794	0.3256	0.2038	0.2786	0.2980	-0.0128	-0.0008	-0.0276	
RPrec	0.2293	0.2930	0.3289	0.2291	0.3033	0.3253	-0.0002	+0.0103	-0.0036	
P@10	0.2570	0.3270	0.3520	0.2580	0.3410	0.3540	+0.0010	+0.0140	+0.0020	

		Origina	1	Re	eproduc	ed	Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2166	0.2794	0.3256	0.2038	0.2786	0.2980	-0.0128	-0.0008	-0.0276	
RPrec	0.2293	0.2930	0.3289	0.2291	0.3033	0.3253	-0.0002	+0.0103	-0.0036	
P@10	0.2570	0.3270	0.3520	0.2580	0.3410	0.3540	+0.0010	+0.0140	+0.0020	

Rule-based stemmer not specified. 3 choices:

- 1) aggressive stemmer
- 2) light stemmer using transliterated terms
- 3) light stemmer processing documents in Cyrillic

closest performances to the reference paper

	(Origina	1	Re	eproduc	ed	Difference			
	NO RB SNS			NO	RB	SNS	NO	RB	SNS	
MAP	0.2166	0.2794	0.3256	0.2038	0.2786	0.2980	-0.0128	-0.0008	-0.0276	
RPrec	0.2293	0.2930	0.3289	0.2291	0.3033	0.3253	-0.0002	+0.0103	-0.0036	
P@10	0.2570	0.3270	0.3520	0.2580	0.3410	0.3540	+0.0010	+0.0140	+0.0020	

SNS is successfully reproduced, but there are sizeable differences for the rule-based stemmer and also for no stemmer

	(Origina	1	Re	eproduc	ed	Difference			
	NO RB SNS			NO	NO RB SNS		NO	RB	SNS	
MAP	0.2166	0.2794	0.3256	0.2038	0.2786	0.2980	-0.0128	-0.0008	-0.0276	
RPrec	0.2293	0.2930	0.3289	0.2291	0.3033	0.3253	-0.0002	+0.0103	-0.0036	
P@10	0.2570	0.3270	0.3520	0.2580	0.3410	0.3540	+0.0010	+0.0140	+0.0020	

SNS is successfully reproduced, but there are sizeable differences for the rule-based stemmer and also for no stemmer

SNS improves the baseline systems both in the reference paper and in the reproduced version, even though in the reproduced case the improvement is less marked

SNS is successfully reproduced, but there are sizeable differences for the rule-based stemmer and also for no stemmer

SNS improves the baseline systems both in the reference paper and in the reproduced version, even though in the reproduced case the improvement is less marked

	(Origina	l	Re	eproduc	ed	Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2386	0.3132	0.3588	0.2375	0.3369	0.3583	-0.0011	+0.0237	-0.0005	
RPrec	0.2518	0.3117	0.3585	0.2528	0.3459	0.3556	+0.0010	+0.0342	-0.0029	
P@10	0.3143	0.3990	0.4224	0.3133	0.4153	0.4163	-0.0010	+0.0163	-0.0061	

The authors specified a rule-based stemmer [Savoy, 2008] where a light and an aggressive stemmers are defined. The closest results are obtained with the light one.

	Original			Reproduced			Difference			
	NO RB SNS			NO	RB	SNS	NO	RB	SNS	
MAP	0.2386	0.3132	0.3588	0.2375	0.3369	0.3583	-0.0011	+0.0237	-0.0005	
RPrec	0.2518	0.3117	0.3585	0.2528	0.3459	0.35 <mark>5</mark> 6	+0.0010	+0.0342	-0.0029	
P@10	0.3143	0.3990	0.4224	0.3133	0.4153	0.4163	-0.0010	+0.0163	-0.0061	

The authors specified a rule-based stemmer [Savoy, 2008] where a light and an aggressive stemmers are defined. The closest results are obtained with the light one.

SNS is still slightly superior to the rule-based stemmer we employed even though this **difference is less marked** than the one reported in the reference paper

	(Origina	l	Reproduced			Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2386	0.3132	0.3588	0.2375	0.3369	0.3583	-0.0011	+0.0237	-0.0005	
RPrec	0.2518	0.3117	0.3585	0.2528	0.3459	0.3556	+0.0010	+0.0342	-0.0029	
P@10	0.3143	0.3990	0.4224	0.3133	0.4153	0.4163	-0.0010	+0.0163	-0.0061	

The authors specified a rule-based stemmer [Savoy, 2008] where a light and an aggressive stemmers are defined. The closest results are obtained with the light one.

SNS is still slightly superior to the rule-based stemmer we employed even though this **difference is less marked** than the one reported in the reference paper

Statistical Stemmers: A Reproducibility Study

INFC

	Original			Reproduced			Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2290	0.2599	0.2582	0.2289	0.2596	0.2319	-0.0001	-0.0003	-0.0263	
RPrec	0.2733	0.3008	0.3001	0.2736	0.3013	0.2722	+0.0003	+0.0005	-0.0279	
P@10	0.4327	0.4833	0.4727	0.4320	0.4827	0.4267	-0.0007	-0.0006	-0.0460	

	Original			Reproduced			Difference			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2290	0.2599	0.2582	0.2289	0.2596	0.2319	-0.0001	-0.0003	-0.0263	
RPrec	0.2733	0.3008	0.3001	0.2736	0.3013	0.2722	+0.0003	+0.0005	-0.0279	
P@10	0.4327	0.4833	0.4727	0.4320	0.4827	0.4267	-0.0007	-0.0006	-0.0460	

								REA	RODU	
	(Origina	1	Reproduced			Difference Co			
	NO	RB	SNS	NO	RB	SNS	NO	RB	SNS	
MAP	0.2290	0.2599	0.2582	0.2289	0.2596	0.2319	-0.0001	-0.0003	-0.0263	
RPrec	0.2733	0.3008	0.3001	0.2736	0.3013	0.2722	+0.0003	+0.0005	-0.0279	
P@10	0.4327	0.4833	0.4727	0.4320	0.4827	0.4267	-0.0007	-0.0006	-0.0460	

SNS: English

DEPAR INFO ENGI UNIVER

- Identify the word partitions sharing a I-long prefix; I is set to be the average word length for the given language
- Determine the common suffixes of the words sharing a prefix
 - Two suffixes are considered a candidate pair if they are shared "frequently enough" by word pairs: **α parameter**
- Create a graph where the identified words are mapped to nodes which are connected by an edge if the words are morphologically related
- Create equivalence classes on the basis of a cohesion parameter $\boldsymbol{\delta}$

- The I parameter is set to be "the average word length for the language concerned", but no further details are given
- We chose to calculate the average length of the words in the lexicon

- The I parameter is set to be "the average word length for the language concerned", but no further details are given
- We chose to calculate the average length of the words in the lexicon

	Original					Reproduced				
	EN	\mathbf{FR}	HU	BG	CZ	EN	FR.	HU	BG	CZ
Docs	472, 525	177,452	49,530	87,281	81,735	472, 525	177,452	49,530	69,281	81,735
Words	522, 381	303, 349	528, 315	320, 673	457, 164	502, 280	325, 292	534,813	292,077	457, 149

-3.84% -7.23% -1.23% -9% -0.01%

Nicola Ferro, Gianmaria Silvello: 3.5K runs, 5K topics, 3M assessments and 70M measures: What trends in 10 years of Adhoc-ish CLEF? Inf. Process. Manage. 53(1): 175-202 (2017)

ECIR 2018

- The I parameter is set to be "the average word length for the language concerned", but no further details are given
- We chose to calculate the average length of the words in the lexicon

				Original		_		R	eproduce	ed	_
	EN	F	R	HU	BG	CZ	EN	FR	HU	BG	CZ
Doc	s = 472	525 17	77,452	49,530	87,281	81,735	472, 525	177,452	49,530	69,281	81,735
Wor	ds 522,	, 381 30	03, 349	528, 315	320,673	457, 164	502,280	325, 292	534,813	292,077	457, 149
							-3.84%	-7 23%	-1 23%	_9%	-0.01%
							-0.04 /0		-1.20 /0		
	~						-				
	Czec	h Bu	lgari	an Eng	glish Fi	rench H	lungar	ian –			
1	6		7		7	7	8				
6	V		'		•	1	0				

Nicola Ferro, Gianmaria Silvello: 3.5K runs, 5K topics, 3M assessments and 70M measures: What trends in 10 years of Adhoc-ish CLEF? Inf. Process. Manage. 53(1): 175-202 (2017)

ECIR 2018

- Experimental collections:
 - CLEF Bulgarian 2006-2007 (100 topics)
 - CLEF French 2005-2006 (100 topics)
 - CLEF Hungarian 2006-2007 (98 topics)
 - CLEF Czech 2007 (49 topics)
 - TREC TIPSTER Disk 4&5 minus (CR+FR) (150 topics)
- Topics: one set T+D
- Retrieval model: IFB2

		MAP	R-Prec	P@5	P@10	Rel Ret	
	Original	0.3260	0.3340	0.4240	0.3550	2110	unique terms (-9%)
BG	Reproduced	0.3410	0.3580	0.4730	0.3720	2043	HIGH DIFFERENCE
	Diff	+0.0150	+0.0240	+0.0490	+0.0170	-67	HIGH impact
	Original	0.3660	0.3600	0.4480	0.3760	689	T
CZ	Reproduced	0.3630	0.3580	0.4460	0.3720	690	
	Diff	-0.0030	-0.0020	-0.0020	-0.0040	+1	
	Original	0.2700	0.3090	0.5430	0.4790	7873	
EN	Reproduced	0.2749	0.3128	0.5492	0.4859	7904	
	Diff	+0.0049	+0.0038	+0.0062	+0.0069	+31	
	Original	0.3870	0.3980	0.5330	0.4910	4078	$\left[\frac{1}{2} \right]$
\mathbf{FR}	Reproduced	0.3867	0.3886	0.5495	0.4838	4115	HIGH DIFFERENCE
	Diff	-0.0003	-0.0094	+0.0165	-0.0072	+37	
HU	Original	0.3510	0.3600	0.4740	0.4220	1924	(-1.22%)
	Reproduced	0.3319	0.3467	0.4701	0.4104	1846	LOW DIFFERENCE
	Diff	-0.0191	-0.0133	-0.0039	-0.0116	-78	HIGH impact

		MAP	R-Prec	P@5	P@10	Rel Ret	
	Original	0.3260	0.3340	0.4240	0.3550	2110	unique terms (-9%)
BG	Reproduced	0.3410	0.3580	0.4730	0.3720	2043	HIGH DIFFERENCE
	Diff	+0.0150	+0.0240	+0.0490	+0.0170	-67	HIGH impact
	Original	0.3660	0.3600	0.4480	0.3760	689	
CZ	Reproduced	0.3630	0.3580	0.4460	0.3720	690	
	Diff	-0.0030	-0.0020	-0.0020	-0.0040	+1	
	Original	0.2700	0.3090	0.5430	0.4790	7873	
EN	Reproduced	0.2749	0.3128	0.5492	0.4859	7904	
	Diff	+0.0049	+0.0038	+0.0062	+0.0069	+31	
	Original	0.3870	0.3980	0.5330	0.4910	4078	
\mathbf{FR}	Reproduced	0.3867	0.3886	0.5495	0.4838	4115	HIGH DIFFERENCE
	Diff	-0.0003	-0.0094	+0.0165	-0.0072	+37	
	Original	0.3510	0.3600	0.4740	0.4220	1924	$\left[\frac{1}{220} \right]$
HU	Reproduced	0.3319	0.3467	0.4701	0.4104	1846	LOW DIFFERENCE
	Diff	-0.0191	-0.0133	-0.0039	-0.0116	-78	HIGH impact

- Employment of a standard open-source system as Terrier for the experiments

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported
- Use standard test collections

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported
- Use standard test collections
 - Bulgarian and French # of docs

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported
- Use standard test collections
 - Bulgarian and French # of docs
 - WSJ sub-corpus

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported
- Use standard test collections
 - Bulgarian and French # of docs
 - WSJ sub-corpus
- Report the pseudo-code of the key algorithms is given for SNS and GRAS

- Employment of a standard open-source system as Terrier for the experiments
 - System version not reported
- Use standard test collections
 - Bulgarian and French # of docs
 - WSJ sub-corpus
- Report the pseudo-code of the key algorithms is given for SNS and GRAS
- Some missing information about key parameters and rule-based stemmers employed

